import Cartesian3 from "../../Core/Cartesian3.js";
import defined from "../../Core/defined.js";
import Matrix4 from "../../Core/Matrix4.js";
import Quaternion from "../../Core/Quaternion.js";
import RuntimeError from "../../Core/RuntimeError.js";
import Axis from "../Axis.js";
import AttributeType from "../AttributeType.js";
import VertexAttributeSemantic from "../VertexAttributeSemantic.js";
import CullFace from "../CullFace.js";
import PrimitiveType from "../../Core/PrimitiveType.js";
import Matrix3 from "../../Core/Matrix3.js";
/**
* Utility functions for {@link Model}.
*
* @private
*/
function ModelUtility() {}
/**
* Create a function for reporting when a model fails to load
*
* @param {string} type The type of object to report about
* @param {string} path The URI of the model file
* @param {Error} [error] The error which caused the failure
* @returns {RuntimeError} An error for the failed model
*
* @private
*/
ModelUtility.getError = function (type, path, error) {
let message = `Failed to load ${type}: ${path}`;
if (defined(error) && defined(error.message)) {
message += `\n${error.message}`;
}
const runtimeError = new RuntimeError(message);
if (defined(error)) {
// the original call stack is often more useful than the new error's stack,
// so add the information here
runtimeError.stack = `Original stack:\n${error.stack}\nHandler stack:\n${runtimeError.stack}`;
}
return runtimeError;
};
/**
* Get a transformation matrix from a node in the model.
*
* @param {ModelComponents.Node} node The node components
* @returns {Matrix4} The computed transformation matrix. If no transformation matrix or parameters are specified, this will be the identity matrix.
*
* @private
*/
ModelUtility.getNodeTransform = function (node) {
if (defined(node.matrix)) {
return node.matrix;
}
return Matrix4.fromTranslationQuaternionRotationScale(
defined(node.translation) ? node.translation : Cartesian3.ZERO,
defined(node.rotation) ? node.rotation : Quaternion.IDENTITY,
defined(node.scale) ? node.scale : Cartesian3.ONE
);
};
/**
* Find an attribute by semantic such as POSITION or TANGENT.
*
* @param {ModelComponents.Primitive|ModelComponents.Instances} object The primitive components or instances object
* @param {VertexAttributeSemantic|InstanceAttributeSemantic} semantic The semantic to search for
* @param {number} [setIndex] The set index of the semantic. May be undefined for some semantics (POSITION, NORMAL, TRANSLATION, ROTATION, for example)
* @return {ModelComponents.Attribute} The selected attribute, or undefined if not found.
*
* @private
*/
ModelUtility.getAttributeBySemantic = function (object, semantic, setIndex) {
const attributes = object.attributes;
const attributesLength = attributes.length;
for (let i = 0; i < attributesLength; ++i) {
const attribute = attributes[i];
const matchesSetIndex = defined(setIndex)
? attribute.setIndex === setIndex
: true;
if (attribute.semantic === semantic && matchesSetIndex) {
return attribute;
}
}
return undefined;
};
/**
* Similar to getAttributeBySemantic, but search using the name field only,
* as custom attributes do not have a semantic.
*
* @param {ModelComponents.Primitive|ModelComponents.Instances} object The primitive components or instances object
* @param {string} name The name of the attribute as it appears in the model file.
* @return {ModelComponents.Attribute} The selected attribute, or undefined if not found.
*
* @private
*/
ModelUtility.getAttributeByName = function (object, name) {
const attributes = object.attributes;
const attributesLength = attributes.length;
for (let i = 0; i < attributesLength; ++i) {
const attribute = attributes[i];
if (attribute.name === name) {
return attribute;
}
}
return undefined;
};
/**
* Find a feature ID from an array with label or positionalLabel matching the
* given label
* @param {ModelComponents.FeatureIdAttribute[]|ModelComponents.FeatureIdImplicitRange[]|ModelComponents.FeatureIdTexture[]} featureIds
* @param {string} label the label to search for
* @returns {ModelComponents.FeatureIdAttribute|ModelComponents.FeatureIdImplicitRange|ModelComponents.FeatureIdTexture} The feature ID set if found, otherwise undefined
*
* @private
*/
ModelUtility.getFeatureIdsByLabel = function (featureIds, label) {
for (let i = 0; i < featureIds.length; i++) {
const featureIdSet = featureIds[i];
if (
featureIdSet.positionalLabel === label ||
featureIdSet.label === label
) {
return featureIdSet;
}
}
return undefined;
};
ModelUtility.hasQuantizedAttributes = function (attributes) {
if (!defined(attributes)) {
return false;
}
for (let i = 0; i < attributes.length; i++) {
const attribute = attributes[i];
if (defined(attribute.quantization)) {
return true;
}
}
return false;
};
/**
* @param {ModelComponents.Attribute} attribute
*
* @private
*/
ModelUtility.getAttributeInfo = function (attribute) {
const semantic = attribute.semantic;
const setIndex = attribute.setIndex;
let variableName;
let hasSemantic = false;
if (defined(semantic)) {
variableName = VertexAttributeSemantic.getVariableName(semantic, setIndex);
hasSemantic = true;
} else {
variableName = attribute.name;
// According to the glTF 2.0 spec, custom attributes must be prepended with
// an underscore.
variableName = variableName.replace(/^_/, "");
variableName = variableName.toLowerCase();
}
const isVertexColor = /^color_\d+$/.test(variableName);
const attributeType = attribute.type;
let glslType = AttributeType.getGlslType(attributeType);
// color_n can be either a vec3 or a vec4. But in GLSL we can always use
// attribute vec4 since GLSL promotes vec3 attribute data to vec4 with
// the .a channel set to 1.0.
if (isVertexColor) {
glslType = "vec4";
}
const isQuantized = defined(attribute.quantization);
let quantizedGlslType;
if (isQuantized) {
// The quantized color_n attribute also is promoted to a vec4 in the shader
quantizedGlslType = isVertexColor
? "vec4"
: AttributeType.getGlslType(attribute.quantization.type);
}
return {
attribute: attribute,
isQuantized: isQuantized,
variableName: variableName,
hasSemantic: hasSemantic,
glslType: glslType,
quantizedGlslType: quantizedGlslType,
};
};
const cartesianMaxScratch = new Cartesian3();
const cartesianMinScratch = new Cartesian3();
/**
* Get the minimum and maximum values for a primitive's POSITION attribute.
* This is used to compute the bounding sphere of the primitive, as well as
* the bounding sphere of the whole model.
*
* @param {ModelComponents.Primitive} primitive The primitive components.
* @param {Cartesian3} [instancingTranslationMin] The component-wise minimum value of the instancing translation attribute.
* @param {Cartesian3} [instancingTranslationMax] The component-wise maximum value of the instancing translation attribute.
*
* @returns {object} An object containing the minimum and maximum position values.
*
* @private
*/
ModelUtility.getPositionMinMax = function (
primitive,
instancingTranslationMin,
instancingTranslationMax
) {
const positionGltfAttribute = ModelUtility.getAttributeBySemantic(
primitive,
"POSITION"
);
let positionMax = positionGltfAttribute.max;
let positionMin = positionGltfAttribute.min;
if (defined(instancingTranslationMax) && defined(instancingTranslationMin)) {
positionMin = Cartesian3.add(
positionMin,
instancingTranslationMin,
cartesianMinScratch
);
positionMax = Cartesian3.add(
positionMax,
instancingTranslationMax,
cartesianMaxScratch
);
}
return {
min: positionMin,
max: positionMax,
};
};
/**
* Model matrices in a model file (e.g. glTF) are typically in a different
* coordinate system, such as with y-up instead of z-up in 3D Tiles.
* This function returns a matrix that will correct this such that z is up,
* and x is forward.
*
* @param {Axis} upAxis The original up direction
* @param {Axis} forwardAxis The original forward direction
* @param {Matrix4} result The matrix in which to store the result.
* @returns {Matrix4} The axis correction matrix
*
* @private
*/
ModelUtility.getAxisCorrectionMatrix = function (upAxis, forwardAxis, result) {
result = Matrix4.clone(Matrix4.IDENTITY, result);
if (upAxis === Axis.Y) {
result = Matrix4.clone(Axis.Y_UP_TO_Z_UP, result);
} else if (upAxis === Axis.X) {
result = Matrix4.clone(Axis.X_UP_TO_Z_UP, result);
}
if (forwardAxis === Axis.Z) {
// glTF 2.0 has a Z-forward convention that must be adapted here to X-forward.
result = Matrix4.multiplyTransformation(result, Axis.Z_UP_TO_X_UP, result);
}
return result;
};
const scratchMatrix3 = new Matrix3();
/**
* Get the cull face to use in the command's render state.
*
* From the glTF spec section 3.7.4: * When a mesh primitive uses any triangle-based topology (i.e., triangles, * triangle strip, or triangle fan), the determinant of the node’s global * transform defines the winding order of that primitive. If the determinant * is a positive value, the winding order triangle faces is counterclockwise; * in the opposite case, the winding order is clockwise. *
* * @param {Matrix4} modelMatrix The model matrix * @param {PrimitiveType} primitiveType The primitive type * @returns {CullFace} The cull face * * @private */ ModelUtility.getCullFace = function (modelMatrix, primitiveType) { if (!PrimitiveType.isTriangles(primitiveType)) { return CullFace.BACK; } const matrix3 = Matrix4.getMatrix3(modelMatrix, scratchMatrix3); return Matrix3.determinant(matrix3) < 0.0 ? CullFace.FRONT : CullFace.BACK; }; /** * Sanitize the identifier to be used in a GLSL shader. The identifier * is sanitized as follows: * - Replace all sequences of non-alphanumeric characters with a single `_`. * - If the gl_ prefix is present, remove it. The prefix is reserved in GLSL. * - If the identifier starts with a digit, prefix it with an underscore. * * @example * // Returns "customProperty" * ModelUtility.sanitizeGlslIdentifier("gl_customProperty"); * * @example * // Returns "_1234" * ModelUtility.sanitizeGlslIdentifier("1234"); * * @param {string} identifier The original identifier. * * @returns {string} The sanitized version of the identifier. */ ModelUtility.sanitizeGlslIdentifier = function (identifier) { // Remove non-alphanumeric characters and replace with a single underscore. // This regex is designed so that the result won't have multiple underscores // in a row. let sanitizedIdentifier = identifier.replaceAll(/[^A-Za-z0-9]+/g, "_"); // Remove the gl_ prefix if present. sanitizedIdentifier = sanitizedIdentifier.replace(/^gl_/, ""); // Add an underscore if first character is a digit. if (/^\d/.test(sanitizedIdentifier)) { sanitizedIdentifier = `_${sanitizedIdentifier}`; } return sanitizedIdentifier; }; ModelUtility.supportedExtensions = { AGI_articulations: true, CESIUM_primitive_outline: true, CESIUM_RTC: true, EXT_feature_metadata: true, EXT_instance_features: true, EXT_mesh_features: true, EXT_mesh_gpu_instancing: true, EXT_meshopt_compression: true, EXT_structural_metadata: true, EXT_texture_webp: true, KHR_blend: true, KHR_draco_mesh_compression: true, KHR_techniques_webgl: true, KHR_materials_common: true, KHR_materials_pbrSpecularGlossiness: true, KHR_materials_unlit: true, KHR_mesh_quantization: true, KHR_texture_basisu: true, KHR_texture_transform: true, WEB3D_quantized_attributes: true, }; /** * Checks whether or not the extensions required by the glTF are * supported. If an unsupported extension is found, this throws * a {@link RuntimeError} with the extension name. * * @param {string[]} extensionsRequired The extensionsRequired array in the glTF. * * @exception {RuntimeError} Unsupported glTF Extension */ ModelUtility.checkSupportedExtensions = function (extensionsRequired) { const length = extensionsRequired.length; for (let i = 0; i < length; i++) { const extension = extensionsRequired[i]; if (!ModelUtility.supportedExtensions[extension]) { throw new RuntimeError(`Unsupported glTF Extension: ${extension}`); } } }; export default ModelUtility;