import AttributeCompression from "../Core/AttributeCompression.js"; import Cartesian3 from "../Core/Cartesian3.js"; import Cartographic from "../Core/Cartographic.js"; import Color from "../Core/Color.js"; import defined from "../Core/defined.js"; import Ellipsoid from "../Core/Ellipsoid.js"; import IndexDatatype from "../Core/IndexDatatype.js"; import CesiumMath from "../Core/Math.js"; import OrientedBoundingBox from "../Core/OrientedBoundingBox.js"; import Rectangle from "../Core/Rectangle.js"; import createTaskProcessorWorker from "./createTaskProcessorWorker.js"; const scratchCenter = new Cartesian3(); const scratchEllipsoid = new Ellipsoid(); const scratchRectangle = new Rectangle(); const scratchScalars = { min: undefined, max: undefined, indexBytesPerElement: undefined, }; function unpackBuffer(buffer) { const packedBuffer = new Float64Array(buffer); let offset = 0; scratchScalars.indexBytesPerElement = packedBuffer[offset++]; scratchScalars.min = packedBuffer[offset++]; scratchScalars.max = packedBuffer[offset++]; Cartesian3.unpack(packedBuffer, offset, scratchCenter); offset += Cartesian3.packedLength; Ellipsoid.unpack(packedBuffer, offset, scratchEllipsoid); offset += Ellipsoid.packedLength; Rectangle.unpack(packedBuffer, offset, scratchRectangle); } function packedBatchedIndicesLength(batchedIndices) { const length = batchedIndices.length; let count = 0; for (let i = 0; i < length; ++i) { count += Color.packedLength + 3 + batchedIndices[i].batchIds.length; } return count; } function packBuffer(indexDatatype, boundingVolumes, batchedIndices) { const numBVs = boundingVolumes.length; const length = 1 + 1 + numBVs * OrientedBoundingBox.packedLength + 1 + packedBatchedIndicesLength(batchedIndices); const packedBuffer = new Float64Array(length); let offset = 0; packedBuffer[offset++] = indexDatatype; packedBuffer[offset++] = numBVs; for (let i = 0; i < numBVs; ++i) { OrientedBoundingBox.pack(boundingVolumes[i], packedBuffer, offset); offset += OrientedBoundingBox.packedLength; } const indicesLength = batchedIndices.length; packedBuffer[offset++] = indicesLength; for (let j = 0; j < indicesLength; ++j) { const batchedIndex = batchedIndices[j]; Color.pack(batchedIndex.color, packedBuffer, offset); offset += Color.packedLength; packedBuffer[offset++] = batchedIndex.offset; packedBuffer[offset++] = batchedIndex.count; const batchIds = batchedIndex.batchIds; const batchIdsLength = batchIds.length; packedBuffer[offset++] = batchIdsLength; for (let k = 0; k < batchIdsLength; ++k) { packedBuffer[offset++] = batchIds[k]; } } return packedBuffer; } const maxShort = 32767; const scratchEncodedPosition = new Cartesian3(); const scratchNormal = new Cartesian3(); const scratchScaledNormal = new Cartesian3(); const scratchMinHeightPosition = new Cartesian3(); const scratchMaxHeightPosition = new Cartesian3(); const scratchBVCartographic = new Cartographic(); const scratchBVRectangle = new Rectangle(); function createVectorTilePolygons(parameters, transferableObjects) { unpackBuffer(parameters.packedBuffer); let indices; const indexBytesPerElement = scratchScalars.indexBytesPerElement; if (indexBytesPerElement === 2) { indices = new Uint16Array(parameters.indices); } else { indices = new Uint32Array(parameters.indices); } const positions = new Uint16Array(parameters.positions); const counts = new Uint32Array(parameters.counts); const indexCounts = new Uint32Array(parameters.indexCounts); const batchIds = new Uint32Array(parameters.batchIds); const batchTableColors = new Uint32Array(parameters.batchTableColors); const boundingVolumes = new Array(counts.length); const center = scratchCenter; const ellipsoid = scratchEllipsoid; let rectangle = scratchRectangle; const minHeight = scratchScalars.min; const maxHeight = scratchScalars.max; let minimumHeights = parameters.minimumHeights; let maximumHeights = parameters.maximumHeights; if (defined(minimumHeights) && defined(maximumHeights)) { minimumHeights = new Float32Array(minimumHeights); maximumHeights = new Float32Array(maximumHeights); } let i; let j; let rgba; const positionsLength = positions.length / 2; const uBuffer = positions.subarray(0, positionsLength); const vBuffer = positions.subarray(positionsLength, 2 * positionsLength); AttributeCompression.zigZagDeltaDecode(uBuffer, vBuffer); const decodedPositions = new Float64Array(positionsLength * 3); for (i = 0; i < positionsLength; ++i) { const u = uBuffer[i]; const v = vBuffer[i]; const x = CesiumMath.lerp(rectangle.west, rectangle.east, u / maxShort); const y = CesiumMath.lerp(rectangle.south, rectangle.north, v / maxShort); const cart = Cartographic.fromRadians(x, y, 0.0, scratchBVCartographic); const decodedPosition = ellipsoid.cartographicToCartesian( cart, scratchEncodedPosition ); Cartesian3.pack(decodedPosition, decodedPositions, i * 3); } const countsLength = counts.length; const offsets = new Array(countsLength); const indexOffsets = new Array(countsLength); let currentOffset = 0; let currentIndexOffset = 0; for (i = 0; i < countsLength; ++i) { offsets[i] = currentOffset; indexOffsets[i] = currentIndexOffset; currentOffset += counts[i]; currentIndexOffset += indexCounts[i]; } const batchedPositions = new Float32Array(positionsLength * 3 * 2); const batchedIds = new Uint16Array(positionsLength * 2); const batchedIndexOffsets = new Uint32Array(indexOffsets.length); const batchedIndexCounts = new Uint32Array(indexCounts.length); let batchedIndices = []; const colorToBuffers = {}; for (i = 0; i < countsLength; ++i) { rgba = batchTableColors[i]; if (!defined(colorToBuffers[rgba])) { colorToBuffers[rgba] = { positionLength: counts[i], indexLength: indexCounts[i], offset: 0, indexOffset: 0, batchIds: [i], }; } else { colorToBuffers[rgba].positionLength += counts[i]; colorToBuffers[rgba].indexLength += indexCounts[i]; colorToBuffers[rgba].batchIds.push(i); } } // get the offsets and counts for the positions and indices of each primitive let buffer; let byColorPositionOffset = 0; let byColorIndexOffset = 0; for (rgba in colorToBuffers) { if (colorToBuffers.hasOwnProperty(rgba)) { buffer = colorToBuffers[rgba]; buffer.offset = byColorPositionOffset; buffer.indexOffset = byColorIndexOffset; const positionLength = buffer.positionLength * 2; const indexLength = buffer.indexLength * 2 + buffer.positionLength * 6; byColorPositionOffset += positionLength; byColorIndexOffset += indexLength; buffer.indexLength = indexLength; } } const batchedDrawCalls = []; for (rgba in colorToBuffers) { if (colorToBuffers.hasOwnProperty(rgba)) { buffer = colorToBuffers[rgba]; batchedDrawCalls.push({ color: Color.fromRgba(parseInt(rgba)), offset: buffer.indexOffset, count: buffer.indexLength, batchIds: buffer.batchIds, }); } } for (i = 0; i < countsLength; ++i) { rgba = batchTableColors[i]; buffer = colorToBuffers[rgba]; const positionOffset = buffer.offset; let positionIndex = positionOffset * 3; let batchIdIndex = positionOffset; const polygonOffset = offsets[i]; const polygonCount = counts[i]; const batchId = batchIds[i]; let polygonMinimumHeight = minHeight; let polygonMaximumHeight = maxHeight; if (defined(minimumHeights) && defined(maximumHeights)) { polygonMinimumHeight = minimumHeights[i]; polygonMaximumHeight = maximumHeights[i]; } let minLat = Number.POSITIVE_INFINITY; let maxLat = Number.NEGATIVE_INFINITY; let minLon = Number.POSITIVE_INFINITY; let maxLon = Number.NEGATIVE_INFINITY; for (j = 0; j < polygonCount; ++j) { const position = Cartesian3.unpack( decodedPositions, polygonOffset * 3 + j * 3, scratchEncodedPosition ); ellipsoid.scaleToGeodeticSurface(position, position); const carto = ellipsoid.cartesianToCartographic( position, scratchBVCartographic ); const lat = carto.latitude; const lon = carto.longitude; minLat = Math.min(lat, minLat); maxLat = Math.max(lat, maxLat); minLon = Math.min(lon, minLon); maxLon = Math.max(lon, maxLon); const normal = ellipsoid.geodeticSurfaceNormal(position, scratchNormal); let scaledNormal = Cartesian3.multiplyByScalar( normal, polygonMinimumHeight, scratchScaledNormal ); const minHeightPosition = Cartesian3.add( position, scaledNormal, scratchMinHeightPosition ); scaledNormal = Cartesian3.multiplyByScalar( normal, polygonMaximumHeight, scaledNormal ); const maxHeightPosition = Cartesian3.add( position, scaledNormal, scratchMaxHeightPosition ); Cartesian3.subtract(maxHeightPosition, center, maxHeightPosition); Cartesian3.subtract(minHeightPosition, center, minHeightPosition); Cartesian3.pack(maxHeightPosition, batchedPositions, positionIndex); Cartesian3.pack(minHeightPosition, batchedPositions, positionIndex + 3); batchedIds[batchIdIndex] = batchId; batchedIds[batchIdIndex + 1] = batchId; positionIndex += 6; batchIdIndex += 2; } rectangle = scratchBVRectangle; rectangle.west = minLon; rectangle.east = maxLon; rectangle.south = minLat; rectangle.north = maxLat; boundingVolumes[i] = OrientedBoundingBox.fromRectangle( rectangle, minHeight, maxHeight, ellipsoid ); let indicesIndex = buffer.indexOffset; const indexOffset = indexOffsets[i]; const indexCount = indexCounts[i]; batchedIndexOffsets[i] = indicesIndex; for (j = 0; j < indexCount; j += 3) { const i0 = indices[indexOffset + j] - polygonOffset; const i1 = indices[indexOffset + j + 1] - polygonOffset; const i2 = indices[indexOffset + j + 2] - polygonOffset; // triangle on the top of the extruded polygon batchedIndices[indicesIndex++] = i0 * 2 + positionOffset; batchedIndices[indicesIndex++] = i1 * 2 + positionOffset; batchedIndices[indicesIndex++] = i2 * 2 + positionOffset; // triangle on the bottom of the extruded polygon batchedIndices[indicesIndex++] = i2 * 2 + 1 + positionOffset; batchedIndices[indicesIndex++] = i1 * 2 + 1 + positionOffset; batchedIndices[indicesIndex++] = i0 * 2 + 1 + positionOffset; } // indices for the walls of the extruded polygon for (j = 0; j < polygonCount; ++j) { const v0 = j; const v1 = (j + 1) % polygonCount; batchedIndices[indicesIndex++] = v0 * 2 + 1 + positionOffset; batchedIndices[indicesIndex++] = v1 * 2 + positionOffset; batchedIndices[indicesIndex++] = v0 * 2 + positionOffset; batchedIndices[indicesIndex++] = v0 * 2 + 1 + positionOffset; batchedIndices[indicesIndex++] = v1 * 2 + 1 + positionOffset; batchedIndices[indicesIndex++] = v1 * 2 + positionOffset; } buffer.offset += polygonCount * 2; buffer.indexOffset = indicesIndex; batchedIndexCounts[i] = indicesIndex - batchedIndexOffsets[i]; } batchedIndices = IndexDatatype.createTypedArray( batchedPositions.length / 3, batchedIndices ); const batchedIndicesLength = batchedDrawCalls.length; for (let m = 0; m < batchedIndicesLength; ++m) { const tempIds = batchedDrawCalls[m].batchIds; let count = 0; const tempIdsLength = tempIds.length; for (let n = 0; n < tempIdsLength; ++n) { count += batchedIndexCounts[tempIds[n]]; } batchedDrawCalls[m].count = count; } const indexDatatype = batchedIndices.BYTES_PER_ELEMENT === 2 ? IndexDatatype.UNSIGNED_SHORT : IndexDatatype.UNSIGNED_INT; const packedBuffer = packBuffer( indexDatatype, boundingVolumes, batchedDrawCalls ); transferableObjects.push( batchedPositions.buffer, batchedIndices.buffer, batchedIndexOffsets.buffer, batchedIndexCounts.buffer, batchedIds.buffer, packedBuffer.buffer ); return { positions: batchedPositions.buffer, indices: batchedIndices.buffer, indexOffsets: batchedIndexOffsets.buffer, indexCounts: batchedIndexCounts.buffer, batchIds: batchedIds.buffer, packedBuffer: packedBuffer.buffer, }; } export default createTaskProcessorWorker(createVectorTilePolygons);