import Cartesian3 from "../Core/Cartesian3.js";
import Matrix4 from "../Core/Matrix4.js";
import WebGLConstants from "../Core/WebGLConstants.js";
const viewerPositionWCScratch = new Cartesian3();
function AutomaticUniform(options) {
this._size = options.size;
this._datatype = options.datatype;
this.getValue = options.getValue;
}
const datatypeToGlsl = {};
datatypeToGlsl[WebGLConstants.FLOAT] = "float";
datatypeToGlsl[WebGLConstants.FLOAT_VEC2] = "vec2";
datatypeToGlsl[WebGLConstants.FLOAT_VEC3] = "vec3";
datatypeToGlsl[WebGLConstants.FLOAT_VEC4] = "vec4";
datatypeToGlsl[WebGLConstants.INT] = "int";
datatypeToGlsl[WebGLConstants.INT_VEC2] = "ivec2";
datatypeToGlsl[WebGLConstants.INT_VEC3] = "ivec3";
datatypeToGlsl[WebGLConstants.INT_VEC4] = "ivec4";
datatypeToGlsl[WebGLConstants.BOOL] = "bool";
datatypeToGlsl[WebGLConstants.BOOL_VEC2] = "bvec2";
datatypeToGlsl[WebGLConstants.BOOL_VEC3] = "bvec3";
datatypeToGlsl[WebGLConstants.BOOL_VEC4] = "bvec4";
datatypeToGlsl[WebGLConstants.FLOAT_MAT2] = "mat2";
datatypeToGlsl[WebGLConstants.FLOAT_MAT3] = "mat3";
datatypeToGlsl[WebGLConstants.FLOAT_MAT4] = "mat4";
datatypeToGlsl[WebGLConstants.SAMPLER_2D] = "sampler2D";
datatypeToGlsl[WebGLConstants.SAMPLER_CUBE] = "samplerCube";
AutomaticUniform.prototype.getDeclaration = function (name) {
let declaration = `uniform ${datatypeToGlsl[this._datatype]} ${name}`;
const size = this._size;
if (size === 1) {
declaration += ";";
} else {
declaration += `[${size.toString()}];`;
}
return declaration;
};
/**
* @private
*/
const AutomaticUniforms = {
/**
* An automatic GLSL uniform containing the viewport's x
, y
, width
,
* and height
properties in an vec4
's x
, y
, z
,
* and w
components, respectively.
*
* @example
* // GLSL declaration
* uniform vec4 czm_viewport;
*
* // Scale the window coordinate components to [0, 1] by dividing
* // by the viewport's width and height.
* vec2 v = gl_FragCoord.xy / czm_viewport.zw;
*
* @see Context#getViewport
*/
czm_viewport: new AutomaticUniform({
size: 1,
datatype: WebGLConstants.FLOAT_VEC4,
getValue: function (uniformState) {
return uniformState.viewportCartesian4;
},
}),
/**
* An automatic GLSL uniform representing a 4x4 orthographic projection matrix that
* transforms window coordinates to clip coordinates. Clip coordinates is the
* coordinate system for a vertex shader's gl_Position
output.
*
* This transform is useful when a vertex shader inputs or manipulates window coordinates
* as done by {@link BillboardCollection}.
*
* Do not confuse {@link czm_viewportTransformation} with czm_viewportOrthographic
.
* The former transforms from normalized device coordinates to window coordinates; the later transforms
* from window coordinates to clip coordinates, and is often used to assign to gl_Position
.
*
* @example
* // GLSL declaration
* uniform mat4 czm_viewportOrthographic;
*
* // Example
* gl_Position = czm_viewportOrthographic * vec4(windowPosition, 0.0, 1.0);
*
* @see UniformState#viewportOrthographic
* @see czm_viewport
* @see czm_viewportTransformation
* @see BillboardCollection
*/
czm_viewportOrthographic: new AutomaticUniform({
size: 1,
datatype: WebGLConstants.FLOAT_MAT4,
getValue: function (uniformState) {
return uniformState.viewportOrthographic;
},
}),
/**
* An automatic GLSL uniform representing a 4x4 transformation matrix that
* transforms normalized device coordinates to window coordinates. The context's
* full viewport is used, and the depth range is assumed to be near = 0
* and far = 1
.
*
* This transform is useful when there is a need to manipulate window coordinates
* in a vertex shader as done by {@link BillboardCollection}. In many cases,
* this matrix will not be used directly; instead, {@link czm_modelToWindowCoordinates}
* will be used to transform directly from model to window coordinates.
*
* Do not confuse czm_viewportTransformation
with {@link czm_viewportOrthographic}.
* The former transforms from normalized device coordinates to window coordinates; the later transforms
* from window coordinates to clip coordinates, and is often used to assign to gl_Position
.
*
* @example
* // GLSL declaration
* uniform mat4 czm_viewportTransformation;
*
* // Use czm_viewportTransformation as part of the
* // transform from model to window coordinates.
* vec4 q = czm_modelViewProjection * positionMC; // model to clip coordinates
* q.xyz /= q.w; // clip to normalized device coordinates (ndc)
* q.xyz = (czm_viewportTransformation * vec4(q.xyz, 1.0)).xyz; // ndc to window coordinates
*
* @see UniformState#viewportTransformation
* @see czm_viewport
* @see czm_viewportOrthographic
* @see czm_modelToWindowCoordinates
* @see BillboardCollection
*/
czm_viewportTransformation: new AutomaticUniform({
size: 1,
datatype: WebGLConstants.FLOAT_MAT4,
getValue: function (uniformState) {
return uniformState.viewportTransformation;
},
}),
/**
* An automatic GLSL uniform representing the depth of the scene
* after the globe pass and then updated after the 3D Tiles pass.
* The depth is packed into an RGBA texture.
*
* @example
* // GLSL declaration
* uniform sampler2D czm_globeDepthTexture;
*
* // Get the depth at the current fragment
* vec2 coords = gl_FragCoord.xy / czm_viewport.zw;
* float depth = czm_unpackDepth(texture(czm_globeDepthTexture, coords));
*/
czm_globeDepthTexture: new AutomaticUniform({
size: 1,
datatype: WebGLConstants.SAMPLER_2D,
getValue: function (uniformState) {
return uniformState.globeDepthTexture;
},
}),
/**
* An automatic GLSL uniform representing a 4x4 model transformation matrix that
* transforms model coordinates to world coordinates.
*
* @example
* // GLSL declaration
* uniform mat4 czm_model;
*
* // Example
* vec4 worldPosition = czm_model * modelPosition;
*
* @see UniformState#model
* @see czm_inverseModel
* @see czm_modelView
* @see czm_modelViewProjection
*/
czm_model: new AutomaticUniform({
size: 1,
datatype: WebGLConstants.FLOAT_MAT4,
getValue: function (uniformState) {
return uniformState.model;
},
}),
/**
* An automatic GLSL uniform representing a 4x4 model transformation matrix that
* transforms world coordinates to model coordinates.
*
* @example
* // GLSL declaration
* uniform mat4 czm_inverseModel;
*
* // Example
* vec4 modelPosition = czm_inverseModel * worldPosition;
*
* @see UniformState#inverseModel
* @see czm_model
* @see czm_inverseModelView
*/
czm_inverseModel: new AutomaticUniform({
size: 1,
datatype: WebGLConstants.FLOAT_MAT4,
getValue: function (uniformState) {
return uniformState.inverseModel;
},
}),
/**
* An automatic GLSL uniform representing a 4x4 view transformation matrix that
* transforms world coordinates to eye coordinates.
*
* @example
* // GLSL declaration
* uniform mat4 czm_view;
*
* // Example
* vec4 eyePosition = czm_view * worldPosition;
*
* @see UniformState#view
* @see czm_viewRotation
* @see czm_modelView
* @see czm_viewProjection
* @see czm_modelViewProjection
* @see czm_inverseView
*/
czm_view: new AutomaticUniform({
size: 1,
datatype: WebGLConstants.FLOAT_MAT4,
getValue: function (uniformState) {
return uniformState.view;
},
}),
/**
* An automatic GLSL uniform representing a 4x4 view transformation matrix that
* transforms 3D world coordinates to eye coordinates. In 3D mode, this is identical to
* {@link czm_view}, but in 2D and Columbus View it represents the view matrix
* as if the camera were at an equivalent location in 3D mode. This is useful for lighting
* 2D and Columbus View in the same way that 3D is lit.
*
* @example
* // GLSL declaration
* uniform mat4 czm_view3D;
*
* // Example
* vec4 eyePosition3D = czm_view3D * worldPosition3D;
*
* @see UniformState#view3D
* @see czm_view
*/
czm_view3D: new AutomaticUniform({
size: 1,
datatype: WebGLConstants.FLOAT_MAT4,
getValue: function (uniformState) {
return uniformState.view3D;
},
}),
/**
* An automatic GLSL uniform representing a 3x3 view rotation matrix that
* transforms vectors in world coordinates to eye coordinates.
*
* @example
* // GLSL declaration
* uniform mat3 czm_viewRotation;
*
* // Example
* vec3 eyeVector = czm_viewRotation * worldVector;
*
* @see UniformState#viewRotation
* @see czm_view
* @see czm_inverseView
* @see czm_inverseViewRotation
*/
czm_viewRotation: new AutomaticUniform({
size: 1,
datatype: WebGLConstants.FLOAT_MAT3,
getValue: function (uniformState) {
return uniformState.viewRotation;
},
}),
/**
* An automatic GLSL uniform representing a 3x3 view rotation matrix that
* transforms vectors in 3D world coordinates to eye coordinates. In 3D mode, this is identical to
* {@link czm_viewRotation}, but in 2D and Columbus View it represents the view matrix
* as if the camera were at an equivalent location in 3D mode. This is useful for lighting
* 2D and Columbus View in the same way that 3D is lit.
*
* @example
* // GLSL declaration
* uniform mat3 czm_viewRotation3D;
*
* // Example
* vec3 eyeVector = czm_viewRotation3D * worldVector;
*
* @see UniformState#viewRotation3D
* @see czm_viewRotation
*/
czm_viewRotation3D: new AutomaticUniform({
size: 1,
datatype: WebGLConstants.FLOAT_MAT3,
getValue: function (uniformState) {
return uniformState.viewRotation3D;
},
}),
/**
* An automatic GLSL uniform representing a 4x4 transformation matrix that
* transforms from eye coordinates to world coordinates.
*
* @example
* // GLSL declaration
* uniform mat4 czm_inverseView;
*
* // Example
* vec4 worldPosition = czm_inverseView * eyePosition;
*
* @see UniformState#inverseView
* @see czm_view
* @see czm_inverseNormal
*/
czm_inverseView: new AutomaticUniform({
size: 1,
datatype: WebGLConstants.FLOAT_MAT4,
getValue: function (uniformState) {
return uniformState.inverseView;
},
}),
/**
* An automatic GLSL uniform representing a 4x4 transformation matrix that
* transforms from 3D eye coordinates to world coordinates. In 3D mode, this is identical to
* {@link czm_inverseView}, but in 2D and Columbus View it represents the inverse view matrix
* as if the camera were at an equivalent location in 3D mode. This is useful for lighting
* 2D and Columbus View in the same way that 3D is lit.
*
* @example
* // GLSL declaration
* uniform mat4 czm_inverseView3D;
*
* // Example
* vec4 worldPosition = czm_inverseView3D * eyePosition;
*
* @see UniformState#inverseView3D
* @see czm_inverseView
*/
czm_inverseView3D: new AutomaticUniform({
size: 1,
datatype: WebGLConstants.FLOAT_MAT4,
getValue: function (uniformState) {
return uniformState.inverseView3D;
},
}),
/**
* An automatic GLSL uniform representing a 3x3 rotation matrix that
* transforms vectors from eye coordinates to world coordinates.
*
* @example
* // GLSL declaration
* uniform mat3 czm_inverseViewRotation;
*
* // Example
* vec4 worldVector = czm_inverseViewRotation * eyeVector;
*
* @see UniformState#inverseView
* @see czm_view
* @see czm_viewRotation
* @see czm_inverseViewRotation
*/
czm_inverseViewRotation: new AutomaticUniform({
size: 1,
datatype: WebGLConstants.FLOAT_MAT3,
getValue: function (uniformState) {
return uniformState.inverseViewRotation;
},
}),
/**
* An automatic GLSL uniform representing a 3x3 rotation matrix that
* transforms vectors from 3D eye coordinates to world coordinates. In 3D mode, this is identical to
* {@link czm_inverseViewRotation}, but in 2D and Columbus View it represents the inverse view matrix
* as if the camera were at an equivalent location in 3D mode. This is useful for lighting
* 2D and Columbus View in the same way that 3D is lit.
*
* @example
* // GLSL declaration
* uniform mat3 czm_inverseViewRotation3D;
*
* // Example
* vec4 worldVector = czm_inverseViewRotation3D * eyeVector;
*
* @see UniformState#inverseView3D
* @see czm_inverseViewRotation
*/
czm_inverseViewRotation3D: new AutomaticUniform({
size: 1,
datatype: WebGLConstants.FLOAT_MAT3,
getValue: function (uniformState) {
return uniformState.inverseViewRotation3D;
},
}),
/**
* An automatic GLSL uniform representing a 4x4 projection transformation matrix that
* transforms eye coordinates to clip coordinates. Clip coordinates is the
* coordinate system for a vertex shader's gl_Position
output.
*
* @example
* // GLSL declaration
* uniform mat4 czm_projection;
*
* // Example
* gl_Position = czm_projection * eyePosition;
*
* @see UniformState#projection
* @see czm_viewProjection
* @see czm_modelViewProjection
* @see czm_infiniteProjection
*/
czm_projection: new AutomaticUniform({
size: 1,
datatype: WebGLConstants.FLOAT_MAT4,
getValue: function (uniformState) {
return uniformState.projection;
},
}),
/**
* An automatic GLSL uniform representing a 4x4 inverse projection transformation matrix that
* transforms from clip coordinates to eye coordinates. Clip coordinates is the
* coordinate system for a vertex shader's gl_Position
output.
*
* @example
* // GLSL declaration
* uniform mat4 czm_inverseProjection;
*
* // Example
* vec4 eyePosition = czm_inverseProjection * clipPosition;
*
* @see UniformState#inverseProjection
* @see czm_projection
*/
czm_inverseProjection: new AutomaticUniform({
size: 1,
datatype: WebGLConstants.FLOAT_MAT4,
getValue: function (uniformState) {
return uniformState.inverseProjection;
},
}),
/**
* An automatic GLSL uniform representing a 4x4 projection transformation matrix with the far plane at infinity,
* that transforms eye coordinates to clip coordinates. Clip coordinates is the
* coordinate system for a vertex shader's gl_Position
output. An infinite far plane is used
* in algorithms like shadow volumes and GPU ray casting with proxy geometry to ensure that triangles
* are not clipped by the far plane.
*
* @example
* // GLSL declaration
* uniform mat4 czm_infiniteProjection;
*
* // Example
* gl_Position = czm_infiniteProjection * eyePosition;
*
* @see UniformState#infiniteProjection
* @see czm_projection
* @see czm_modelViewInfiniteProjection
*/
czm_infiniteProjection: new AutomaticUniform({
size: 1,
datatype: WebGLConstants.FLOAT_MAT4,
getValue: function (uniformState) {
return uniformState.infiniteProjection;
},
}),
/**
* An automatic GLSL uniform representing a 4x4 model-view transformation matrix that
* transforms model coordinates to eye coordinates.
*
* Positions should be transformed to eye coordinates using czm_modelView
and
* normals should be transformed using {@link czm_normal}.
*
* @example
* // GLSL declaration
* uniform mat4 czm_modelView;
*
* // Example
* vec4 eyePosition = czm_modelView * modelPosition;
*
* // The above is equivalent to, but more efficient than:
* vec4 eyePosition = czm_view * czm_model * modelPosition;
*
* @see UniformState#modelView
* @see czm_model
* @see czm_view
* @see czm_modelViewProjection
* @see czm_normal
*/
czm_modelView: new AutomaticUniform({
size: 1,
datatype: WebGLConstants.FLOAT_MAT4,
getValue: function (uniformState) {
return uniformState.modelView;
},
}),
/**
* An automatic GLSL uniform representing a 4x4 model-view transformation matrix that
* transforms 3D model coordinates to eye coordinates. In 3D mode, this is identical to
* {@link czm_modelView}, but in 2D and Columbus View it represents the model-view matrix
* as if the camera were at an equivalent location in 3D mode. This is useful for lighting
* 2D and Columbus View in the same way that 3D is lit.
*
* Positions should be transformed to eye coordinates using czm_modelView3D
and
* normals should be transformed using {@link czm_normal3D}.
*
* @example
* // GLSL declaration
* uniform mat4 czm_modelView3D;
*
* // Example
* vec4 eyePosition = czm_modelView3D * modelPosition;
*
* // The above is equivalent to, but more efficient than:
* vec4 eyePosition = czm_view3D * czm_model * modelPosition;
*
* @see UniformState#modelView3D
* @see czm_modelView
*/
czm_modelView3D: new AutomaticUniform({
size: 1,
datatype: WebGLConstants.FLOAT_MAT4,
getValue: function (uniformState) {
return uniformState.modelView3D;
},
}),
/**
* An automatic GLSL uniform representing a 4x4 model-view transformation matrix that
* transforms model coordinates, relative to the eye, to eye coordinates. This is used
* in conjunction with {@link czm_translateRelativeToEye}.
*
* @example
* // GLSL declaration
* uniform mat4 czm_modelViewRelativeToEye;
*
* // Example
* attribute vec3 positionHigh;
* attribute vec3 positionLow;
*
* void main()
* {
* vec4 p = czm_translateRelativeToEye(positionHigh, positionLow);
* gl_Position = czm_projection * (czm_modelViewRelativeToEye * p);
* }
*
* @see czm_modelViewProjectionRelativeToEye
* @see czm_translateRelativeToEye
* @see EncodedCartesian3
*/
czm_modelViewRelativeToEye: new AutomaticUniform({
size: 1,
datatype: WebGLConstants.FLOAT_MAT4,
getValue: function (uniformState) {
return uniformState.modelViewRelativeToEye;
},
}),
/**
* An automatic GLSL uniform representing a 4x4 transformation matrix that
* transforms from eye coordinates to model coordinates.
*
* @example
* // GLSL declaration
* uniform mat4 czm_inverseModelView;
*
* // Example
* vec4 modelPosition = czm_inverseModelView * eyePosition;
*
* @see UniformState#inverseModelView
* @see czm_modelView
*/
czm_inverseModelView: new AutomaticUniform({
size: 1,
datatype: WebGLConstants.FLOAT_MAT4,
getValue: function (uniformState) {
return uniformState.inverseModelView;
},
}),
/**
* An automatic GLSL uniform representing a 4x4 transformation matrix that
* transforms from eye coordinates to 3D model coordinates. In 3D mode, this is identical to
* {@link czm_inverseModelView}, but in 2D and Columbus View it represents the inverse model-view matrix
* as if the camera were at an equivalent location in 3D mode. This is useful for lighting
* 2D and Columbus View in the same way that 3D is lit.
*
* @example
* // GLSL declaration
* uniform mat4 czm_inverseModelView3D;
*
* // Example
* vec4 modelPosition = czm_inverseModelView3D * eyePosition;
*
* @see UniformState#inverseModelView
* @see czm_inverseModelView
* @see czm_modelView3D
*/
czm_inverseModelView3D: new AutomaticUniform({
size: 1,
datatype: WebGLConstants.FLOAT_MAT4,
getValue: function (uniformState) {
return uniformState.inverseModelView3D;
},
}),
/**
* An automatic GLSL uniform representing a 4x4 view-projection transformation matrix that
* transforms world coordinates to clip coordinates. Clip coordinates is the
* coordinate system for a vertex shader's gl_Position
output.
*
* @example
* // GLSL declaration
* uniform mat4 czm_viewProjection;
*
* // Example
* vec4 gl_Position = czm_viewProjection * czm_model * modelPosition;
*
* // The above is equivalent to, but more efficient than:
* gl_Position = czm_projection * czm_view * czm_model * modelPosition;
*
* @see UniformState#viewProjection
* @see czm_view
* @see czm_projection
* @see czm_modelViewProjection
* @see czm_inverseViewProjection
*/
czm_viewProjection: new AutomaticUniform({
size: 1,
datatype: WebGLConstants.FLOAT_MAT4,
getValue: function (uniformState) {
return uniformState.viewProjection;
},
}),
/**
* An automatic GLSL uniform representing a 4x4 view-projection transformation matrix that
* transforms clip coordinates to world coordinates. Clip coordinates is the
* coordinate system for a vertex shader's gl_Position
output.
*
* @example
* // GLSL declaration
* uniform mat4 czm_inverseViewProjection;
*
* // Example
* vec4 worldPosition = czm_inverseViewProjection * clipPosition;
*
* @see UniformState#inverseViewProjection
* @see czm_viewProjection
*/
czm_inverseViewProjection: new AutomaticUniform({
size: 1,
datatype: WebGLConstants.FLOAT_MAT4,
getValue: function (uniformState) {
return uniformState.inverseViewProjection;
},
}),
/**
* An automatic GLSL uniform representing a 4x4 model-view-projection transformation matrix that
* transforms model coordinates to clip coordinates. Clip coordinates is the
* coordinate system for a vertex shader's gl_Position
output.
*
* @example
* // GLSL declaration
* uniform mat4 czm_modelViewProjection;
*
* // Example
* vec4 gl_Position = czm_modelViewProjection * modelPosition;
*
* // The above is equivalent to, but more efficient than:
* gl_Position = czm_projection * czm_view * czm_model * modelPosition;
*
* @see UniformState#modelViewProjection
* @see czm_model
* @see czm_view
* @see czm_projection
* @see czm_modelView
* @see czm_viewProjection
* @see czm_modelViewInfiniteProjection
* @see czm_inverseModelViewProjection
*/
czm_modelViewProjection: new AutomaticUniform({
size: 1,
datatype: WebGLConstants.FLOAT_MAT4,
getValue: function (uniformState) {
return uniformState.modelViewProjection;
},
}),
/**
* An automatic GLSL uniform representing a 4x4 inverse model-view-projection transformation matrix that
* transforms clip coordinates to model coordinates. Clip coordinates is the
* coordinate system for a vertex shader's gl_Position
output.
*
* @example
* // GLSL declaration
* uniform mat4 czm_inverseModelViewProjection;
*
* // Example
* vec4 modelPosition = czm_inverseModelViewProjection * clipPosition;
*
* @see UniformState#modelViewProjection
* @see czm_modelViewProjection
*/
czm_inverseModelViewProjection: new AutomaticUniform({
size: 1,
datatype: WebGLConstants.FLOAT_MAT4,
getValue: function (uniformState) {
return uniformState.inverseModelViewProjection;
},
}),
/**
* An automatic GLSL uniform representing a 4x4 model-view-projection transformation matrix that
* transforms model coordinates, relative to the eye, to clip coordinates. Clip coordinates is the
* coordinate system for a vertex shader's gl_Position
output. This is used in
* conjunction with {@link czm_translateRelativeToEye}.
*
* @example
* // GLSL declaration
* uniform mat4 czm_modelViewProjectionRelativeToEye;
*
* // Example
* attribute vec3 positionHigh;
* attribute vec3 positionLow;
*
* void main()
* {
* vec4 p = czm_translateRelativeToEye(positionHigh, positionLow);
* gl_Position = czm_modelViewProjectionRelativeToEye * p;
* }
*
* @see czm_modelViewRelativeToEye
* @see czm_translateRelativeToEye
* @see EncodedCartesian3
*/
czm_modelViewProjectionRelativeToEye: new AutomaticUniform({
size: 1,
datatype: WebGLConstants.FLOAT_MAT4,
getValue: function (uniformState) {
return uniformState.modelViewProjectionRelativeToEye;
},
}),
/**
* An automatic GLSL uniform representing a 4x4 model-view-projection transformation matrix that
* transforms model coordinates to clip coordinates. Clip coordinates is the
* coordinate system for a vertex shader's gl_Position
output. The projection matrix places
* the far plane at infinity. This is useful in algorithms like shadow volumes and GPU ray casting with
* proxy geometry to ensure that triangles are not clipped by the far plane.
*
* @example
* // GLSL declaration
* uniform mat4 czm_modelViewInfiniteProjection;
*
* // Example
* vec4 gl_Position = czm_modelViewInfiniteProjection * modelPosition;
*
* // The above is equivalent to, but more efficient than:
* gl_Position = czm_infiniteProjection * czm_view * czm_model * modelPosition;
*
* @see UniformState#modelViewInfiniteProjection
* @see czm_model
* @see czm_view
* @see czm_infiniteProjection
* @see czm_modelViewProjection
*/
czm_modelViewInfiniteProjection: new AutomaticUniform({
size: 1,
datatype: WebGLConstants.FLOAT_MAT4,
getValue: function (uniformState) {
return uniformState.modelViewInfiniteProjection;
},
}),
/**
* An automatic GLSL uniform that indicates if the current camera is orthographic in 3D.
*
* @see UniformState#orthographicIn3D
*/
czm_orthographicIn3D: new AutomaticUniform({
size: 1,
datatype: WebGLConstants.FLOAT,
getValue: function (uniformState) {
return uniformState.orthographicIn3D ? 1 : 0;
},
}),
/**
* An automatic GLSL uniform representing a 3x3 normal transformation matrix that
* transforms normal vectors in model coordinates to eye coordinates.
*
* Positions should be transformed to eye coordinates using {@link czm_modelView} and
* normals should be transformed using czm_normal
.
*
* @example
* // GLSL declaration
* uniform mat3 czm_normal;
*
* // Example
* vec3 eyeNormal = czm_normal * normal;
*
* @see UniformState#normal
* @see czm_inverseNormal
* @see czm_modelView
*/
czm_normal: new AutomaticUniform({
size: 1,
datatype: WebGLConstants.FLOAT_MAT3,
getValue: function (uniformState) {
return uniformState.normal;
},
}),
/**
* An automatic GLSL uniform representing a 3x3 normal transformation matrix that
* transforms normal vectors in 3D model coordinates to eye coordinates.
* In 3D mode, this is identical to
* {@link czm_normal}, but in 2D and Columbus View it represents the normal transformation
* matrix as if the camera were at an equivalent location in 3D mode. This is useful for lighting
* 2D and Columbus View in the same way that 3D is lit.
*
* Positions should be transformed to eye coordinates using {@link czm_modelView3D} and
* normals should be transformed using czm_normal3D
.
*
* @example
* // GLSL declaration
* uniform mat3 czm_normal3D;
*
* // Example
* vec3 eyeNormal = czm_normal3D * normal;
*
* @see UniformState#normal3D
* @see czm_normal
*/
czm_normal3D: new AutomaticUniform({
size: 1,
datatype: WebGLConstants.FLOAT_MAT3,
getValue: function (uniformState) {
return uniformState.normal3D;
},
}),
/**
* An automatic GLSL uniform representing a 3x3 normal transformation matrix that
* transforms normal vectors in eye coordinates to model coordinates. This is
* the opposite of the transform provided by {@link czm_normal}.
*
* @example
* // GLSL declaration
* uniform mat3 czm_inverseNormal;
*
* // Example
* vec3 normalMC = czm_inverseNormal * normalEC;
*
* @see UniformState#inverseNormal
* @see czm_normal
* @see czm_modelView
* @see czm_inverseView
*/
czm_inverseNormal: new AutomaticUniform({
size: 1,
datatype: WebGLConstants.FLOAT_MAT3,
getValue: function (uniformState) {
return uniformState.inverseNormal;
},
}),
/**
* An automatic GLSL uniform representing a 3x3 normal transformation matrix that
* transforms normal vectors in eye coordinates to 3D model coordinates. This is
* the opposite of the transform provided by {@link czm_normal}.
* In 3D mode, this is identical to
* {@link czm_inverseNormal}, but in 2D and Columbus View it represents the inverse normal transformation
* matrix as if the camera were at an equivalent location in 3D mode. This is useful for lighting
* 2D and Columbus View in the same way that 3D is lit.
*
* @example
* // GLSL declaration
* uniform mat3 czm_inverseNormal3D;
*
* // Example
* vec3 normalMC = czm_inverseNormal3D * normalEC;
*
* @see UniformState#inverseNormal3D
* @see czm_inverseNormal
*/
czm_inverseNormal3D: new AutomaticUniform({
size: 1,
datatype: WebGLConstants.FLOAT_MAT3,
getValue: function (uniformState) {
return uniformState.inverseNormal3D;
},
}),
/**
* An automatic GLSL uniform containing the height in meters of the
* eye (camera) above or below the ellipsoid.
*
* @see UniformState#eyeHeight
*/
czm_eyeHeight: new AutomaticUniform({
size: 1,
datatype: WebGLConstants.FLOAT,
getValue: function (uniformState) {
return uniformState.eyeHeight;
},
}),
/**
* An automatic GLSL uniform containing height (x
) and height squared (y
)
* in meters of the eye (camera) above the 2D world plane. This uniform is only valid
* when the {@link SceneMode} is SCENE2D
.
*
* @see UniformState#eyeHeight2D
*/
czm_eyeHeight2D: new AutomaticUniform({
size: 1,
datatype: WebGLConstants.FLOAT_VEC2,
getValue: function (uniformState) {
return uniformState.eyeHeight2D;
},
}),
/**
* An automatic GLSL uniform containing the near distance (x
) and the far distance (y
)
* of the frustum defined by the camera. This is the largest possible frustum, not an individual
* frustum used for multi-frustum rendering.
*
* @example
* // GLSL declaration
* uniform vec2 czm_entireFrustum;
*
* // Example
* float frustumLength = czm_entireFrustum.y - czm_entireFrustum.x;
*
* @see UniformState#entireFrustum
* @see czm_currentFrustum
*/
czm_entireFrustum: new AutomaticUniform({
size: 1,
datatype: WebGLConstants.FLOAT_VEC2,
getValue: function (uniformState) {
return uniformState.entireFrustum;
},
}),
/**
* An automatic GLSL uniform containing the near distance (x
) and the far distance (y
)
* of the frustum defined by the camera. This is the individual
* frustum used for multi-frustum rendering.
*
* @example
* // GLSL declaration
* uniform vec2 czm_currentFrustum;
*
* // Example
* float frustumLength = czm_currentFrustum.y - czm_currentFrustum.x;
*
* @see UniformState#currentFrustum
* @see czm_entireFrustum
*/
czm_currentFrustum: new AutomaticUniform({
size: 1,
datatype: WebGLConstants.FLOAT_VEC2,
getValue: function (uniformState) {
return uniformState.currentFrustum;
},
}),
/**
* The distances to the frustum planes. The top, bottom, left and right distances are
* the x, y, z, and w components, respectively.
*/
czm_frustumPlanes: new AutomaticUniform({
size: 1,
datatype: WebGLConstants.FLOAT_VEC4,
getValue: function (uniformState) {
return uniformState.frustumPlanes;
},
}),
/**
* Gets the far plane's distance from the near plane, plus 1.0.
*/
czm_farDepthFromNearPlusOne: new AutomaticUniform({
size: 1,
datatype: WebGLConstants.FLOAT,
getValue: function (uniformState) {
return uniformState.farDepthFromNearPlusOne;
},
}),
/**
* Gets the log2 of {@link AutomaticUniforms#czm_farDepthFromNearPlusOne}.
*/
czm_log2FarDepthFromNearPlusOne: new AutomaticUniform({
size: 1,
datatype: WebGLConstants.FLOAT,
getValue: function (uniformState) {
return uniformState.log2FarDepthFromNearPlusOne;
},
}),
/**
* Gets 1.0 divided by {@link AutomaticUniforms#czm_log2FarDepthFromNearPlusOne}.
*/
czm_oneOverLog2FarDepthFromNearPlusOne: new AutomaticUniform({
size: 1,
datatype: WebGLConstants.FLOAT,
getValue: function (uniformState) {
return uniformState.oneOverLog2FarDepthFromNearPlusOne;
},
}),
/**
* An automatic GLSL uniform representing the sun position in world coordinates.
*
* @example
* // GLSL declaration
* uniform vec3 czm_sunPositionWC;
*
* @see UniformState#sunPositionWC
* @see czm_sunPositionColumbusView
* @see czm_sunDirectionWC
*/
czm_sunPositionWC: new AutomaticUniform({
size: 1,
datatype: WebGLConstants.FLOAT_VEC3,
getValue: function (uniformState) {
return uniformState.sunPositionWC;
},
}),
/**
* An automatic GLSL uniform representing the sun position in Columbus view world coordinates.
*
* @example
* // GLSL declaration
* uniform vec3 czm_sunPositionColumbusView;
*
* @see UniformState#sunPositionColumbusView
* @see czm_sunPositionWC
*/
czm_sunPositionColumbusView: new AutomaticUniform({
size: 1,
datatype: WebGLConstants.FLOAT_VEC3,
getValue: function (uniformState) {
return uniformState.sunPositionColumbusView;
},
}),
/**
* An automatic GLSL uniform representing the normalized direction to the sun in eye coordinates.
*
* @example
* // GLSL declaration
* uniform vec3 czm_sunDirectionEC;
*
* // Example
* float diffuse = max(dot(czm_sunDirectionEC, normalEC), 0.0);
*
* @see UniformState#sunDirectionEC
* @see czm_moonDirectionEC
* @see czm_sunDirectionWC
*/
czm_sunDirectionEC: new AutomaticUniform({
size: 1,
datatype: WebGLConstants.FLOAT_VEC3,
getValue: function (uniformState) {
return uniformState.sunDirectionEC;
},
}),
/**
* An automatic GLSL uniform representing the normalized direction to the sun in world coordinates.
*
* @example
* // GLSL declaration
* uniform vec3 czm_sunDirectionWC;
*
* // Example
* float diffuse = max(dot(czm_sunDirectionWC, normalWC), 0.0);
*
* @see UniformState#sunDirectionWC
* @see czm_sunPositionWC
* @see czm_sunDirectionEC
*/
czm_sunDirectionWC: new AutomaticUniform({
size: 1,
datatype: WebGLConstants.FLOAT_VEC3,
getValue: function (uniformState) {
return uniformState.sunDirectionWC;
},
}),
/**
* An automatic GLSL uniform representing the normalized direction to the moon in eye coordinates.
*
* @example
* // GLSL declaration
* uniform vec3 czm_moonDirectionEC;
*
* // Example
* float diffuse = max(dot(czm_moonDirectionEC, normalEC), 0.0);
*
* @see UniformState#moonDirectionEC
* @see czm_sunDirectionEC
*/
czm_moonDirectionEC: new AutomaticUniform({
size: 1,
datatype: WebGLConstants.FLOAT_VEC3,
getValue: function (uniformState) {
return uniformState.moonDirectionEC;
},
}),
/**
* An automatic GLSL uniform representing the normalized direction to the scene's light source in eye coordinates.
* This is commonly used for directional lighting computations.
*
* @example
* // GLSL declaration
* uniform vec3 czm_lightDirectionEC;
*
* // Example
* float diffuse = max(dot(czm_lightDirectionEC, normalEC), 0.0);
*
* @see UniformState#lightDirectionEC
* @see czm_lightDirectionWC
*/
czm_lightDirectionEC: new AutomaticUniform({
size: 1,
datatype: WebGLConstants.FLOAT_VEC3,
getValue: function (uniformState) {
return uniformState.lightDirectionEC;
},
}),
/**
* An automatic GLSL uniform representing the normalized direction to the scene's light source in world coordinates.
* This is commonly used for directional lighting computations.
*
* @example
* // GLSL declaration
* uniform vec3 czm_lightDirectionWC;
*
* // Example
* float diffuse = max(dot(czm_lightDirectionWC, normalWC), 0.0);
*
* @see UniformState#lightDirectionWC
* @see czm_lightDirectionEC
*/
czm_lightDirectionWC: new AutomaticUniform({
size: 1,
datatype: WebGLConstants.FLOAT_VEC3,
getValue: function (uniformState) {
return uniformState.lightDirectionWC;
},
}),
/**
* An automatic GLSL uniform that represents the color of light emitted by the scene's light source. This
* is equivalent to the light color multiplied by the light intensity limited to a maximum luminance of 1.0
* suitable for non-HDR lighting.
*
* @example
* // GLSL declaration
* uniform vec3 czm_lightColor;
*
* // Example
* vec3 diffuseColor = czm_lightColor * max(dot(czm_lightDirectionWC, normalWC), 0.0);
*
* @see UniformState#lightColor
* @see czm_lightColorHdr
*/
czm_lightColor: new AutomaticUniform({
size: 1,
datatype: WebGLConstants.FLOAT_VEC3,
getValue: function (uniformState) {
return uniformState.lightColor;
},
}),
/**
* An automatic GLSL uniform that represents the high dynamic range color of light emitted by the scene's light
* source. This is equivalent to the light color multiplied by the light intensity suitable for HDR lighting.
*
* @example
* // GLSL declaration
* uniform vec3 czm_lightColorHdr;
*
* // Example
* vec3 diffuseColor = czm_lightColorHdr * max(dot(czm_lightDirectionWC, normalWC), 0.0);
*
* @see UniformState#lightColorHdr
* @see czm_lightColor
*/
czm_lightColorHdr: new AutomaticUniform({
size: 1,
datatype: WebGLConstants.FLOAT_VEC3,
getValue: function (uniformState) {
return uniformState.lightColorHdr;
},
}),
/**
* An automatic GLSL uniform representing the high bits of the camera position in model
* coordinates. This is used for GPU RTE to eliminate jittering artifacts when rendering
* as described in {@link http://help.agi.com/AGIComponents/html/BlogPrecisionsPrecisions.htm|Precisions, Precisions}.
*
* @example
* // GLSL declaration
* uniform vec3 czm_encodedCameraPositionMCHigh;
*
* @see czm_encodedCameraPositionMCLow
* @see czm_modelViewRelativeToEye
* @see czm_modelViewProjectionRelativeToEye
*/
czm_encodedCameraPositionMCHigh: new AutomaticUniform({
size: 1,
datatype: WebGLConstants.FLOAT_VEC3,
getValue: function (uniformState) {
return uniformState.encodedCameraPositionMCHigh;
},
}),
/**
* An automatic GLSL uniform representing the low bits of the camera position in model
* coordinates. This is used for GPU RTE to eliminate jittering artifacts when rendering
* as described in {@linkhttp://help.agi.com/AGIComponents/html/BlogPrecisionsPrecisions.htm|Precisions, Precisions}.
*
* @example
* // GLSL declaration
* uniform vec3 czm_encodedCameraPositionMCLow;
*
* @see czm_encodedCameraPositionMCHigh
* @see czm_modelViewRelativeToEye
* @see czm_modelViewProjectionRelativeToEye
*/
czm_encodedCameraPositionMCLow: new AutomaticUniform({
size: 1,
datatype: WebGLConstants.FLOAT_VEC3,
getValue: function (uniformState) {
return uniformState.encodedCameraPositionMCLow;
},
}),
/**
* An automatic GLSL uniform representing the position of the viewer (camera) in world coordinates.
*
* @example
* // GLSL declaration
* uniform vec3 czm_viewerPositionWC;
*/
czm_viewerPositionWC: new AutomaticUniform({
size: 1,
datatype: WebGLConstants.FLOAT_VEC3,
getValue: function (uniformState) {
return Matrix4.getTranslation(
uniformState.inverseView,
viewerPositionWCScratch
);
},
}),
/**
* An automatic GLSL uniform representing the frame number. This uniform is automatically incremented
* every frame.
*
* @example
* // GLSL declaration
* uniform float czm_frameNumber;
*/
czm_frameNumber: new AutomaticUniform({
size: 1,
datatype: WebGLConstants.FLOAT,
getValue: function (uniformState) {
return uniformState.frameState.frameNumber;
},
}),
/**
* An automatic GLSL uniform representing the current morph transition time between
* 2D/Columbus View and 3D, with 0.0 being 2D or Columbus View and 1.0 being 3D.
*
* @example
* // GLSL declaration
* uniform float czm_morphTime;
*
* // Example
* vec4 p = czm_columbusViewMorph(position2D, position3D, czm_morphTime);
*/
czm_morphTime: new AutomaticUniform({
size: 1,
datatype: WebGLConstants.FLOAT,
getValue: function (uniformState) {
return uniformState.frameState.morphTime;
},
}),
/**
* An automatic GLSL uniform representing the current {@link SceneMode}, expressed
* as a float.
*
* @example
* // GLSL declaration
* uniform float czm_sceneMode;
*
* // Example
* if (czm_sceneMode == czm_sceneMode2D)
* {
* eyeHeightSq = czm_eyeHeight2D.y;
* }
*
* @see czm_sceneMode2D
* @see czm_sceneModeColumbusView
* @see czm_sceneMode3D
* @see czm_sceneModeMorphing
*/
czm_sceneMode: new AutomaticUniform({
size: 1,
datatype: WebGLConstants.FLOAT,
getValue: function (uniformState) {
return uniformState.frameState.mode;
},
}),
/**
* An automatic GLSL uniform representing the current rendering pass.
*
* @example
* // GLSL declaration
* uniform float czm_pass;
*
* // Example
* if ((czm_pass == czm_passTranslucent) && isOpaque())
* {
* gl_Position *= 0.0; // Cull opaque geometry in the translucent pass
* }
*/
czm_pass: new AutomaticUniform({
size: 1,
datatype: WebGLConstants.FLOAT,
getValue: function (uniformState) {
return uniformState.pass;
},
}),
/**
* An automatic GLSL uniform representing the current scene background color.
*
* @example
* // GLSL declaration
* uniform vec4 czm_backgroundColor;
*
* // Example: If the given color's RGB matches the background color, invert it.
* vec4 adjustColorForContrast(vec4 color)
* {
* if (czm_backgroundColor.rgb == color.rgb)
* {
* color.rgb = vec3(1.0) - color.rgb;
* }
*
* return color;
* }
*/
czm_backgroundColor: new AutomaticUniform({
size: 1,
datatype: WebGLConstants.FLOAT_VEC4,
getValue: function (uniformState) {
return uniformState.backgroundColor;
},
}),
/**
* An automatic GLSL uniform containing the BRDF look up texture used for image-based lighting computations.
*
* @example
* // GLSL declaration
* uniform sampler2D czm_brdfLut;
*
* // Example: For a given roughness and NdotV value, find the material's BRDF information in the red and green channels
* float roughness = 0.5;
* float NdotV = dot(normal, view);
* vec2 brdfLut = texture(czm_brdfLut, vec2(NdotV, 1.0 - roughness)).rg;
*/
czm_brdfLut: new AutomaticUniform({
size: 1,
datatype: WebGLConstants.SAMPLER_2D,
getValue: function (uniformState) {
return uniformState.brdfLut;
},
}),
/**
* An automatic GLSL uniform containing the environment map used within the scene.
*
* @example
* // GLSL declaration
* uniform samplerCube czm_environmentMap;
*
* // Example: Create a perfect reflection of the environment map on a model
* float reflected = reflect(view, normal);
* vec4 reflectedColor = texture(czm_environmentMap, reflected);
*/
czm_environmentMap: new AutomaticUniform({
size: 1,
datatype: WebGLConstants.SAMPLER_CUBE,
getValue: function (uniformState) {
return uniformState.environmentMap;
},
}),
/**
* An automatic GLSL uniform containing the specular environment map atlas used within the scene.
*
* @example
* // GLSL declaration
* uniform sampler2D czm_specularEnvironmentMaps;
*/
czm_specularEnvironmentMaps: new AutomaticUniform({
size: 1,
datatype: WebGLConstants.SAMPLER_2D,
getValue: function (uniformState) {
return uniformState.specularEnvironmentMaps;
},
}),
/**
* An automatic GLSL uniform containing the size of the specular environment map atlas used within the scene.
*
* @example
* // GLSL declaration
* uniform vec2 czm_specularEnvironmentMapSize;
*/
czm_specularEnvironmentMapSize: new AutomaticUniform({
size: 1,
datatype: WebGLConstants.FLOAT_VEC2,
getValue: function (uniformState) {
return uniformState.specularEnvironmentMapsDimensions;
},
}),
/**
* An automatic GLSL uniform containing the maximum level-of-detail of the specular environment map atlas used within the scene.
*
* @example
* // GLSL declaration
* uniform float czm_specularEnvironmentMapsMaximumLOD;
*/
czm_specularEnvironmentMapsMaximumLOD: new AutomaticUniform({
size: 1,
datatype: WebGLConstants.FLOAT,
getValue: function (uniformState) {
return uniformState.specularEnvironmentMapsMaximumLOD;
},
}),
/**
* An automatic GLSL uniform containing the spherical harmonic coefficients used within the scene.
*
* @example
* // GLSL declaration
* uniform vec3[9] czm_sphericalHarmonicCoefficients;
*/
czm_sphericalHarmonicCoefficients: new AutomaticUniform({
size: 9,
datatype: WebGLConstants.FLOAT_VEC3,
getValue: function (uniformState) {
return uniformState.sphericalHarmonicCoefficients;
},
}),
/**
* An automatic GLSL uniform representing a 3x3 rotation matrix that transforms
* from True Equator Mean Equinox (TEME) axes to the pseudo-fixed axes at the current scene time.
*
* @example
* // GLSL declaration
* uniform mat3 czm_temeToPseudoFixed;
*
* // Example
* vec3 pseudoFixed = czm_temeToPseudoFixed * teme;
*
* @see UniformState#temeToPseudoFixedMatrix
* @see Transforms.computeTemeToPseudoFixedMatrix
*/
czm_temeToPseudoFixed: new AutomaticUniform({
size: 1,
datatype: WebGLConstants.FLOAT_MAT3,
getValue: function (uniformState) {
return uniformState.temeToPseudoFixedMatrix;
},
}),
/**
* An automatic GLSL uniform representing the ratio of canvas coordinate space to canvas pixel space.
*
* @example
* uniform float czm_pixelRatio;
*/
czm_pixelRatio: new AutomaticUniform({
size: 1,
datatype: WebGLConstants.FLOAT,
getValue: function (uniformState) {
return uniformState.pixelRatio;
},
}),
/**
* An automatic GLSL uniform scalar used to mix a color with the fog color based on the distance to the camera.
*
* @see czm_fog
*/
czm_fogDensity: new AutomaticUniform({
size: 1,
datatype: WebGLConstants.FLOAT,
getValue: function (uniformState) {
return uniformState.fogDensity;
},
}),
/**
* An automatic GLSL uniform representing the splitter position to use when rendering with a splitter.
* This will be in pixel coordinates relative to the canvas.
*
* @example
* // GLSL declaration
* uniform float czm_splitPosition;
*/
czm_splitPosition: new AutomaticUniform({
size: 1,
datatype: WebGLConstants.FLOAT,
getValue: function (uniformState) {
return uniformState.splitPosition;
},
}),
/**
* An automatic GLSL uniform scalar representing the geometric tolerance per meter
*/
czm_geometricToleranceOverMeter: new AutomaticUniform({
size: 1,
datatype: WebGLConstants.FLOAT,
getValue: function (uniformState) {
return uniformState.geometricToleranceOverMeter;
},
}),
/**
* An automatic GLSL uniform representing the distance from the camera at which to disable the depth test of billboards, labels and points
* to, for example, prevent clipping against terrain. When set to zero, the depth test should always be applied. When less than zero,
* the depth test should never be applied.
*/
czm_minimumDisableDepthTestDistance: new AutomaticUniform({
size: 1,
datatype: WebGLConstants.FLOAT,
getValue: function (uniformState) {
return uniformState.minimumDisableDepthTestDistance;
},
}),
/**
* An automatic GLSL uniform that will be the highlight color of unclassified 3D Tiles.
*/
czm_invertClassificationColor: new AutomaticUniform({
size: 1,
datatype: WebGLConstants.FLOAT_VEC4,
getValue: function (uniformState) {
return uniformState.invertClassificationColor;
},
}),
/**
* An automatic GLSL uniform that is used for gamma correction.
*/
czm_gamma: new AutomaticUniform({
size: 1,
datatype: WebGLConstants.FLOAT,
getValue: function (uniformState) {
return uniformState.gamma;
},
}),
/**
* An automatic GLSL uniform that stores the ellipsoid radii.
*/
czm_ellipsoidRadii: new AutomaticUniform({
size: 1,
datatype: WebGLConstants.FLOAT_VEC3,
getValue: function (uniformState) {
return uniformState.ellipsoid.radii;
},
}),
/**
* An automatic GLSL uniform that stores the ellipsoid inverse radii.
*/
czm_ellipsoidInverseRadii: new AutomaticUniform({
size: 1,
datatype: WebGLConstants.FLOAT_VEC3,
getValue: function (uniformState) {
return uniformState.ellipsoid.oneOverRadii;
},
}),
};
export default AutomaticUniforms;