/* All material copyright ESRI, All Rights Reserved, unless otherwise specified. See https://js.arcgis.com/4.25/esri/copyright.txt for details. */ import{isSome as e}from"../core/maybe.js";import{s as i}from"./vec2.js";import{a as o}from"./vec2f64.js";import{Z as r}from"./vec4f64.js";import{SliceDraw as t}from"../views/3d/webgl-engine/core/shaderLibrary/Slice.glsl.js";import{AlignPixel as a}from"../views/3d/webgl-engine/core/shaderLibrary/hud/AlignPixel.glsl.js";import{HUD as l}from"../views/3d/webgl-engine/core/shaderLibrary/hud/HUD.glsl.js";import{multipassGeometryTest as n}from"../views/3d/webgl-engine/core/shaderLibrary/shading/MultipassGeometryTest.glsl.js";import{addScreenSizePerspectiveAlignment as s}from"../views/3d/webgl-engine/core/shaderLibrary/util/ScreenSizePerspective.glsl.js";import{Float2PassUniform as d}from"../views/3d/webgl-engine/core/shaderModules/Float2PassUniform.js";import{Float4PassUniform as c}from"../views/3d/webgl-engine/core/shaderModules/Float4PassUniform.js";import{FloatPassUniform as f}from"../views/3d/webgl-engine/core/shaderModules/FloatPassUniform.js";import{glsl as p}from"../views/3d/webgl-engine/core/shaderModules/interfaces.js";import{ShaderBuilder as g}from"../views/3d/webgl-engine/core/shaderModules/ShaderBuilder.js";import{VertexAttribute as h}from"../views/3d/webgl-engine/lib/VertexAttribute.js";function S(o){const r=new g;r.include(a),r.include(l,o),r.include(t,o),r.attributes.add(h.UV0,"vec2");const{vertex:S,fragment:u}=r;return S.uniforms.add([new c("viewport",((e,i)=>i.camera.fullViewport)),new f("lineSize",((e,i)=>Math.ceil(e.size)*i.camera.pixelRatio)),new d("pixelToNDC",((e,o)=>i(m,2/o.camera.fullViewport[2],2/o.camera.fullViewport[3]))),new f("borderSize",((i,o)=>e(i.borderColor)?o.camera.pixelRatio:0)),new d("screenOffset",((e,o)=>i(m,e.screenOffset[0]*o.camera.pixelRatio,e.screenOffset[1]*o.camera.pixelRatio)))]),r.varyings.add("coverageSampling","vec4"),r.varyings.add("lineSizes","vec2"),o.hasMultipassGeometry&&r.varyings.add("depth","float"),o.hasScreenSizePerspective&&s(S),S.code.add(p` void main(void) { ProjectHUDAux projectAux; vec4 endPoint = projectPositionHUD(projectAux); vec3 vpos = projectAux.posModel; if (rejectBySlice(vpos)) { gl_Position = vec4(1e38, 1e38, 1e38, 1.0); return; } ${o.occlusionTestEnabled?p` if (!testVisibilityHUD(endPoint)) { gl_Position = vec4(1e38, 1e38, 1e38, 1.0); return; }`:""} ${o.hasScreenSizePerspective?p` vec4 perspectiveFactor = screenSizePerspectiveScaleFactor(projectAux.absCosAngle, projectAux.distanceToCamera, screenSizePerspectiveAlignment); vec2 screenOffsetScaled = applyScreenSizePerspectiveScaleFactorVec2(screenOffset, perspectiveFactor); `:p` vec2 screenOffsetScaled = screenOffset; `} // Add view dependent polygon offset to get exact same original starting point. This is mostly // used to get the correct depth value vec3 posView = (view * vec4(position, 1.0)).xyz; ${o.hasMultipassGeometry?"depth = posView.z;":""} applyHUDViewDependentPolygonOffset(auxpos1.w, projectAux.absCosAngle, posView); vec4 startPoint = proj * vec4(posView, 1.0); // Apply screen offset to both start and end point vec2 screenOffsetNorm = screenOffsetScaled * 2.0 / viewport.zw; startPoint.xy += screenOffsetNorm * startPoint.w; endPoint.xy += screenOffsetNorm * endPoint.w; // Align start and end to pixel origin vec4 startAligned = alignToPixelOrigin(startPoint, viewport.zw); vec4 endAligned = alignToPixelOrigin(endPoint, viewport.zw); ${o.depthHudEnabled?o.depthHudAlignStartEnabled?p`endAligned = vec4(endAligned.xy / endAligned.w * startAligned.w, startAligned.zw);`:p`startAligned = vec4(startAligned.xy / startAligned.w * endAligned.w, endAligned.zw);`:""} vec4 projectedPosition = mix(startAligned, endAligned, uv0.y); // The direction of the line in screen space vec2 screenSpaceDirection = normalize(endAligned.xy / endAligned.w - startAligned.xy / startAligned.w); vec2 perpendicularScreenSpaceDirection = vec2(screenSpaceDirection.y, -screenSpaceDirection.x); ${o.hasScreenSizePerspective?p` float lineSizeScaled = applyScreenSizePerspectiveScaleFactorFloat(lineSize, perspectiveFactor); float borderSizeScaled = applyScreenSizePerspectiveScaleFactorFloat(borderSize, perspectiveFactor); `:p` float lineSizeScaled = lineSize; float borderSizeScaled = borderSize; `} float halfPixelSize = lineSizeScaled * 0.5; // Calculate a pixel offset from the edge of the pixel, s.t. we keep the line aligned // to pixels if it has a full pixel size. Since pixel aligned biases to the bottom-left, // we bias the size to the right (for odd sizes) to balance out the bias. Grow sub-pixel // sizes towards the left or right s.t. there is a smooth transition (e.g. from 2 to 3 px). float halfWholePixelSize = floor(lineSizeScaled) * 0.5; float halfPixelSizeInt = floor(halfWholePixelSize); // Sub-pixel offset if we need to grow sub-pixels to the left float subpixelOffset = -fract(lineSizeScaled) * float(halfWholePixelSize > 0.0); // Pixel offset aligning to whole pixels and adding subpixel offset if needed float pixelOffset = -halfPixelSizeInt + subpixelOffset; // Compute full ndc offset, adding 1px padding for doing anti-aliasing and the border size float padding = 1.0 + borderSizeScaled; vec2 ndcOffset = (pixelOffset - padding + uv0.x * (lineSizeScaled + padding + padding)) * pixelToNDC; // Offset x/y from the center of the line in screen space projectedPosition.xy += perpendicularScreenSpaceDirection * ndcOffset * projectedPosition.w; // Compute a coverage varying which we can use in the fragment shader to determine // how much a pixel is actually covered by the line (i.e. to anti alias the line). // This works by computing two coordinates that can be linearly interpolated and then // subtracted to find out how far away from the line edge we are. float edgeDirection = (uv0.x * 2.0 - 1.0); float halfBorderSize = 0.5 * borderSizeScaled; float halfPixelSizeAndBorder = halfPixelSize + halfBorderSize; float outerEdgeCoverageSampler = edgeDirection * (halfPixelSizeAndBorder + halfBorderSize + 1.0); float isOneSided = float(lineSizeScaled < 2.0 && borderSize < 2.0); coverageSampling = vec4( // Edge coordinate outerEdgeCoverageSampler, // Border edge coordinate outerEdgeCoverageSampler - halfPixelSizeAndBorder * isOneSided, // Line offset halfPixelSize - 0.5, // Border offset halfBorderSize - 0.5 + halfPixelSizeAndBorder * (1.0 - isOneSided) ); lineSizes = vec2(lineSizeScaled, borderSizeScaled); gl_Position = projectedPosition; } `),u.uniforms.add([new c("uColor",(e=>v(e.color))),new c("borderColor",(e=>v(e.borderColor)))]),o.hasMultipassGeometry&&(u.include(n,o),u.uniforms.add(new d("inverseViewport",((e,i)=>i.inverseViewport)))),u.code.add(p` void main() { ${o.hasMultipassGeometry?"if( geometryDepthTest(gl_FragCoord.xy * inverseViewport, depth) ){ discard; }":""} // Mix between line and border coverage offsets depending on whether we need // a border (based on the sidedness). vec2 coverage = min(1.0 - clamp(abs(coverageSampling.xy) - coverageSampling.zw, 0.0, 1.0), lineSizes); // Mix between border and line color based on the line coverage (conceptually the line // blends on top of the border background). // // Anti-alias by blending final result using the full (including optional border) coverage // and the color alpha float borderAlpha = uColor.a * borderColor.a * coverage.y; float colorAlpha = uColor.a * coverage.x; float finalAlpha = mix(borderAlpha, 1.0, colorAlpha); ${o.depthHudEnabled?p` if (finalAlpha < 0.01) { discard; } `:p` vec3 finalRgb = mix(borderColor.rgb * borderAlpha, uColor.rgb, colorAlpha); gl_FragColor = vec4(finalRgb, finalAlpha); `} } `),r}function v(i){return e(i)?i:r}const m=o(),u=Object.freeze(Object.defineProperty({__proto__:null,build:S},Symbol.toStringTag,{value:"Module"}));export{u as L,S as b};