"use strict"; var __importDefault = (this && this.__importDefault) || function (mod) { return (mod && mod.__esModule) ? mod : { "default": mod }; }; Object.defineProperty(exports, "__esModule", { value: true }); var center_mean_1 = __importDefault(require("@turf/center-mean")); var distance_1 = __importDefault(require("@turf/distance")); var centroid_1 = __importDefault(require("@turf/centroid")); var helpers_1 = require("@turf/helpers"); var meta_1 = require("@turf/meta"); /** * Takes a {@link FeatureCollection} of points and calculates the median center, * algorithimically. The median center is understood as the point that is * requires the least total travel from all other points. * * Turfjs has four different functions for calculating the center of a set of * data. Each is useful depending on circumstance. * * `@turf/center` finds the simple center of a dataset, by finding the * midpoint between the extents of the data. That is, it divides in half the * farthest east and farthest west point as well as the farthest north and * farthest south. * * `@turf/center-of-mass` imagines that the dataset is a sheet of paper. * The center of mass is where the sheet would balance on a fingertip. * * `@turf/center-mean` takes the averages of all the coordinates and * produces a value that respects that. Unlike `@turf/center`, it is * sensitive to clusters and outliers. It lands in the statistical middle of a * dataset, not the geographical. It can also be weighted, meaning certain * points are more important than others. * * `@turf/center-median` takes the mean center and tries to find, iteratively, * a new point that requires the least amount of travel from all the points in * the dataset. It is not as sensitive to outliers as `@turf/center-mean`, but it is * attracted to clustered data. It, too, can be weighted. * * **Bibliography** * * Harold W. Kuhn and Robert E. Kuenne, β€œAn Efficient Algorithm for the * Numerical Solution of the Generalized Weber Problem in Spatial * Economics,” _Journal of Regional Science_ 4, no. 2 (1962): 21–33, * doi:{@link https://doi.org/10.1111/j.1467-9787.1962.tb00902.x}. * * James E. Burt, Gerald M. Barber, and David L. Rigby, _Elementary * Statistics for Geographers_, 3rd ed., New York: The Guilford * Press, 2009, 150–151. * * @name centerMedian * @param {FeatureCollection} features Any GeoJSON Feature Collection * @param {Object} [options={}] Optional parameters * @param {string} [options.weight] the property name used to weight the center * @param {number} [options.tolerance=0.001] the difference in distance between candidate medians at which point the algorighim stops iterating. * @param {number} [options.counter=10] how many attempts to find the median, should the tolerance be insufficient. * @returns {Feature} The median center of the collection * @example * var points = turf.points([[0, 0], [1, 0], [0, 1], [5, 8]]); * var medianCenter = turf.centerMedian(points); * * //addToMap * var addToMap = [points, medianCenter] */ function centerMedian(features, options) { if (options === void 0) { options = {}; } // Optional params options = options || {}; if (!helpers_1.isObject(options)) throw new Error("options is invalid"); var counter = options.counter || 10; if (!helpers_1.isNumber(counter)) throw new Error("counter must be a number"); var weightTerm = options.weight; // Calculate mean center: var meanCenter = center_mean_1.default(features, { weight: options.weight }); // Calculate center of every feature: var centroids = helpers_1.featureCollection([]); meta_1.featureEach(features, function (feature) { var _a; centroids.features.push(centroid_1.default(feature, { properties: { weight: (_a = feature.properties) === null || _a === void 0 ? void 0 : _a[weightTerm] }, })); }); var properties = { tolerance: options.tolerance, medianCandidates: [], }; return findMedian(meanCenter.geometry.coordinates, [0, 0], centroids, properties, counter); } /** * Recursive function to find new candidate medians. * * @private * @param {Position} candidateMedian current candidate median * @param {Position} previousCandidate the previous candidate median * @param {FeatureCollection} centroids the collection of centroids whose median we are determining * @param {number} counter how many attempts to try before quitting. * @returns {Feature} the median center of the dataset. */ function findMedian(candidateMedian, previousCandidate, centroids, properties, counter) { var tolerance = properties.tolerance || 0.001; var candidateXsum = 0; var candidateYsum = 0; var kSum = 0; var centroidCount = 0; meta_1.featureEach(centroids, function (theCentroid) { var _a; var weightValue = (_a = theCentroid.properties) === null || _a === void 0 ? void 0 : _a.weight; var weight = weightValue === undefined || weightValue === null ? 1 : weightValue; weight = Number(weight); if (!helpers_1.isNumber(weight)) throw new Error("weight value must be a number"); if (weight > 0) { centroidCount += 1; var distanceFromCandidate = weight * distance_1.default(theCentroid, candidateMedian); if (distanceFromCandidate === 0) distanceFromCandidate = 1; var k = weight / distanceFromCandidate; candidateXsum += theCentroid.geometry.coordinates[0] * k; candidateYsum += theCentroid.geometry.coordinates[1] * k; kSum += k; } }); if (centroidCount < 1) throw new Error("no features to measure"); var candidateX = candidateXsum / kSum; var candidateY = candidateYsum / kSum; if (centroidCount === 1 || counter === 0 || (Math.abs(candidateX - previousCandidate[0]) < tolerance && Math.abs(candidateY - previousCandidate[1]) < tolerance)) { return helpers_1.point([candidateX, candidateY], { medianCandidates: properties.medianCandidates, }); } else { properties.medianCandidates.push([candidateX, candidateY]); return findMedian([candidateX, candidateY], candidateMedian, centroids, properties, counter - 1); } } exports.default = centerMedian;