import BoundingSphere from "./BoundingSphere.js";
import Cartesian2 from "./Cartesian2.js";
import Cartesian3 from "./Cartesian3.js";
import Check from "./Check.js";
import defaultValue from "./defaultValue.js";
import defined from "./defined.js";
import DeveloperError from "./DeveloperError.js";
import IndexDatatype from "./IndexDatatype.js";
import Intersections2D from "./Intersections2D.js";
import CesiumMath from "./Math.js";
import OrientedBoundingBox from "./OrientedBoundingBox.js";
import TaskProcessor from "./TaskProcessor.js";
import TerrainData from "./TerrainData.js";
import TerrainEncoding from "./TerrainEncoding.js";
import TerrainMesh from "./TerrainMesh.js";
/**
* Terrain data for a single tile where the terrain data is represented as a quantized mesh. A quantized
* mesh consists of three vertex attributes, longitude, latitude, and height. All attributes are expressed
* as 16-bit values in the range 0 to 32767. Longitude and latitude are zero at the southwest corner
* of the tile and 32767 at the northeast corner. Height is zero at the minimum height in the tile
* and 32767 at the maximum height in the tile.
*
* @alias QuantizedMeshTerrainData
* @constructor
*
* @param {object} options Object with the following properties:
* @param {Uint16Array} options.quantizedVertices The buffer containing the quantized mesh.
* @param {Uint16Array|Uint32Array} options.indices The indices specifying how the quantized vertices are linked
* together into triangles. Each three indices specifies one triangle.
* @param {number} options.minimumHeight The minimum terrain height within the tile, in meters above the ellipsoid.
* @param {number} options.maximumHeight The maximum terrain height within the tile, in meters above the ellipsoid.
* @param {BoundingSphere} options.boundingSphere A sphere bounding all of the vertices in the mesh.
* @param {OrientedBoundingBox} [options.orientedBoundingBox] An OrientedBoundingBox bounding all of the vertices in the mesh.
* @param {Cartesian3} options.horizonOcclusionPoint The horizon occlusion point of the mesh. If this point
* is below the horizon, the entire tile is assumed to be below the horizon as well.
* The point is expressed in ellipsoid-scaled coordinates.
* @param {number[]} options.westIndices The indices of the vertices on the western edge of the tile.
* @param {number[]} options.southIndices The indices of the vertices on the southern edge of the tile.
* @param {number[]} options.eastIndices The indices of the vertices on the eastern edge of the tile.
* @param {number[]} options.northIndices The indices of the vertices on the northern edge of the tile.
* @param {number} options.westSkirtHeight The height of the skirt to add on the western edge of the tile.
* @param {number} options.southSkirtHeight The height of the skirt to add on the southern edge of the tile.
* @param {number} options.eastSkirtHeight The height of the skirt to add on the eastern edge of the tile.
* @param {number} options.northSkirtHeight The height of the skirt to add on the northern edge of the tile.
* @param {number} [options.childTileMask=15] A bit mask indicating which of this tile's four children exist.
* If a child's bit is set, geometry will be requested for that tile as well when it
* is needed. If the bit is cleared, the child tile is not requested and geometry is
* instead upsampled from the parent. The bit values are as follows:
*
* Bit Position | Bit Value | Child Tile |
* 0 | 1 | Southwest |
* 1 | 2 | Southeast |
* 2 | 4 | Northwest |
* 3 | 8 | Northeast |
*
* @param {boolean} [options.createdByUpsampling=false] True if this instance was created by upsampling another instance;
* otherwise, false.
* @param {Uint8Array} [options.encodedNormals] The buffer containing per vertex normals, encoded using 'oct' encoding
* @param {Uint8Array} [options.waterMask] The buffer containing the watermask.
* @param {Credit[]} [options.credits] Array of credits for this tile.
*
*
* @example
* const data = new Cesium.QuantizedMeshTerrainData({
* minimumHeight : -100,
* maximumHeight : 2101,
* quantizedVertices : new Uint16Array([// order is SW NW SE NE
* // longitude
* 0, 0, 32767, 32767,
* // latitude
* 0, 32767, 0, 32767,
* // heights
* 16384, 0, 32767, 16384]),
* indices : new Uint16Array([0, 3, 1,
* 0, 2, 3]),
* boundingSphere : new Cesium.BoundingSphere(new Cesium.Cartesian3(1.0, 2.0, 3.0), 10000),
* orientedBoundingBox : new Cesium.OrientedBoundingBox(new Cesium.Cartesian3(1.0, 2.0, 3.0), Cesium.Matrix3.fromRotationX(Cesium.Math.PI, new Cesium.Matrix3())),
* horizonOcclusionPoint : new Cesium.Cartesian3(3.0, 2.0, 1.0),
* westIndices : [0, 1],
* southIndices : [0, 1],
* eastIndices : [2, 3],
* northIndices : [1, 3],
* westSkirtHeight : 1.0,
* southSkirtHeight : 1.0,
* eastSkirtHeight : 1.0,
* northSkirtHeight : 1.0
* });
*
* @see TerrainData
* @see HeightmapTerrainData
* @see GoogleEarthEnterpriseTerrainData
*/
function QuantizedMeshTerrainData(options) {
//>>includeStart('debug', pragmas.debug)
if (!defined(options) || !defined(options.quantizedVertices)) {
throw new DeveloperError("options.quantizedVertices is required.");
}
if (!defined(options.indices)) {
throw new DeveloperError("options.indices is required.");
}
if (!defined(options.minimumHeight)) {
throw new DeveloperError("options.minimumHeight is required.");
}
if (!defined(options.maximumHeight)) {
throw new DeveloperError("options.maximumHeight is required.");
}
if (!defined(options.maximumHeight)) {
throw new DeveloperError("options.maximumHeight is required.");
}
if (!defined(options.boundingSphere)) {
throw new DeveloperError("options.boundingSphere is required.");
}
if (!defined(options.horizonOcclusionPoint)) {
throw new DeveloperError("options.horizonOcclusionPoint is required.");
}
if (!defined(options.westIndices)) {
throw new DeveloperError("options.westIndices is required.");
}
if (!defined(options.southIndices)) {
throw new DeveloperError("options.southIndices is required.");
}
if (!defined(options.eastIndices)) {
throw new DeveloperError("options.eastIndices is required.");
}
if (!defined(options.northIndices)) {
throw new DeveloperError("options.northIndices is required.");
}
if (!defined(options.westSkirtHeight)) {
throw new DeveloperError("options.westSkirtHeight is required.");
}
if (!defined(options.southSkirtHeight)) {
throw new DeveloperError("options.southSkirtHeight is required.");
}
if (!defined(options.eastSkirtHeight)) {
throw new DeveloperError("options.eastSkirtHeight is required.");
}
if (!defined(options.northSkirtHeight)) {
throw new DeveloperError("options.northSkirtHeight is required.");
}
//>>includeEnd('debug');
this._quantizedVertices = options.quantizedVertices;
this._encodedNormals = options.encodedNormals;
this._indices = options.indices;
this._minimumHeight = options.minimumHeight;
this._maximumHeight = options.maximumHeight;
this._boundingSphere = options.boundingSphere;
this._orientedBoundingBox = options.orientedBoundingBox;
this._horizonOcclusionPoint = options.horizonOcclusionPoint;
this._credits = options.credits;
const vertexCount = this._quantizedVertices.length / 3;
const uValues = (this._uValues = this._quantizedVertices.subarray(
0,
vertexCount
));
const vValues = (this._vValues = this._quantizedVertices.subarray(
vertexCount,
2 * vertexCount
));
this._heightValues = this._quantizedVertices.subarray(
2 * vertexCount,
3 * vertexCount
);
// We don't assume that we can count on the edge vertices being sorted by u or v.
function sortByV(a, b) {
return vValues[a] - vValues[b];
}
function sortByU(a, b) {
return uValues[a] - uValues[b];
}
this._westIndices = sortIndicesIfNecessary(
options.westIndices,
sortByV,
vertexCount
);
this._southIndices = sortIndicesIfNecessary(
options.southIndices,
sortByU,
vertexCount
);
this._eastIndices = sortIndicesIfNecessary(
options.eastIndices,
sortByV,
vertexCount
);
this._northIndices = sortIndicesIfNecessary(
options.northIndices,
sortByU,
vertexCount
);
this._westSkirtHeight = options.westSkirtHeight;
this._southSkirtHeight = options.southSkirtHeight;
this._eastSkirtHeight = options.eastSkirtHeight;
this._northSkirtHeight = options.northSkirtHeight;
this._childTileMask = defaultValue(options.childTileMask, 15);
this._createdByUpsampling = defaultValue(options.createdByUpsampling, false);
this._waterMask = options.waterMask;
this._mesh = undefined;
}
Object.defineProperties(QuantizedMeshTerrainData.prototype, {
/**
* An array of credits for this tile.
* @memberof QuantizedMeshTerrainData.prototype
* @type {Credit[]}
*/
credits: {
get: function () {
return this._credits;
},
},
/**
* The water mask included in this terrain data, if any. A water mask is a rectangular
* Uint8Array or image where a value of 255 indicates water and a value of 0 indicates land.
* Values in between 0 and 255 are allowed as well to smoothly blend between land and water.
* @memberof QuantizedMeshTerrainData.prototype
* @type {Uint8Array|HTMLImageElement|HTMLCanvasElement}
*/
waterMask: {
get: function () {
return this._waterMask;
},
},
childTileMask: {
get: function () {
return this._childTileMask;
},
},
canUpsample: {
get: function () {
return defined(this._mesh);
},
},
});
const arrayScratch = [];
function sortIndicesIfNecessary(indices, sortFunction, vertexCount) {
arrayScratch.length = indices.length;
let needsSort = false;
for (let i = 0, len = indices.length; i < len; ++i) {
arrayScratch[i] = indices[i];
needsSort =
needsSort || (i > 0 && sortFunction(indices[i - 1], indices[i]) > 0);
}
if (needsSort) {
arrayScratch.sort(sortFunction);
return IndexDatatype.createTypedArray(vertexCount, arrayScratch);
}
return indices;
}
const createMeshTaskName = "createVerticesFromQuantizedTerrainMesh";
const createMeshTaskProcessorNoThrottle = new TaskProcessor(createMeshTaskName);
const createMeshTaskProcessorThrottle = new TaskProcessor(
createMeshTaskName,
TerrainData.maximumAsynchronousTasks
);
/**
* Creates a {@link TerrainMesh} from this terrain data.
*
* @private
*
* @param {object} options Object with the following properties:
* @param {TilingScheme} options.tilingScheme The tiling scheme to which this tile belongs.
* @param {number} options.x The X coordinate of the tile for which to create the terrain data.
* @param {number} options.y The Y coordinate of the tile for which to create the terrain data.
* @param {number} options.level The level of the tile for which to create the terrain data.
* @param {number} [options.exaggeration=1.0] The scale used to exaggerate the terrain.
* @param {number} [options.exaggerationRelativeHeight=0.0] The height relative to which terrain is exaggerated.
* @param {boolean} [options.throttle=true] If true, indicates that this operation will need to be retried if too many asynchronous mesh creations are already in progress.
* @returns {Promise|undefined} A promise for the terrain mesh, or undefined if too many
* asynchronous mesh creations are already in progress and the operation should
* be retried later.
*/
QuantizedMeshTerrainData.prototype.createMesh = function (options) {
options = defaultValue(options, defaultValue.EMPTY_OBJECT);
//>>includeStart('debug', pragmas.debug);
Check.typeOf.object("options.tilingScheme", options.tilingScheme);
Check.typeOf.number("options.x", options.x);
Check.typeOf.number("options.y", options.y);
Check.typeOf.number("options.level", options.level);
//>>includeEnd('debug');
const tilingScheme = options.tilingScheme;
const x = options.x;
const y = options.y;
const level = options.level;
const exaggeration = defaultValue(options.exaggeration, 1.0);
const exaggerationRelativeHeight = defaultValue(
options.exaggerationRelativeHeight,
0.0
);
const throttle = defaultValue(options.throttle, true);
const ellipsoid = tilingScheme.ellipsoid;
const rectangle = tilingScheme.tileXYToRectangle(x, y, level);
const createMeshTaskProcessor = throttle
? createMeshTaskProcessorThrottle
: createMeshTaskProcessorNoThrottle;
const verticesPromise = createMeshTaskProcessor.scheduleTask({
minimumHeight: this._minimumHeight,
maximumHeight: this._maximumHeight,
quantizedVertices: this._quantizedVertices,
octEncodedNormals: this._encodedNormals,
includeWebMercatorT: true,
indices: this._indices,
westIndices: this._westIndices,
southIndices: this._southIndices,
eastIndices: this._eastIndices,
northIndices: this._northIndices,
westSkirtHeight: this._westSkirtHeight,
southSkirtHeight: this._southSkirtHeight,
eastSkirtHeight: this._eastSkirtHeight,
northSkirtHeight: this._northSkirtHeight,
rectangle: rectangle,
relativeToCenter: this._boundingSphere.center,
ellipsoid: ellipsoid,
exaggeration: exaggeration,
exaggerationRelativeHeight: exaggerationRelativeHeight,
});
if (!defined(verticesPromise)) {
// Postponed
return undefined;
}
const that = this;
return Promise.resolve(verticesPromise).then(function (result) {
const vertexCountWithoutSkirts = that._quantizedVertices.length / 3;
const vertexCount =
vertexCountWithoutSkirts +
that._westIndices.length +
that._southIndices.length +
that._eastIndices.length +
that._northIndices.length;
const indicesTypedArray = IndexDatatype.createTypedArray(
vertexCount,
result.indices
);
const vertices = new Float32Array(result.vertices);
const rtc = result.center;
const minimumHeight = result.minimumHeight;
const maximumHeight = result.maximumHeight;
const boundingSphere = that._boundingSphere;
const obb = that._orientedBoundingBox;
const occludeePointInScaledSpace = defaultValue(
Cartesian3.clone(result.occludeePointInScaledSpace),
that._horizonOcclusionPoint
);
const stride = result.vertexStride;
const terrainEncoding = TerrainEncoding.clone(result.encoding);
// Clone complex result objects because the transfer from the web worker
// has stripped them down to JSON-style objects.
that._mesh = new TerrainMesh(
rtc,
vertices,
indicesTypedArray,
result.indexCountWithoutSkirts,
vertexCountWithoutSkirts,
minimumHeight,
maximumHeight,
boundingSphere,
occludeePointInScaledSpace,
stride,
obb,
terrainEncoding,
result.westIndicesSouthToNorth,
result.southIndicesEastToWest,
result.eastIndicesNorthToSouth,
result.northIndicesWestToEast
);
// Free memory received from server after mesh is created.
that._quantizedVertices = undefined;
that._encodedNormals = undefined;
that._indices = undefined;
that._uValues = undefined;
that._vValues = undefined;
that._heightValues = undefined;
that._westIndices = undefined;
that._southIndices = undefined;
that._eastIndices = undefined;
that._northIndices = undefined;
return that._mesh;
});
};
const upsampleTaskProcessor = new TaskProcessor(
"upsampleQuantizedTerrainMesh",
TerrainData.maximumAsynchronousTasks
);
/**
* Upsamples this terrain data for use by a descendant tile. The resulting instance will contain a subset of the
* vertices in this instance, interpolated if necessary.
*
* @param {TilingScheme} tilingScheme The tiling scheme of this terrain data.
* @param {number} thisX The X coordinate of this tile in the tiling scheme.
* @param {number} thisY The Y coordinate of this tile in the tiling scheme.
* @param {number} thisLevel The level of this tile in the tiling scheme.
* @param {number} descendantX The X coordinate within the tiling scheme of the descendant tile for which we are upsampling.
* @param {number} descendantY The Y coordinate within the tiling scheme of the descendant tile for which we are upsampling.
* @param {number} descendantLevel The level within the tiling scheme of the descendant tile for which we are upsampling.
* @returns {Promise|undefined} A promise for upsampled heightmap terrain data for the descendant tile,
* or undefined if too many asynchronous upsample operations are in progress and the request has been
* deferred.
*/
QuantizedMeshTerrainData.prototype.upsample = function (
tilingScheme,
thisX,
thisY,
thisLevel,
descendantX,
descendantY,
descendantLevel
) {
//>>includeStart('debug', pragmas.debug);
if (!defined(tilingScheme)) {
throw new DeveloperError("tilingScheme is required.");
}
if (!defined(thisX)) {
throw new DeveloperError("thisX is required.");
}
if (!defined(thisY)) {
throw new DeveloperError("thisY is required.");
}
if (!defined(thisLevel)) {
throw new DeveloperError("thisLevel is required.");
}
if (!defined(descendantX)) {
throw new DeveloperError("descendantX is required.");
}
if (!defined(descendantY)) {
throw new DeveloperError("descendantY is required.");
}
if (!defined(descendantLevel)) {
throw new DeveloperError("descendantLevel is required.");
}
const levelDifference = descendantLevel - thisLevel;
if (levelDifference > 1) {
throw new DeveloperError(
"Upsampling through more than one level at a time is not currently supported."
);
}
//>>includeEnd('debug');
const mesh = this._mesh;
if (!defined(this._mesh)) {
return undefined;
}
const isEastChild = thisX * 2 !== descendantX;
const isNorthChild = thisY * 2 === descendantY;
const ellipsoid = tilingScheme.ellipsoid;
const childRectangle = tilingScheme.tileXYToRectangle(
descendantX,
descendantY,
descendantLevel
);
const upsamplePromise = upsampleTaskProcessor.scheduleTask({
vertices: mesh.vertices,
vertexCountWithoutSkirts: mesh.vertexCountWithoutSkirts,
indices: mesh.indices,
indexCountWithoutSkirts: mesh.indexCountWithoutSkirts,
encoding: mesh.encoding,
minimumHeight: this._minimumHeight,
maximumHeight: this._maximumHeight,
isEastChild: isEastChild,
isNorthChild: isNorthChild,
childRectangle: childRectangle,
ellipsoid: ellipsoid,
});
if (!defined(upsamplePromise)) {
// Postponed
return undefined;
}
let shortestSkirt = Math.min(this._westSkirtHeight, this._eastSkirtHeight);
shortestSkirt = Math.min(shortestSkirt, this._southSkirtHeight);
shortestSkirt = Math.min(shortestSkirt, this._northSkirtHeight);
const westSkirtHeight = isEastChild
? shortestSkirt * 0.5
: this._westSkirtHeight;
const southSkirtHeight = isNorthChild
? shortestSkirt * 0.5
: this._southSkirtHeight;
const eastSkirtHeight = isEastChild
? this._eastSkirtHeight
: shortestSkirt * 0.5;
const northSkirtHeight = isNorthChild
? this._northSkirtHeight
: shortestSkirt * 0.5;
const credits = this._credits;
return Promise.resolve(upsamplePromise).then(function (result) {
const quantizedVertices = new Uint16Array(result.vertices);
const indicesTypedArray = IndexDatatype.createTypedArray(
quantizedVertices.length / 3,
result.indices
);
let encodedNormals;
if (defined(result.encodedNormals)) {
encodedNormals = new Uint8Array(result.encodedNormals);
}
return new QuantizedMeshTerrainData({
quantizedVertices: quantizedVertices,
indices: indicesTypedArray,
encodedNormals: encodedNormals,
minimumHeight: result.minimumHeight,
maximumHeight: result.maximumHeight,
boundingSphere: BoundingSphere.clone(result.boundingSphere),
orientedBoundingBox: OrientedBoundingBox.clone(
result.orientedBoundingBox
),
horizonOcclusionPoint: Cartesian3.clone(result.horizonOcclusionPoint),
westIndices: result.westIndices,
southIndices: result.southIndices,
eastIndices: result.eastIndices,
northIndices: result.northIndices,
westSkirtHeight: westSkirtHeight,
southSkirtHeight: southSkirtHeight,
eastSkirtHeight: eastSkirtHeight,
northSkirtHeight: northSkirtHeight,
childTileMask: 0,
credits: credits,
createdByUpsampling: true,
});
});
};
const maxShort = 32767;
const barycentricCoordinateScratch = new Cartesian3();
/**
* Computes the terrain height at a specified longitude and latitude.
*
* @param {Rectangle} rectangle The rectangle covered by this terrain data.
* @param {number} longitude The longitude in radians.
* @param {number} latitude The latitude in radians.
* @returns {number} The terrain height at the specified position. The position is clamped to
* the rectangle, so expect incorrect results for positions far outside the rectangle.
*/
QuantizedMeshTerrainData.prototype.interpolateHeight = function (
rectangle,
longitude,
latitude
) {
let u = CesiumMath.clamp(
(longitude - rectangle.west) / rectangle.width,
0.0,
1.0
);
u *= maxShort;
let v = CesiumMath.clamp(
(latitude - rectangle.south) / rectangle.height,
0.0,
1.0
);
v *= maxShort;
if (!defined(this._mesh)) {
return interpolateHeight(this, u, v);
}
return interpolateMeshHeight(this, u, v);
};
function pointInBoundingBox(u, v, u0, v0, u1, v1, u2, v2) {
const minU = Math.min(u0, u1, u2);
const maxU = Math.max(u0, u1, u2);
const minV = Math.min(v0, v1, v2);
const maxV = Math.max(v0, v1, v2);
return u >= minU && u <= maxU && v >= minV && v <= maxV;
}
const texCoordScratch0 = new Cartesian2();
const texCoordScratch1 = new Cartesian2();
const texCoordScratch2 = new Cartesian2();
function interpolateMeshHeight(terrainData, u, v) {
const mesh = terrainData._mesh;
const vertices = mesh.vertices;
const encoding = mesh.encoding;
const indices = mesh.indices;
for (let i = 0, len = indices.length; i < len; i += 3) {
const i0 = indices[i];
const i1 = indices[i + 1];
const i2 = indices[i + 2];
const uv0 = encoding.decodeTextureCoordinates(
vertices,
i0,
texCoordScratch0
);
const uv1 = encoding.decodeTextureCoordinates(
vertices,
i1,
texCoordScratch1
);
const uv2 = encoding.decodeTextureCoordinates(
vertices,
i2,
texCoordScratch2
);
if (pointInBoundingBox(u, v, uv0.x, uv0.y, uv1.x, uv1.y, uv2.x, uv2.y)) {
const barycentric = Intersections2D.computeBarycentricCoordinates(
u,
v,
uv0.x,
uv0.y,
uv1.x,
uv1.y,
uv2.x,
uv2.y,
barycentricCoordinateScratch
);
if (
barycentric.x >= -1e-15 &&
barycentric.y >= -1e-15 &&
barycentric.z >= -1e-15
) {
const h0 = encoding.decodeHeight(vertices, i0);
const h1 = encoding.decodeHeight(vertices, i1);
const h2 = encoding.decodeHeight(vertices, i2);
return barycentric.x * h0 + barycentric.y * h1 + barycentric.z * h2;
}
}
}
// Position does not lie in any triangle in this mesh.
return undefined;
}
function interpolateHeight(terrainData, u, v) {
const uBuffer = terrainData._uValues;
const vBuffer = terrainData._vValues;
const heightBuffer = terrainData._heightValues;
const indices = terrainData._indices;
for (let i = 0, len = indices.length; i < len; i += 3) {
const i0 = indices[i];
const i1 = indices[i + 1];
const i2 = indices[i + 2];
const u0 = uBuffer[i0];
const u1 = uBuffer[i1];
const u2 = uBuffer[i2];
const v0 = vBuffer[i0];
const v1 = vBuffer[i1];
const v2 = vBuffer[i2];
if (pointInBoundingBox(u, v, u0, v0, u1, v1, u2, v2)) {
const barycentric = Intersections2D.computeBarycentricCoordinates(
u,
v,
u0,
v0,
u1,
v1,
u2,
v2,
barycentricCoordinateScratch
);
if (
barycentric.x >= -1e-15 &&
barycentric.y >= -1e-15 &&
barycentric.z >= -1e-15
) {
const quantizedHeight =
barycentric.x * heightBuffer[i0] +
barycentric.y * heightBuffer[i1] +
barycentric.z * heightBuffer[i2];
return CesiumMath.lerp(
terrainData._minimumHeight,
terrainData._maximumHeight,
quantizedHeight / maxShort
);
}
}
}
// Position does not lie in any triangle in this mesh.
return undefined;
}
/**
* Determines if a given child tile is available, based on the
* {@link HeightmapTerrainData.childTileMask}. The given child tile coordinates are assumed
* to be one of the four children of this tile. If non-child tile coordinates are
* given, the availability of the southeast child tile is returned.
*
* @param {number} thisX The tile X coordinate of this (the parent) tile.
* @param {number} thisY The tile Y coordinate of this (the parent) tile.
* @param {number} childX The tile X coordinate of the child tile to check for availability.
* @param {number} childY The tile Y coordinate of the child tile to check for availability.
* @returns {boolean} True if the child tile is available; otherwise, false.
*/
QuantizedMeshTerrainData.prototype.isChildAvailable = function (
thisX,
thisY,
childX,
childY
) {
//>>includeStart('debug', pragmas.debug);
if (!defined(thisX)) {
throw new DeveloperError("thisX is required.");
}
if (!defined(thisY)) {
throw new DeveloperError("thisY is required.");
}
if (!defined(childX)) {
throw new DeveloperError("childX is required.");
}
if (!defined(childY)) {
throw new DeveloperError("childY is required.");
}
//>>includeEnd('debug');
let bitNumber = 2; // northwest child
if (childX !== thisX * 2) {
++bitNumber; // east child
}
if (childY !== thisY * 2) {
bitNumber -= 2; // south child
}
return (this._childTileMask & (1 << bitNumber)) !== 0;
};
/**
* Gets a value indicating whether or not this terrain data was created by upsampling lower resolution
* terrain data. If this value is false, the data was obtained from some other source, such
* as by downloading it from a remote server. This method should return true for instances
* returned from a call to {@link HeightmapTerrainData#upsample}.
*
* @returns {boolean} True if this instance was created by upsampling; otherwise, false.
*/
QuantizedMeshTerrainData.prototype.wasCreatedByUpsampling = function () {
return this._createdByUpsampling;
};
export default QuantizedMeshTerrainData;