import Check from "./Check.js"; import defaultValue from "./defaultValue.js"; import defined from "./defined.js"; import DeveloperError from "./DeveloperError.js"; import CesiumMath from "./Math.js"; /** * A 4D Cartesian point. * @alias Cartesian4 * @constructor * * @param {Number} [x=0.0] The X component. * @param {Number} [y=0.0] The Y component. * @param {Number} [z=0.0] The Z component. * @param {Number} [w=0.0] The W component. * * @see Cartesian2 * @see Cartesian3 * @see Packable */ function Cartesian4(x, y, z, w) { /** * The X component. * @type {Number} * @default 0.0 */ this.x = defaultValue(x, 0.0); /** * The Y component. * @type {Number} * @default 0.0 */ this.y = defaultValue(y, 0.0); /** * The Z component. * @type {Number} * @default 0.0 */ this.z = defaultValue(z, 0.0); /** * The W component. * @type {Number} * @default 0.0 */ this.w = defaultValue(w, 0.0); } /** * Creates a Cartesian4 instance from x, y, z and w coordinates. * * @param {Number} x The x coordinate. * @param {Number} y The y coordinate. * @param {Number} z The z coordinate. * @param {Number} w The w coordinate. * @param {Cartesian4} [result] The object onto which to store the result. * @returns {Cartesian4} The modified result parameter or a new Cartesian4 instance if one was not provided. */ Cartesian4.fromElements = function (x, y, z, w, result) { if (!defined(result)) { return new Cartesian4(x, y, z, w); } result.x = x; result.y = y; result.z = z; result.w = w; return result; }; /** * Creates a Cartesian4 instance from a {@link Color}. red, green, blue, * and alpha map to x, y, z, and w, respectively. * * @param {Color} color The source color. * @param {Cartesian4} [result] The object onto which to store the result. * @returns {Cartesian4} The modified result parameter or a new Cartesian4 instance if one was not provided. */ Cartesian4.fromColor = function (color, result) { //>>includeStart('debug', pragmas.debug); Check.typeOf.object("color", color); //>>includeEnd('debug'); if (!defined(result)) { return new Cartesian4(color.red, color.green, color.blue, color.alpha); } result.x = color.red; result.y = color.green; result.z = color.blue; result.w = color.alpha; return result; }; /** * Duplicates a Cartesian4 instance. * * @param {Cartesian4} cartesian The Cartesian to duplicate. * @param {Cartesian4} [result] The object onto which to store the result. * @returns {Cartesian4} The modified result parameter or a new Cartesian4 instance if one was not provided. (Returns undefined if cartesian is undefined) */ Cartesian4.clone = function (cartesian, result) { if (!defined(cartesian)) { return undefined; } if (!defined(result)) { return new Cartesian4(cartesian.x, cartesian.y, cartesian.z, cartesian.w); } result.x = cartesian.x; result.y = cartesian.y; result.z = cartesian.z; result.w = cartesian.w; return result; }; /** * The number of elements used to pack the object into an array. * @type {Number} */ Cartesian4.packedLength = 4; /** * Stores the provided instance into the provided array. * * @param {Cartesian4} value The value to pack. * @param {Number[]} array The array to pack into. * @param {Number} [startingIndex=0] The index into the array at which to start packing the elements. * * @returns {Number[]} The array that was packed into */ Cartesian4.pack = function (value, array, startingIndex) { //>>includeStart('debug', pragmas.debug); Check.typeOf.object("value", value); Check.defined("array", array); //>>includeEnd('debug'); startingIndex = defaultValue(startingIndex, 0); array[startingIndex++] = value.x; array[startingIndex++] = value.y; array[startingIndex++] = value.z; array[startingIndex] = value.w; return array; }; /** * Retrieves an instance from a packed array. * * @param {Number[]} array The packed array. * @param {Number} [startingIndex=0] The starting index of the element to be unpacked. * @param {Cartesian4} [result] The object into which to store the result. * @returns {Cartesian4} The modified result parameter or a new Cartesian4 instance if one was not provided. */ Cartesian4.unpack = function (array, startingIndex, result) { //>>includeStart('debug', pragmas.debug); Check.defined("array", array); //>>includeEnd('debug'); startingIndex = defaultValue(startingIndex, 0); if (!defined(result)) { result = new Cartesian4(); } result.x = array[startingIndex++]; result.y = array[startingIndex++]; result.z = array[startingIndex++]; result.w = array[startingIndex]; return result; }; /** * Flattens an array of Cartesian4s into an array of components. * * @param {Cartesian4[]} array The array of cartesians to pack. * @param {Number[]} [result] The array onto which to store the result. If this is a typed array, it must have array.length * 4 components, else a {@link DeveloperError} will be thrown. If it is a regular array, it will be resized to have (array.length * 4) elements. * @returns {Number[]} The packed array. */ Cartesian4.packArray = function (array, result) { //>>includeStart('debug', pragmas.debug); Check.defined("array", array); //>>includeEnd('debug'); const length = array.length; const resultLength = length * 4; if (!defined(result)) { result = new Array(resultLength); } else if (!Array.isArray(result) && result.length !== resultLength) { //>>includeStart('debug', pragmas.debug); throw new DeveloperError( "If result is a typed array, it must have exactly array.length * 4 elements" ); //>>includeEnd('debug'); } else if (result.length !== resultLength) { result.length = resultLength; } for (let i = 0; i < length; ++i) { Cartesian4.pack(array[i], result, i * 4); } return result; }; /** * Unpacks an array of cartesian components into an array of Cartesian4s. * * @param {Number[]} array The array of components to unpack. * @param {Cartesian4[]} [result] The array onto which to store the result. * @returns {Cartesian4[]} The unpacked array. */ Cartesian4.unpackArray = function (array, result) { //>>includeStart('debug', pragmas.debug); Check.defined("array", array); Check.typeOf.number.greaterThanOrEquals("array.length", array.length, 4); if (array.length % 4 !== 0) { throw new DeveloperError("array length must be a multiple of 4."); } //>>includeEnd('debug'); const length = array.length; if (!defined(result)) { result = new Array(length / 4); } else { result.length = length / 4; } for (let i = 0; i < length; i += 4) { const index = i / 4; result[index] = Cartesian4.unpack(array, i, result[index]); } return result; }; /** * Creates a Cartesian4 from four consecutive elements in an array. * @function * * @param {Number[]} array The array whose four consecutive elements correspond to the x, y, z, and w components, respectively. * @param {Number} [startingIndex=0] The offset into the array of the first element, which corresponds to the x component. * @param {Cartesian4} [result] The object onto which to store the result. * @returns {Cartesian4} The modified result parameter or a new Cartesian4 instance if one was not provided. * * @example * // Create a Cartesian4 with (1.0, 2.0, 3.0, 4.0) * const v = [1.0, 2.0, 3.0, 4.0]; * const p = Cesium.Cartesian4.fromArray(v); * * // Create a Cartesian4 with (1.0, 2.0, 3.0, 4.0) using an offset into an array * const v2 = [0.0, 0.0, 1.0, 2.0, 3.0, 4.0]; * const p2 = Cesium.Cartesian4.fromArray(v2, 2); */ Cartesian4.fromArray = Cartesian4.unpack; /** * Computes the value of the maximum component for the supplied Cartesian. * * @param {Cartesian4} cartesian The cartesian to use. * @returns {Number} The value of the maximum component. */ Cartesian4.maximumComponent = function (cartesian) { //>>includeStart('debug', pragmas.debug); Check.typeOf.object("cartesian", cartesian); //>>includeEnd('debug'); return Math.max(cartesian.x, cartesian.y, cartesian.z, cartesian.w); }; /** * Computes the value of the minimum component for the supplied Cartesian. * * @param {Cartesian4} cartesian The cartesian to use. * @returns {Number} The value of the minimum component. */ Cartesian4.minimumComponent = function (cartesian) { //>>includeStart('debug', pragmas.debug); Check.typeOf.object("cartesian", cartesian); //>>includeEnd('debug'); return Math.min(cartesian.x, cartesian.y, cartesian.z, cartesian.w); }; /** * Compares two Cartesians and computes a Cartesian which contains the minimum components of the supplied Cartesians. * * @param {Cartesian4} first A cartesian to compare. * @param {Cartesian4} second A cartesian to compare. * @param {Cartesian4} result The object into which to store the result. * @returns {Cartesian4} A cartesian with the minimum components. */ Cartesian4.minimumByComponent = function (first, second, result) { //>>includeStart('debug', pragmas.debug); Check.typeOf.object("first", first); Check.typeOf.object("second", second); Check.typeOf.object("result", result); //>>includeEnd('debug'); result.x = Math.min(first.x, second.x); result.y = Math.min(first.y, second.y); result.z = Math.min(first.z, second.z); result.w = Math.min(first.w, second.w); return result; }; /** * Compares two Cartesians and computes a Cartesian which contains the maximum components of the supplied Cartesians. * * @param {Cartesian4} first A cartesian to compare. * @param {Cartesian4} second A cartesian to compare. * @param {Cartesian4} result The object into which to store the result. * @returns {Cartesian4} A cartesian with the maximum components. */ Cartesian4.maximumByComponent = function (first, second, result) { //>>includeStart('debug', pragmas.debug); Check.typeOf.object("first", first); Check.typeOf.object("second", second); Check.typeOf.object("result", result); //>>includeEnd('debug'); result.x = Math.max(first.x, second.x); result.y = Math.max(first.y, second.y); result.z = Math.max(first.z, second.z); result.w = Math.max(first.w, second.w); return result; }; /** * Constrain a value to lie between two values. * * @param {Cartesian4} value The value to clamp. * @param {Cartesian4} min The minimum bound. * @param {Cartesian4} max The maximum bound. * @param {Cartesian4} result The object into which to store the result. * @returns {Cartesian4} The clamped value such that min <= result <= max. */ Cartesian4.clamp = function (value, min, max, result) { //>>includeStart('debug', pragmas.debug); Check.typeOf.object("value", value); Check.typeOf.object("min", min); Check.typeOf.object("max", max); Check.typeOf.object("result", result); //>>includeEnd('debug'); const x = CesiumMath.clamp(value.x, min.x, max.x); const y = CesiumMath.clamp(value.y, min.y, max.y); const z = CesiumMath.clamp(value.z, min.z, max.z); const w = CesiumMath.clamp(value.w, min.w, max.w); result.x = x; result.y = y; result.z = z; result.w = w; return result; }; /** * Computes the provided Cartesian's squared magnitude. * * @param {Cartesian4} cartesian The Cartesian instance whose squared magnitude is to be computed. * @returns {Number} The squared magnitude. */ Cartesian4.magnitudeSquared = function (cartesian) { //>>includeStart('debug', pragmas.debug); Check.typeOf.object("cartesian", cartesian); //>>includeEnd('debug'); return ( cartesian.x * cartesian.x + cartesian.y * cartesian.y + cartesian.z * cartesian.z + cartesian.w * cartesian.w ); }; /** * Computes the Cartesian's magnitude (length). * * @param {Cartesian4} cartesian The Cartesian instance whose magnitude is to be computed. * @returns {Number} The magnitude. */ Cartesian4.magnitude = function (cartesian) { return Math.sqrt(Cartesian4.magnitudeSquared(cartesian)); }; const distanceScratch = new Cartesian4(); /** * Computes the 4-space distance between two points. * * @param {Cartesian4} left The first point to compute the distance from. * @param {Cartesian4} right The second point to compute the distance to. * @returns {Number} The distance between two points. * * @example * // Returns 1.0 * const d = Cesium.Cartesian4.distance( * new Cesium.Cartesian4(1.0, 0.0, 0.0, 0.0), * new Cesium.Cartesian4(2.0, 0.0, 0.0, 0.0)); */ Cartesian4.distance = function (left, right) { //>>includeStart('debug', pragmas.debug); Check.typeOf.object("left", left); Check.typeOf.object("right", right); //>>includeEnd('debug'); Cartesian4.subtract(left, right, distanceScratch); return Cartesian4.magnitude(distanceScratch); }; /** * Computes the squared distance between two points. Comparing squared distances * using this function is more efficient than comparing distances using {@link Cartesian4#distance}. * * @param {Cartesian4} left The first point to compute the distance from. * @param {Cartesian4} right The second point to compute the distance to. * @returns {Number} The distance between two points. * * @example * // Returns 4.0, not 2.0 * const d = Cesium.Cartesian4.distance( * new Cesium.Cartesian4(1.0, 0.0, 0.0, 0.0), * new Cesium.Cartesian4(3.0, 0.0, 0.0, 0.0)); */ Cartesian4.distanceSquared = function (left, right) { //>>includeStart('debug', pragmas.debug); Check.typeOf.object("left", left); Check.typeOf.object("right", right); //>>includeEnd('debug'); Cartesian4.subtract(left, right, distanceScratch); return Cartesian4.magnitudeSquared(distanceScratch); }; /** * Computes the normalized form of the supplied Cartesian. * * @param {Cartesian4} cartesian The Cartesian to be normalized. * @param {Cartesian4} result The object onto which to store the result. * @returns {Cartesian4} The modified result parameter. */ Cartesian4.normalize = function (cartesian, result) { //>>includeStart('debug', pragmas.debug); Check.typeOf.object("cartesian", cartesian); Check.typeOf.object("result", result); //>>includeEnd('debug'); const magnitude = Cartesian4.magnitude(cartesian); result.x = cartesian.x / magnitude; result.y = cartesian.y / magnitude; result.z = cartesian.z / magnitude; result.w = cartesian.w / magnitude; //>>includeStart('debug', pragmas.debug); if ( isNaN(result.x) || isNaN(result.y) || isNaN(result.z) || isNaN(result.w) ) { throw new DeveloperError("normalized result is not a number"); } //>>includeEnd('debug'); return result; }; /** * Computes the dot (scalar) product of two Cartesians. * * @param {Cartesian4} left The first Cartesian. * @param {Cartesian4} right The second Cartesian. * @returns {Number} The dot product. */ Cartesian4.dot = function (left, right) { //>>includeStart('debug', pragmas.debug); Check.typeOf.object("left", left); Check.typeOf.object("right", right); //>>includeEnd('debug'); return ( left.x * right.x + left.y * right.y + left.z * right.z + left.w * right.w ); }; /** * Computes the componentwise product of two Cartesians. * * @param {Cartesian4} left The first Cartesian. * @param {Cartesian4} right The second Cartesian. * @param {Cartesian4} result The object onto which to store the result. * @returns {Cartesian4} The modified result parameter. */ Cartesian4.multiplyComponents = function (left, right, result) { //>>includeStart('debug', pragmas.debug); Check.typeOf.object("left", left); Check.typeOf.object("right", right); Check.typeOf.object("result", result); //>>includeEnd('debug'); result.x = left.x * right.x; result.y = left.y * right.y; result.z = left.z * right.z; result.w = left.w * right.w; return result; }; /** * Computes the componentwise quotient of two Cartesians. * * @param {Cartesian4} left The first Cartesian. * @param {Cartesian4} right The second Cartesian. * @param {Cartesian4} result The object onto which to store the result. * @returns {Cartesian4} The modified result parameter. */ Cartesian4.divideComponents = function (left, right, result) { //>>includeStart('debug', pragmas.debug); Check.typeOf.object("left", left); Check.typeOf.object("right", right); Check.typeOf.object("result", result); //>>includeEnd('debug'); result.x = left.x / right.x; result.y = left.y / right.y; result.z = left.z / right.z; result.w = left.w / right.w; return result; }; /** * Computes the componentwise sum of two Cartesians. * * @param {Cartesian4} left The first Cartesian. * @param {Cartesian4} right The second Cartesian. * @param {Cartesian4} result The object onto which to store the result. * @returns {Cartesian4} The modified result parameter. */ Cartesian4.add = function (left, right, result) { //>>includeStart('debug', pragmas.debug); Check.typeOf.object("left", left); Check.typeOf.object("right", right); Check.typeOf.object("result", result); //>>includeEnd('debug'); result.x = left.x + right.x; result.y = left.y + right.y; result.z = left.z + right.z; result.w = left.w + right.w; return result; }; /** * Computes the componentwise difference of two Cartesians. * * @param {Cartesian4} left The first Cartesian. * @param {Cartesian4} right The second Cartesian. * @param {Cartesian4} result The object onto which to store the result. * @returns {Cartesian4} The modified result parameter. */ Cartesian4.subtract = function (left, right, result) { //>>includeStart('debug', pragmas.debug); Check.typeOf.object("left", left); Check.typeOf.object("right", right); Check.typeOf.object("result", result); //>>includeEnd('debug'); result.x = left.x - right.x; result.y = left.y - right.y; result.z = left.z - right.z; result.w = left.w - right.w; return result; }; /** * Multiplies the provided Cartesian componentwise by the provided scalar. * * @param {Cartesian4} cartesian The Cartesian to be scaled. * @param {Number} scalar The scalar to multiply with. * @param {Cartesian4} result The object onto which to store the result. * @returns {Cartesian4} The modified result parameter. */ Cartesian4.multiplyByScalar = function (cartesian, scalar, result) { //>>includeStart('debug', pragmas.debug); Check.typeOf.object("cartesian", cartesian); Check.typeOf.number("scalar", scalar); Check.typeOf.object("result", result); //>>includeEnd('debug'); result.x = cartesian.x * scalar; result.y = cartesian.y * scalar; result.z = cartesian.z * scalar; result.w = cartesian.w * scalar; return result; }; /** * Divides the provided Cartesian componentwise by the provided scalar. * * @param {Cartesian4} cartesian The Cartesian to be divided. * @param {Number} scalar The scalar to divide by. * @param {Cartesian4} result The object onto which to store the result. * @returns {Cartesian4} The modified result parameter. */ Cartesian4.divideByScalar = function (cartesian, scalar, result) { //>>includeStart('debug', pragmas.debug); Check.typeOf.object("cartesian", cartesian); Check.typeOf.number("scalar", scalar); Check.typeOf.object("result", result); //>>includeEnd('debug'); result.x = cartesian.x / scalar; result.y = cartesian.y / scalar; result.z = cartesian.z / scalar; result.w = cartesian.w / scalar; return result; }; /** * Negates the provided Cartesian. * * @param {Cartesian4} cartesian The Cartesian to be negated. * @param {Cartesian4} result The object onto which to store the result. * @returns {Cartesian4} The modified result parameter. */ Cartesian4.negate = function (cartesian, result) { //>>includeStart('debug', pragmas.debug); Check.typeOf.object("cartesian", cartesian); Check.typeOf.object("result", result); //>>includeEnd('debug'); result.x = -cartesian.x; result.y = -cartesian.y; result.z = -cartesian.z; result.w = -cartesian.w; return result; }; /** * Computes the absolute value of the provided Cartesian. * * @param {Cartesian4} cartesian The Cartesian whose absolute value is to be computed. * @param {Cartesian4} result The object onto which to store the result. * @returns {Cartesian4} The modified result parameter. */ Cartesian4.abs = function (cartesian, result) { //>>includeStart('debug', pragmas.debug); Check.typeOf.object("cartesian", cartesian); Check.typeOf.object("result", result); //>>includeEnd('debug'); result.x = Math.abs(cartesian.x); result.y = Math.abs(cartesian.y); result.z = Math.abs(cartesian.z); result.w = Math.abs(cartesian.w); return result; }; const lerpScratch = new Cartesian4(); /** * Computes the linear interpolation or extrapolation at t using the provided cartesians. * * @param {Cartesian4} start The value corresponding to t at 0.0. * @param {Cartesian4}end The value corresponding to t at 1.0. * @param {Number} t The point along t at which to interpolate. * @param {Cartesian4} result The object onto which to store the result. * @returns {Cartesian4} The modified result parameter. */ Cartesian4.lerp = function (start, end, t, result) { //>>includeStart('debug', pragmas.debug); Check.typeOf.object("start", start); Check.typeOf.object("end", end); Check.typeOf.number("t", t); Check.typeOf.object("result", result); //>>includeEnd('debug'); Cartesian4.multiplyByScalar(end, t, lerpScratch); result = Cartesian4.multiplyByScalar(start, 1.0 - t, result); return Cartesian4.add(lerpScratch, result, result); }; const mostOrthogonalAxisScratch = new Cartesian4(); /** * Returns the axis that is most orthogonal to the provided Cartesian. * * @param {Cartesian4} cartesian The Cartesian on which to find the most orthogonal axis. * @param {Cartesian4} result The object onto which to store the result. * @returns {Cartesian4} The most orthogonal axis. */ Cartesian4.mostOrthogonalAxis = function (cartesian, result) { //>>includeStart('debug', pragmas.debug); Check.typeOf.object("cartesian", cartesian); Check.typeOf.object("result", result); //>>includeEnd('debug'); const f = Cartesian4.normalize(cartesian, mostOrthogonalAxisScratch); Cartesian4.abs(f, f); if (f.x <= f.y) { if (f.x <= f.z) { if (f.x <= f.w) { result = Cartesian4.clone(Cartesian4.UNIT_X, result); } else { result = Cartesian4.clone(Cartesian4.UNIT_W, result); } } else if (f.z <= f.w) { result = Cartesian4.clone(Cartesian4.UNIT_Z, result); } else { result = Cartesian4.clone(Cartesian4.UNIT_W, result); } } else if (f.y <= f.z) { if (f.y <= f.w) { result = Cartesian4.clone(Cartesian4.UNIT_Y, result); } else { result = Cartesian4.clone(Cartesian4.UNIT_W, result); } } else if (f.z <= f.w) { result = Cartesian4.clone(Cartesian4.UNIT_Z, result); } else { result = Cartesian4.clone(Cartesian4.UNIT_W, result); } return result; }; /** * Compares the provided Cartesians componentwise and returns * true if they are equal, false otherwise. * * @param {Cartesian4} [left] The first Cartesian. * @param {Cartesian4} [right] The second Cartesian. * @returns {Boolean} true if left and right are equal, false otherwise. */ Cartesian4.equals = function (left, right) { return ( left === right || (defined(left) && defined(right) && left.x === right.x && left.y === right.y && left.z === right.z && left.w === right.w) ); }; /** * @private */ Cartesian4.equalsArray = function (cartesian, array, offset) { return ( cartesian.x === array[offset] && cartesian.y === array[offset + 1] && cartesian.z === array[offset + 2] && cartesian.w === array[offset + 3] ); }; /** * Compares the provided Cartesians componentwise and returns * true if they pass an absolute or relative tolerance test, * false otherwise. * * @param {Cartesian4} [left] The first Cartesian. * @param {Cartesian4} [right] The second Cartesian. * @param {Number} [relativeEpsilon=0] The relative epsilon tolerance to use for equality testing. * @param {Number} [absoluteEpsilon=relativeEpsilon] The absolute epsilon tolerance to use for equality testing. * @returns {Boolean} true if left and right are within the provided epsilon, false otherwise. */ Cartesian4.equalsEpsilon = function ( left, right, relativeEpsilon, absoluteEpsilon ) { return ( left === right || (defined(left) && defined(right) && CesiumMath.equalsEpsilon( left.x, right.x, relativeEpsilon, absoluteEpsilon ) && CesiumMath.equalsEpsilon( left.y, right.y, relativeEpsilon, absoluteEpsilon ) && CesiumMath.equalsEpsilon( left.z, right.z, relativeEpsilon, absoluteEpsilon ) && CesiumMath.equalsEpsilon( left.w, right.w, relativeEpsilon, absoluteEpsilon )) ); }; /** * An immutable Cartesian4 instance initialized to (0.0, 0.0, 0.0, 0.0). * * @type {Cartesian4} * @constant */ Cartesian4.ZERO = Object.freeze(new Cartesian4(0.0, 0.0, 0.0, 0.0)); /** * An immutable Cartesian4 instance initialized to (1.0, 1.0, 1.0, 1.0). * * @type {Cartesian4} * @constant */ Cartesian4.ONE = Object.freeze(new Cartesian4(1.0, 1.0, 1.0, 1.0)); /** * An immutable Cartesian4 instance initialized to (1.0, 0.0, 0.0, 0.0). * * @type {Cartesian4} * @constant */ Cartesian4.UNIT_X = Object.freeze(new Cartesian4(1.0, 0.0, 0.0, 0.0)); /** * An immutable Cartesian4 instance initialized to (0.0, 1.0, 0.0, 0.0). * * @type {Cartesian4} * @constant */ Cartesian4.UNIT_Y = Object.freeze(new Cartesian4(0.0, 1.0, 0.0, 0.0)); /** * An immutable Cartesian4 instance initialized to (0.0, 0.0, 1.0, 0.0). * * @type {Cartesian4} * @constant */ Cartesian4.UNIT_Z = Object.freeze(new Cartesian4(0.0, 0.0, 1.0, 0.0)); /** * An immutable Cartesian4 instance initialized to (0.0, 0.0, 0.0, 1.0). * * @type {Cartesian4} * @constant */ Cartesian4.UNIT_W = Object.freeze(new Cartesian4(0.0, 0.0, 0.0, 1.0)); /** * Duplicates this Cartesian4 instance. * * @param {Cartesian4} [result] The object onto which to store the result. * @returns {Cartesian4} The modified result parameter or a new Cartesian4 instance if one was not provided. */ Cartesian4.prototype.clone = function (result) { return Cartesian4.clone(this, result); }; /** * Compares this Cartesian against the provided Cartesian componentwise and returns * true if they are equal, false otherwise. * * @param {Cartesian4} [right] The right hand side Cartesian. * @returns {Boolean} true if they are equal, false otherwise. */ Cartesian4.prototype.equals = function (right) { return Cartesian4.equals(this, right); }; /** * Compares this Cartesian against the provided Cartesian componentwise and returns * true if they pass an absolute or relative tolerance test, * false otherwise. * * @param {Cartesian4} [right] The right hand side Cartesian. * @param {Number} [relativeEpsilon=0] The relative epsilon tolerance to use for equality testing. * @param {Number} [absoluteEpsilon=relativeEpsilon] The absolute epsilon tolerance to use for equality testing. * @returns {Boolean} true if they are within the provided epsilon, false otherwise. */ Cartesian4.prototype.equalsEpsilon = function ( right, relativeEpsilon, absoluteEpsilon ) { return Cartesian4.equalsEpsilon( this, right, relativeEpsilon, absoluteEpsilon ); }; /** * Creates a string representing this Cartesian in the format '(x, y, z, w)'. * * @returns {String} A string representing the provided Cartesian in the format '(x, y, z, w)'. */ Cartesian4.prototype.toString = function () { return `(${this.x}, ${this.y}, ${this.z}, ${this.w})`; }; // scratchU8Array and scratchF32Array are views into the same buffer const scratchF32Array = new Float32Array(1); const scratchU8Array = new Uint8Array(scratchF32Array.buffer); const testU32 = new Uint32Array([0x11223344]); const testU8 = new Uint8Array(testU32.buffer); const littleEndian = testU8[0] === 0x44; /** * Packs an arbitrary floating point value to 4 values representable using uint8. * * @param {Number} value A floating point number. * @param {Cartesian4} [result] The Cartesian4 that will contain the packed float. * @returns {Cartesian4} A Cartesian4 representing the float packed to values in x, y, z, and w. */ Cartesian4.packFloat = function (value, result) { //>>includeStart('debug', pragmas.debug); Check.typeOf.number("value", value); //>>includeEnd('debug'); if (!defined(result)) { result = new Cartesian4(); } // scratchU8Array and scratchF32Array are views into the same buffer scratchF32Array[0] = value; if (littleEndian) { result.x = scratchU8Array[0]; result.y = scratchU8Array[1]; result.z = scratchU8Array[2]; result.w = scratchU8Array[3]; } else { // convert from big-endian to little-endian result.x = scratchU8Array[3]; result.y = scratchU8Array[2]; result.z = scratchU8Array[1]; result.w = scratchU8Array[0]; } return result; }; /** * Unpacks a float packed using Cartesian4.packFloat. * * @param {Cartesian4} packedFloat A Cartesian4 containing a float packed to 4 values representable using uint8. * @returns {Number} The unpacked float. * @private */ Cartesian4.unpackFloat = function (packedFloat) { //>>includeStart('debug', pragmas.debug); Check.typeOf.object("packedFloat", packedFloat); //>>includeEnd('debug'); // scratchU8Array and scratchF32Array are views into the same buffer if (littleEndian) { scratchU8Array[0] = packedFloat.x; scratchU8Array[1] = packedFloat.y; scratchU8Array[2] = packedFloat.z; scratchU8Array[3] = packedFloat.w; } else { // convert from little-endian to big-endian scratchU8Array[0] = packedFloat.w; scratchU8Array[1] = packedFloat.z; scratchU8Array[2] = packedFloat.y; scratchU8Array[3] = packedFloat.x; } return scratchF32Array[0]; }; export default Cartesian4;