import BoundingSphere from "./BoundingSphere.js"; import Cartesian3 from "./Cartesian3.js"; import Check from "./Check.js"; import defaultValue from "./defaultValue.js"; import defined from "./defined.js"; import Ellipsoid from "./Ellipsoid.js"; import Rectangle from "./Rectangle.js"; /** * Determine whether or not other objects are visible or hidden behind the visible horizon defined by * an {@link Ellipsoid} and a camera position. The ellipsoid is assumed to be located at the * origin of the coordinate system. This class uses the algorithm described in the * {@link https://cesium.com/blog/2013/04/25/Horizon-culling/|Horizon Culling} blog post. * * @alias EllipsoidalOccluder * * @param {Ellipsoid} ellipsoid The ellipsoid to use as an occluder. * @param {Cartesian3} [cameraPosition] The coordinate of the viewer/camera. If this parameter is not * specified, {@link EllipsoidalOccluder#cameraPosition} must be called before * testing visibility. * * @constructor * * @example * // Construct an ellipsoidal occluder with radii 1.0, 1.1, and 0.9. * const cameraPosition = new Cesium.Cartesian3(5.0, 6.0, 7.0); * const occluderEllipsoid = new Cesium.Ellipsoid(1.0, 1.1, 0.9); * const occluder = new Cesium.EllipsoidalOccluder(occluderEllipsoid, cameraPosition); * * @private */ function EllipsoidalOccluder(ellipsoid, cameraPosition) { //>>includeStart('debug', pragmas.debug); Check.typeOf.object("ellipsoid", ellipsoid); //>>includeEnd('debug'); this._ellipsoid = ellipsoid; this._cameraPosition = new Cartesian3(); this._cameraPositionInScaledSpace = new Cartesian3(); this._distanceToLimbInScaledSpaceSquared = 0.0; // cameraPosition fills in the above values if (defined(cameraPosition)) { this.cameraPosition = cameraPosition; } } Object.defineProperties(EllipsoidalOccluder.prototype, { /** * Gets the occluding ellipsoid. * @memberof EllipsoidalOccluder.prototype * @type {Ellipsoid} */ ellipsoid: { get: function () { return this._ellipsoid; }, }, /** * Gets or sets the position of the camera. * @memberof EllipsoidalOccluder.prototype * @type {Cartesian3} */ cameraPosition: { get: function () { return this._cameraPosition; }, set: function (cameraPosition) { // See https://cesium.com/blog/2013/04/25/Horizon-culling/ const ellipsoid = this._ellipsoid; const cv = ellipsoid.transformPositionToScaledSpace( cameraPosition, this._cameraPositionInScaledSpace ); const vhMagnitudeSquared = Cartesian3.magnitudeSquared(cv) - 1.0; Cartesian3.clone(cameraPosition, this._cameraPosition); this._cameraPositionInScaledSpace = cv; this._distanceToLimbInScaledSpaceSquared = vhMagnitudeSquared; }, }, }); const scratchCartesian = new Cartesian3(); /** * Determines whether or not a point, the occludee, is hidden from view by the occluder. * * @param {Cartesian3} occludee The point to test for visibility. * @returns {boolean} true if the occludee is visible; otherwise false. * * @example * const cameraPosition = new Cesium.Cartesian3(0, 0, 2.5); * const ellipsoid = new Cesium.Ellipsoid(1.0, 1.1, 0.9); * const occluder = new Cesium.EllipsoidalOccluder(ellipsoid, cameraPosition); * const point = new Cesium.Cartesian3(0, -3, -3); * occluder.isPointVisible(point); //returns true */ EllipsoidalOccluder.prototype.isPointVisible = function (occludee) { const ellipsoid = this._ellipsoid; const occludeeScaledSpacePosition = ellipsoid.transformPositionToScaledSpace( occludee, scratchCartesian ); return isScaledSpacePointVisible( occludeeScaledSpacePosition, this._cameraPositionInScaledSpace, this._distanceToLimbInScaledSpaceSquared ); }; /** * Determines whether or not a point expressed in the ellipsoid scaled space, is hidden from view by the * occluder. To transform a Cartesian X, Y, Z position in the coordinate system aligned with the ellipsoid * into the scaled space, call {@link Ellipsoid#transformPositionToScaledSpace}. * * @param {Cartesian3} occludeeScaledSpacePosition The point to test for visibility, represented in the scaled space. * @returns {boolean} true if the occludee is visible; otherwise false. * * @example * const cameraPosition = new Cesium.Cartesian3(0, 0, 2.5); * const ellipsoid = new Cesium.Ellipsoid(1.0, 1.1, 0.9); * const occluder = new Cesium.EllipsoidalOccluder(ellipsoid, cameraPosition); * const point = new Cesium.Cartesian3(0, -3, -3); * const scaledSpacePoint = ellipsoid.transformPositionToScaledSpace(point); * occluder.isScaledSpacePointVisible(scaledSpacePoint); //returns true */ EllipsoidalOccluder.prototype.isScaledSpacePointVisible = function ( occludeeScaledSpacePosition ) { return isScaledSpacePointVisible( occludeeScaledSpacePosition, this._cameraPositionInScaledSpace, this._distanceToLimbInScaledSpaceSquared ); }; const scratchCameraPositionInScaledSpaceShrunk = new Cartesian3(); /** * Similar to {@link EllipsoidalOccluder#isScaledSpacePointVisible} except tests against an * ellipsoid that has been shrunk by the minimum height when the minimum height is below * the ellipsoid. This is intended to be used with points generated by * {@link EllipsoidalOccluder#computeHorizonCullingPointPossiblyUnderEllipsoid} or * {@link EllipsoidalOccluder#computeHorizonCullingPointFromVerticesPossiblyUnderEllipsoid}. * * @param {Cartesian3} occludeeScaledSpacePosition The point to test for visibility, represented in the scaled space of the possibly-shrunk ellipsoid. * @returns {boolean} true if the occludee is visible; otherwise false. */ EllipsoidalOccluder.prototype.isScaledSpacePointVisiblePossiblyUnderEllipsoid = function ( occludeeScaledSpacePosition, minimumHeight ) { const ellipsoid = this._ellipsoid; let vhMagnitudeSquared; let cv; if ( defined(minimumHeight) && minimumHeight < 0.0 && ellipsoid.minimumRadius > -minimumHeight ) { // This code is similar to the cameraPosition setter, but unrolled for performance because it will be called a lot. cv = scratchCameraPositionInScaledSpaceShrunk; cv.x = this._cameraPosition.x / (ellipsoid.radii.x + minimumHeight); cv.y = this._cameraPosition.y / (ellipsoid.radii.y + minimumHeight); cv.z = this._cameraPosition.z / (ellipsoid.radii.z + minimumHeight); vhMagnitudeSquared = cv.x * cv.x + cv.y * cv.y + cv.z * cv.z - 1.0; } else { cv = this._cameraPositionInScaledSpace; vhMagnitudeSquared = this._distanceToLimbInScaledSpaceSquared; } return isScaledSpacePointVisible( occludeeScaledSpacePosition, cv, vhMagnitudeSquared ); }; /** * Computes a point that can be used for horizon culling from a list of positions. If the point is below * the horizon, all of the positions are guaranteed to be below the horizon as well. The returned point * is expressed in the ellipsoid-scaled space and is suitable for use with * {@link EllipsoidalOccluder#isScaledSpacePointVisible}. * * @param {Cartesian3} directionToPoint The direction that the computed point will lie along. * A reasonable direction to use is the direction from the center of the ellipsoid to * the center of the bounding sphere computed from the positions. The direction need not * be normalized. * @param {Cartesian3[]} positions The positions from which to compute the horizon culling point. The positions * must be expressed in a reference frame centered at the ellipsoid and aligned with the * ellipsoid's axes. * @param {Cartesian3} [result] The instance on which to store the result instead of allocating a new instance. * @returns {Cartesian3} The computed horizon culling point, expressed in the ellipsoid-scaled space. */ EllipsoidalOccluder.prototype.computeHorizonCullingPoint = function ( directionToPoint, positions, result ) { return computeHorizonCullingPointFromPositions( this._ellipsoid, directionToPoint, positions, result ); }; const scratchEllipsoidShrunk = Ellipsoid.clone(Ellipsoid.UNIT_SPHERE); /** * Similar to {@link EllipsoidalOccluder#computeHorizonCullingPoint} except computes the culling * point relative to an ellipsoid that has been shrunk by the minimum height when the minimum height is below * the ellipsoid. The returned point is expressed in the possibly-shrunk ellipsoid-scaled space and is suitable * for use with {@link EllipsoidalOccluder#isScaledSpacePointVisiblePossiblyUnderEllipsoid}. * * @param {Cartesian3} directionToPoint The direction that the computed point will lie along. * A reasonable direction to use is the direction from the center of the ellipsoid to * the center of the bounding sphere computed from the positions. The direction need not * be normalized. * @param {Cartesian3[]} positions The positions from which to compute the horizon culling point. The positions * must be expressed in a reference frame centered at the ellipsoid and aligned with the * ellipsoid's axes. * @param {number} [minimumHeight] The minimum height of all positions. If this value is undefined, all positions are assumed to be above the ellipsoid. * @param {Cartesian3} [result] The instance on which to store the result instead of allocating a new instance. * @returns {Cartesian3} The computed horizon culling point, expressed in the possibly-shrunk ellipsoid-scaled space. */ EllipsoidalOccluder.prototype.computeHorizonCullingPointPossiblyUnderEllipsoid = function ( directionToPoint, positions, minimumHeight, result ) { const possiblyShrunkEllipsoid = getPossiblyShrunkEllipsoid( this._ellipsoid, minimumHeight, scratchEllipsoidShrunk ); return computeHorizonCullingPointFromPositions( possiblyShrunkEllipsoid, directionToPoint, positions, result ); }; /** * Computes a point that can be used for horizon culling from a list of positions. If the point is below * the horizon, all of the positions are guaranteed to be below the horizon as well. The returned point * is expressed in the ellipsoid-scaled space and is suitable for use with * {@link EllipsoidalOccluder#isScaledSpacePointVisible}. * * @param {Cartesian3} directionToPoint The direction that the computed point will lie along. * A reasonable direction to use is the direction from the center of the ellipsoid to * the center of the bounding sphere computed from the positions. The direction need not * be normalized. * @param {number[]} vertices The vertices from which to compute the horizon culling point. The positions * must be expressed in a reference frame centered at the ellipsoid and aligned with the * ellipsoid's axes. * @param {number} [stride=3] * @param {Cartesian3} [center=Cartesian3.ZERO] * @param {Cartesian3} [result] The instance on which to store the result instead of allocating a new instance. * @returns {Cartesian3} The computed horizon culling point, expressed in the ellipsoid-scaled space. */ EllipsoidalOccluder.prototype.computeHorizonCullingPointFromVertices = function ( directionToPoint, vertices, stride, center, result ) { return computeHorizonCullingPointFromVertices( this._ellipsoid, directionToPoint, vertices, stride, center, result ); }; /** * Similar to {@link EllipsoidalOccluder#computeHorizonCullingPointFromVertices} except computes the culling * point relative to an ellipsoid that has been shrunk by the minimum height when the minimum height is below * the ellipsoid. The returned point is expressed in the possibly-shrunk ellipsoid-scaled space and is suitable * for use with {@link EllipsoidalOccluder#isScaledSpacePointVisiblePossiblyUnderEllipsoid}. * * @param {Cartesian3} directionToPoint The direction that the computed point will lie along. * A reasonable direction to use is the direction from the center of the ellipsoid to * the center of the bounding sphere computed from the positions. The direction need not * be normalized. * @param {number[]} vertices The vertices from which to compute the horizon culling point. The positions * must be expressed in a reference frame centered at the ellipsoid and aligned with the * ellipsoid's axes. * @param {number} [stride=3] * @param {Cartesian3} [center=Cartesian3.ZERO] * @param {number} [minimumHeight] The minimum height of all vertices. If this value is undefined, all vertices are assumed to be above the ellipsoid. * @param {Cartesian3} [result] The instance on which to store the result instead of allocating a new instance. * @returns {Cartesian3} The computed horizon culling point, expressed in the possibly-shrunk ellipsoid-scaled space. */ EllipsoidalOccluder.prototype.computeHorizonCullingPointFromVerticesPossiblyUnderEllipsoid = function ( directionToPoint, vertices, stride, center, minimumHeight, result ) { const possiblyShrunkEllipsoid = getPossiblyShrunkEllipsoid( this._ellipsoid, minimumHeight, scratchEllipsoidShrunk ); return computeHorizonCullingPointFromVertices( possiblyShrunkEllipsoid, directionToPoint, vertices, stride, center, result ); }; const subsampleScratch = []; /** * Computes a point that can be used for horizon culling of a rectangle. If the point is below * the horizon, the ellipsoid-conforming rectangle is guaranteed to be below the horizon as well. * The returned point is expressed in the ellipsoid-scaled space and is suitable for use with * {@link EllipsoidalOccluder#isScaledSpacePointVisible}. * * @param {Rectangle} rectangle The rectangle for which to compute the horizon culling point. * @param {Ellipsoid} ellipsoid The ellipsoid on which the rectangle is defined. This may be different from * the ellipsoid used by this instance for occlusion testing. * @param {Cartesian3} [result] The instance on which to store the result instead of allocating a new instance. * @returns {Cartesian3} The computed horizon culling point, expressed in the ellipsoid-scaled space. */ EllipsoidalOccluder.prototype.computeHorizonCullingPointFromRectangle = function ( rectangle, ellipsoid, result ) { //>>includeStart('debug', pragmas.debug); Check.typeOf.object("rectangle", rectangle); //>>includeEnd('debug'); const positions = Rectangle.subsample( rectangle, ellipsoid, 0.0, subsampleScratch ); const bs = BoundingSphere.fromPoints(positions); // If the bounding sphere center is too close to the center of the occluder, it doesn't make // sense to try to horizon cull it. if (Cartesian3.magnitude(bs.center) < 0.1 * ellipsoid.minimumRadius) { return undefined; } return this.computeHorizonCullingPoint(bs.center, positions, result); }; const scratchEllipsoidShrunkRadii = new Cartesian3(); function getPossiblyShrunkEllipsoid(ellipsoid, minimumHeight, result) { if ( defined(minimumHeight) && minimumHeight < 0.0 && ellipsoid.minimumRadius > -minimumHeight ) { const ellipsoidShrunkRadii = Cartesian3.fromElements( ellipsoid.radii.x + minimumHeight, ellipsoid.radii.y + minimumHeight, ellipsoid.radii.z + minimumHeight, scratchEllipsoidShrunkRadii ); ellipsoid = Ellipsoid.fromCartesian3(ellipsoidShrunkRadii, result); } return ellipsoid; } function computeHorizonCullingPointFromPositions( ellipsoid, directionToPoint, positions, result ) { //>>includeStart('debug', pragmas.debug); Check.typeOf.object("directionToPoint", directionToPoint); Check.defined("positions", positions); //>>includeEnd('debug'); if (!defined(result)) { result = new Cartesian3(); } const scaledSpaceDirectionToPoint = computeScaledSpaceDirectionToPoint( ellipsoid, directionToPoint ); let resultMagnitude = 0.0; for (let i = 0, len = positions.length; i < len; ++i) { const position = positions[i]; const candidateMagnitude = computeMagnitude( ellipsoid, position, scaledSpaceDirectionToPoint ); if (candidateMagnitude < 0.0) { // all points should face the same direction, but this one doesn't, so return undefined return undefined; } resultMagnitude = Math.max(resultMagnitude, candidateMagnitude); } return magnitudeToPoint(scaledSpaceDirectionToPoint, resultMagnitude, result); } const positionScratch = new Cartesian3(); function computeHorizonCullingPointFromVertices( ellipsoid, directionToPoint, vertices, stride, center, result ) { //>>includeStart('debug', pragmas.debug); Check.typeOf.object("directionToPoint", directionToPoint); Check.defined("vertices", vertices); Check.typeOf.number("stride", stride); //>>includeEnd('debug'); if (!defined(result)) { result = new Cartesian3(); } stride = defaultValue(stride, 3); center = defaultValue(center, Cartesian3.ZERO); const scaledSpaceDirectionToPoint = computeScaledSpaceDirectionToPoint( ellipsoid, directionToPoint ); let resultMagnitude = 0.0; for (let i = 0, len = vertices.length; i < len; i += stride) { positionScratch.x = vertices[i] + center.x; positionScratch.y = vertices[i + 1] + center.y; positionScratch.z = vertices[i + 2] + center.z; const candidateMagnitude = computeMagnitude( ellipsoid, positionScratch, scaledSpaceDirectionToPoint ); if (candidateMagnitude < 0.0) { // all points should face the same direction, but this one doesn't, so return undefined return undefined; } resultMagnitude = Math.max(resultMagnitude, candidateMagnitude); } return magnitudeToPoint(scaledSpaceDirectionToPoint, resultMagnitude, result); } function isScaledSpacePointVisible( occludeeScaledSpacePosition, cameraPositionInScaledSpace, distanceToLimbInScaledSpaceSquared ) { // See https://cesium.com/blog/2013/04/25/Horizon-culling/ const cv = cameraPositionInScaledSpace; const vhMagnitudeSquared = distanceToLimbInScaledSpaceSquared; const vt = Cartesian3.subtract( occludeeScaledSpacePosition, cv, scratchCartesian ); const vtDotVc = -Cartesian3.dot(vt, cv); // If vhMagnitudeSquared < 0 then we are below the surface of the ellipsoid and // in this case, set the culling plane to be on V. const isOccluded = vhMagnitudeSquared < 0 ? vtDotVc > 0 : vtDotVc > vhMagnitudeSquared && (vtDotVc * vtDotVc) / Cartesian3.magnitudeSquared(vt) > vhMagnitudeSquared; return !isOccluded; } const scaledSpaceScratch = new Cartesian3(); const directionScratch = new Cartesian3(); function computeMagnitude(ellipsoid, position, scaledSpaceDirectionToPoint) { const scaledSpacePosition = ellipsoid.transformPositionToScaledSpace( position, scaledSpaceScratch ); let magnitudeSquared = Cartesian3.magnitudeSquared(scaledSpacePosition); let magnitude = Math.sqrt(magnitudeSquared); const direction = Cartesian3.divideByScalar( scaledSpacePosition, magnitude, directionScratch ); // For the purpose of this computation, points below the ellipsoid are consider to be on it instead. magnitudeSquared = Math.max(1.0, magnitudeSquared); magnitude = Math.max(1.0, magnitude); const cosAlpha = Cartesian3.dot(direction, scaledSpaceDirectionToPoint); const sinAlpha = Cartesian3.magnitude( Cartesian3.cross(direction, scaledSpaceDirectionToPoint, direction) ); const cosBeta = 1.0 / magnitude; const sinBeta = Math.sqrt(magnitudeSquared - 1.0) * cosBeta; return 1.0 / (cosAlpha * cosBeta - sinAlpha * sinBeta); } function magnitudeToPoint( scaledSpaceDirectionToPoint, resultMagnitude, result ) { // The horizon culling point is undefined if there were no positions from which to compute it, // the directionToPoint is pointing opposite all of the positions, or if we computed NaN or infinity. if ( resultMagnitude <= 0.0 || resultMagnitude === 1.0 / 0.0 || resultMagnitude !== resultMagnitude ) { return undefined; } return Cartesian3.multiplyByScalar( scaledSpaceDirectionToPoint, resultMagnitude, result ); } const directionToPointScratch = new Cartesian3(); function computeScaledSpaceDirectionToPoint(ellipsoid, directionToPoint) { if (Cartesian3.equals(directionToPoint, Cartesian3.ZERO)) { return directionToPoint; } ellipsoid.transformPositionToScaledSpace( directionToPoint, directionToPointScratch ); return Cartesian3.normalize(directionToPointScratch, directionToPointScratch); } export default EllipsoidalOccluder;