import { Properties, Units, FeatureCollection, Point } from "@turf/helpers"; export declare type Dbscan = "core" | "edge" | "noise"; export declare type DbscanProps = Properties & { dbscan?: Dbscan; cluster?: number; }; /** * Takes a set of {@link Point|points} and partition them into clusters according to {@link DBSCAN's|https://en.wikipedia.org/wiki/DBSCAN} data clustering algorithm. * * @name clustersDbscan * @param {FeatureCollection} points to be clustered * @param {number} maxDistance Maximum Distance between any point of the cluster to generate the clusters (kilometers only) * @param {Object} [options={}] Optional parameters * @param {string} [options.units="kilometers"] in which `maxDistance` is expressed, can be degrees, radians, miles, or kilometers * @param {boolean} [options.mutate=false] Allows GeoJSON input to be mutated * @param {number} [options.minPoints=3] Minimum number of points to generate a single cluster, * points which do not meet this requirement will be classified as an 'edge' or 'noise'. * @returns {FeatureCollection} Clustered Points with an additional two properties associated to each Feature: * - {number} cluster - the associated clusterId * - {string} dbscan - type of point it has been classified as ('core'|'edge'|'noise') * @example * // create random points with random z-values in their properties * var points = turf.randomPoint(100, {bbox: [0, 30, 20, 50]}); * var maxDistance = 100; * var clustered = turf.clustersDbscan(points, maxDistance); * * //addToMap * var addToMap = [clustered]; */ declare function clustersDbscan(points: FeatureCollection, maxDistance: number, options?: { units?: Units; minPoints?: number; mutate?: boolean; }): FeatureCollection; export default clustersDbscan;