import Check from "./Check.js";
import defaultValue from "./defaultValue.js";
import defined from "./defined.js";
import DeveloperError from "./DeveloperError.js";
import CesiumMath from "./Math.js";
/**
* A 4D Cartesian point.
* @alias Cartesian4
* @constructor
*
* @param {Number} [x=0.0] The X component.
* @param {Number} [y=0.0] The Y component.
* @param {Number} [z=0.0] The Z component.
* @param {Number} [w=0.0] The W component.
*
* @see Cartesian2
* @see Cartesian3
* @see Packable
*/
function Cartesian4(x, y, z, w) {
/**
* The X component.
* @type {Number}
* @default 0.0
*/
this.x = defaultValue(x, 0.0);
/**
* The Y component.
* @type {Number}
* @default 0.0
*/
this.y = defaultValue(y, 0.0);
/**
* The Z component.
* @type {Number}
* @default 0.0
*/
this.z = defaultValue(z, 0.0);
/**
* The W component.
* @type {Number}
* @default 0.0
*/
this.w = defaultValue(w, 0.0);
}
/**
* Creates a Cartesian4 instance from x, y, z and w coordinates.
*
* @param {Number} x The x coordinate.
* @param {Number} y The y coordinate.
* @param {Number} z The z coordinate.
* @param {Number} w The w coordinate.
* @param {Cartesian4} [result] The object onto which to store the result.
* @returns {Cartesian4} The modified result parameter or a new Cartesian4 instance if one was not provided.
*/
Cartesian4.fromElements = function (x, y, z, w, result) {
if (!defined(result)) {
return new Cartesian4(x, y, z, w);
}
result.x = x;
result.y = y;
result.z = z;
result.w = w;
return result;
};
/**
* Creates a Cartesian4 instance from a {@link Color}. red
, green
, blue
,
* and alpha
map to x
, y
, z
, and w
, respectively.
*
* @param {Color} color The source color.
* @param {Cartesian4} [result] The object onto which to store the result.
* @returns {Cartesian4} The modified result parameter or a new Cartesian4 instance if one was not provided.
*/
Cartesian4.fromColor = function (color, result) {
//>>includeStart('debug', pragmas.debug);
Check.typeOf.object("color", color);
//>>includeEnd('debug');
if (!defined(result)) {
return new Cartesian4(color.red, color.green, color.blue, color.alpha);
}
result.x = color.red;
result.y = color.green;
result.z = color.blue;
result.w = color.alpha;
return result;
};
/**
* Duplicates a Cartesian4 instance.
*
* @param {Cartesian4} cartesian The Cartesian to duplicate.
* @param {Cartesian4} [result] The object onto which to store the result.
* @returns {Cartesian4} The modified result parameter or a new Cartesian4 instance if one was not provided. (Returns undefined if cartesian is undefined)
*/
Cartesian4.clone = function (cartesian, result) {
if (!defined(cartesian)) {
return undefined;
}
if (!defined(result)) {
return new Cartesian4(cartesian.x, cartesian.y, cartesian.z, cartesian.w);
}
result.x = cartesian.x;
result.y = cartesian.y;
result.z = cartesian.z;
result.w = cartesian.w;
return result;
};
/**
* The number of elements used to pack the object into an array.
* @type {Number}
*/
Cartesian4.packedLength = 4;
/**
* Stores the provided instance into the provided array.
*
* @param {Cartesian4} value The value to pack.
* @param {Number[]} array The array to pack into.
* @param {Number} [startingIndex=0] The index into the array at which to start packing the elements.
*
* @returns {Number[]} The array that was packed into
*/
Cartesian4.pack = function (value, array, startingIndex) {
//>>includeStart('debug', pragmas.debug);
Check.typeOf.object("value", value);
Check.defined("array", array);
//>>includeEnd('debug');
startingIndex = defaultValue(startingIndex, 0);
array[startingIndex++] = value.x;
array[startingIndex++] = value.y;
array[startingIndex++] = value.z;
array[startingIndex] = value.w;
return array;
};
/**
* Retrieves an instance from a packed array.
*
* @param {Number[]} array The packed array.
* @param {Number} [startingIndex=0] The starting index of the element to be unpacked.
* @param {Cartesian4} [result] The object into which to store the result.
* @returns {Cartesian4} The modified result parameter or a new Cartesian4 instance if one was not provided.
*/
Cartesian4.unpack = function (array, startingIndex, result) {
//>>includeStart('debug', pragmas.debug);
Check.defined("array", array);
//>>includeEnd('debug');
startingIndex = defaultValue(startingIndex, 0);
if (!defined(result)) {
result = new Cartesian4();
}
result.x = array[startingIndex++];
result.y = array[startingIndex++];
result.z = array[startingIndex++];
result.w = array[startingIndex];
return result;
};
/**
* Flattens an array of Cartesian4s into an array of components.
*
* @param {Cartesian4[]} array The array of cartesians to pack.
* @param {Number[]} [result] The array onto which to store the result. If this is a typed array, it must have array.length * 4 components, else a {@link DeveloperError} will be thrown. If it is a regular array, it will be resized to have (array.length * 4) elements.
* @returns {Number[]} The packed array.
*/
Cartesian4.packArray = function (array, result) {
//>>includeStart('debug', pragmas.debug);
Check.defined("array", array);
//>>includeEnd('debug');
const length = array.length;
const resultLength = length * 4;
if (!defined(result)) {
result = new Array(resultLength);
} else if (!Array.isArray(result) && result.length !== resultLength) {
//>>includeStart('debug', pragmas.debug);
throw new DeveloperError(
"If result is a typed array, it must have exactly array.length * 4 elements"
);
//>>includeEnd('debug');
} else if (result.length !== resultLength) {
result.length = resultLength;
}
for (let i = 0; i < length; ++i) {
Cartesian4.pack(array[i], result, i * 4);
}
return result;
};
/**
* Unpacks an array of cartesian components into an array of Cartesian4s.
*
* @param {Number[]} array The array of components to unpack.
* @param {Cartesian4[]} [result] The array onto which to store the result.
* @returns {Cartesian4[]} The unpacked array.
*/
Cartesian4.unpackArray = function (array, result) {
//>>includeStart('debug', pragmas.debug);
Check.defined("array", array);
Check.typeOf.number.greaterThanOrEquals("array.length", array.length, 4);
if (array.length % 4 !== 0) {
throw new DeveloperError("array length must be a multiple of 4.");
}
//>>includeEnd('debug');
const length = array.length;
if (!defined(result)) {
result = new Array(length / 4);
} else {
result.length = length / 4;
}
for (let i = 0; i < length; i += 4) {
const index = i / 4;
result[index] = Cartesian4.unpack(array, i, result[index]);
}
return result;
};
/**
* Creates a Cartesian4 from four consecutive elements in an array.
* @function
*
* @param {Number[]} array The array whose four consecutive elements correspond to the x, y, z, and w components, respectively.
* @param {Number} [startingIndex=0] The offset into the array of the first element, which corresponds to the x component.
* @param {Cartesian4} [result] The object onto which to store the result.
* @returns {Cartesian4} The modified result parameter or a new Cartesian4 instance if one was not provided.
*
* @example
* // Create a Cartesian4 with (1.0, 2.0, 3.0, 4.0)
* const v = [1.0, 2.0, 3.0, 4.0];
* const p = Cesium.Cartesian4.fromArray(v);
*
* // Create a Cartesian4 with (1.0, 2.0, 3.0, 4.0) using an offset into an array
* const v2 = [0.0, 0.0, 1.0, 2.0, 3.0, 4.0];
* const p2 = Cesium.Cartesian4.fromArray(v2, 2);
*/
Cartesian4.fromArray = Cartesian4.unpack;
/**
* Computes the value of the maximum component for the supplied Cartesian.
*
* @param {Cartesian4} cartesian The cartesian to use.
* @returns {Number} The value of the maximum component.
*/
Cartesian4.maximumComponent = function (cartesian) {
//>>includeStart('debug', pragmas.debug);
Check.typeOf.object("cartesian", cartesian);
//>>includeEnd('debug');
return Math.max(cartesian.x, cartesian.y, cartesian.z, cartesian.w);
};
/**
* Computes the value of the minimum component for the supplied Cartesian.
*
* @param {Cartesian4} cartesian The cartesian to use.
* @returns {Number} The value of the minimum component.
*/
Cartesian4.minimumComponent = function (cartesian) {
//>>includeStart('debug', pragmas.debug);
Check.typeOf.object("cartesian", cartesian);
//>>includeEnd('debug');
return Math.min(cartesian.x, cartesian.y, cartesian.z, cartesian.w);
};
/**
* Compares two Cartesians and computes a Cartesian which contains the minimum components of the supplied Cartesians.
*
* @param {Cartesian4} first A cartesian to compare.
* @param {Cartesian4} second A cartesian to compare.
* @param {Cartesian4} result The object into which to store the result.
* @returns {Cartesian4} A cartesian with the minimum components.
*/
Cartesian4.minimumByComponent = function (first, second, result) {
//>>includeStart('debug', pragmas.debug);
Check.typeOf.object("first", first);
Check.typeOf.object("second", second);
Check.typeOf.object("result", result);
//>>includeEnd('debug');
result.x = Math.min(first.x, second.x);
result.y = Math.min(first.y, second.y);
result.z = Math.min(first.z, second.z);
result.w = Math.min(first.w, second.w);
return result;
};
/**
* Compares two Cartesians and computes a Cartesian which contains the maximum components of the supplied Cartesians.
*
* @param {Cartesian4} first A cartesian to compare.
* @param {Cartesian4} second A cartesian to compare.
* @param {Cartesian4} result The object into which to store the result.
* @returns {Cartesian4} A cartesian with the maximum components.
*/
Cartesian4.maximumByComponent = function (first, second, result) {
//>>includeStart('debug', pragmas.debug);
Check.typeOf.object("first", first);
Check.typeOf.object("second", second);
Check.typeOf.object("result", result);
//>>includeEnd('debug');
result.x = Math.max(first.x, second.x);
result.y = Math.max(first.y, second.y);
result.z = Math.max(first.z, second.z);
result.w = Math.max(first.w, second.w);
return result;
};
/**
* Constrain a value to lie between two values.
*
* @param {Cartesian4} value The value to clamp.
* @param {Cartesian4} min The minimum bound.
* @param {Cartesian4} max The maximum bound.
* @param {Cartesian4} result The object into which to store the result.
* @returns {Cartesian4} The clamped value such that min <= result <= max.
*/
Cartesian4.clamp = function (value, min, max, result) {
//>>includeStart('debug', pragmas.debug);
Check.typeOf.object("value", value);
Check.typeOf.object("min", min);
Check.typeOf.object("max", max);
Check.typeOf.object("result", result);
//>>includeEnd('debug');
const x = CesiumMath.clamp(value.x, min.x, max.x);
const y = CesiumMath.clamp(value.y, min.y, max.y);
const z = CesiumMath.clamp(value.z, min.z, max.z);
const w = CesiumMath.clamp(value.w, min.w, max.w);
result.x = x;
result.y = y;
result.z = z;
result.w = w;
return result;
};
/**
* Computes the provided Cartesian's squared magnitude.
*
* @param {Cartesian4} cartesian The Cartesian instance whose squared magnitude is to be computed.
* @returns {Number} The squared magnitude.
*/
Cartesian4.magnitudeSquared = function (cartesian) {
//>>includeStart('debug', pragmas.debug);
Check.typeOf.object("cartesian", cartesian);
//>>includeEnd('debug');
return (
cartesian.x * cartesian.x +
cartesian.y * cartesian.y +
cartesian.z * cartesian.z +
cartesian.w * cartesian.w
);
};
/**
* Computes the Cartesian's magnitude (length).
*
* @param {Cartesian4} cartesian The Cartesian instance whose magnitude is to be computed.
* @returns {Number} The magnitude.
*/
Cartesian4.magnitude = function (cartesian) {
return Math.sqrt(Cartesian4.magnitudeSquared(cartesian));
};
const distanceScratch = new Cartesian4();
/**
* Computes the 4-space distance between two points.
*
* @param {Cartesian4} left The first point to compute the distance from.
* @param {Cartesian4} right The second point to compute the distance to.
* @returns {Number} The distance between two points.
*
* @example
* // Returns 1.0
* const d = Cesium.Cartesian4.distance(
* new Cesium.Cartesian4(1.0, 0.0, 0.0, 0.0),
* new Cesium.Cartesian4(2.0, 0.0, 0.0, 0.0));
*/
Cartesian4.distance = function (left, right) {
//>>includeStart('debug', pragmas.debug);
Check.typeOf.object("left", left);
Check.typeOf.object("right", right);
//>>includeEnd('debug');
Cartesian4.subtract(left, right, distanceScratch);
return Cartesian4.magnitude(distanceScratch);
};
/**
* Computes the squared distance between two points. Comparing squared distances
* using this function is more efficient than comparing distances using {@link Cartesian4#distance}.
*
* @param {Cartesian4} left The first point to compute the distance from.
* @param {Cartesian4} right The second point to compute the distance to.
* @returns {Number} The distance between two points.
*
* @example
* // Returns 4.0, not 2.0
* const d = Cesium.Cartesian4.distance(
* new Cesium.Cartesian4(1.0, 0.0, 0.0, 0.0),
* new Cesium.Cartesian4(3.0, 0.0, 0.0, 0.0));
*/
Cartesian4.distanceSquared = function (left, right) {
//>>includeStart('debug', pragmas.debug);
Check.typeOf.object("left", left);
Check.typeOf.object("right", right);
//>>includeEnd('debug');
Cartesian4.subtract(left, right, distanceScratch);
return Cartesian4.magnitudeSquared(distanceScratch);
};
/**
* Computes the normalized form of the supplied Cartesian.
*
* @param {Cartesian4} cartesian The Cartesian to be normalized.
* @param {Cartesian4} result The object onto which to store the result.
* @returns {Cartesian4} The modified result parameter.
*/
Cartesian4.normalize = function (cartesian, result) {
//>>includeStart('debug', pragmas.debug);
Check.typeOf.object("cartesian", cartesian);
Check.typeOf.object("result", result);
//>>includeEnd('debug');
const magnitude = Cartesian4.magnitude(cartesian);
result.x = cartesian.x / magnitude;
result.y = cartesian.y / magnitude;
result.z = cartesian.z / magnitude;
result.w = cartesian.w / magnitude;
//>>includeStart('debug', pragmas.debug);
if (
isNaN(result.x) ||
isNaN(result.y) ||
isNaN(result.z) ||
isNaN(result.w)
) {
throw new DeveloperError("normalized result is not a number");
}
//>>includeEnd('debug');
return result;
};
/**
* Computes the dot (scalar) product of two Cartesians.
*
* @param {Cartesian4} left The first Cartesian.
* @param {Cartesian4} right The second Cartesian.
* @returns {Number} The dot product.
*/
Cartesian4.dot = function (left, right) {
//>>includeStart('debug', pragmas.debug);
Check.typeOf.object("left", left);
Check.typeOf.object("right", right);
//>>includeEnd('debug');
return (
left.x * right.x + left.y * right.y + left.z * right.z + left.w * right.w
);
};
/**
* Computes the componentwise product of two Cartesians.
*
* @param {Cartesian4} left The first Cartesian.
* @param {Cartesian4} right The second Cartesian.
* @param {Cartesian4} result The object onto which to store the result.
* @returns {Cartesian4} The modified result parameter.
*/
Cartesian4.multiplyComponents = function (left, right, result) {
//>>includeStart('debug', pragmas.debug);
Check.typeOf.object("left", left);
Check.typeOf.object("right", right);
Check.typeOf.object("result", result);
//>>includeEnd('debug');
result.x = left.x * right.x;
result.y = left.y * right.y;
result.z = left.z * right.z;
result.w = left.w * right.w;
return result;
};
/**
* Computes the componentwise quotient of two Cartesians.
*
* @param {Cartesian4} left The first Cartesian.
* @param {Cartesian4} right The second Cartesian.
* @param {Cartesian4} result The object onto which to store the result.
* @returns {Cartesian4} The modified result parameter.
*/
Cartesian4.divideComponents = function (left, right, result) {
//>>includeStart('debug', pragmas.debug);
Check.typeOf.object("left", left);
Check.typeOf.object("right", right);
Check.typeOf.object("result", result);
//>>includeEnd('debug');
result.x = left.x / right.x;
result.y = left.y / right.y;
result.z = left.z / right.z;
result.w = left.w / right.w;
return result;
};
/**
* Computes the componentwise sum of two Cartesians.
*
* @param {Cartesian4} left The first Cartesian.
* @param {Cartesian4} right The second Cartesian.
* @param {Cartesian4} result The object onto which to store the result.
* @returns {Cartesian4} The modified result parameter.
*/
Cartesian4.add = function (left, right, result) {
//>>includeStart('debug', pragmas.debug);
Check.typeOf.object("left", left);
Check.typeOf.object("right", right);
Check.typeOf.object("result", result);
//>>includeEnd('debug');
result.x = left.x + right.x;
result.y = left.y + right.y;
result.z = left.z + right.z;
result.w = left.w + right.w;
return result;
};
/**
* Computes the componentwise difference of two Cartesians.
*
* @param {Cartesian4} left The first Cartesian.
* @param {Cartesian4} right The second Cartesian.
* @param {Cartesian4} result The object onto which to store the result.
* @returns {Cartesian4} The modified result parameter.
*/
Cartesian4.subtract = function (left, right, result) {
//>>includeStart('debug', pragmas.debug);
Check.typeOf.object("left", left);
Check.typeOf.object("right", right);
Check.typeOf.object("result", result);
//>>includeEnd('debug');
result.x = left.x - right.x;
result.y = left.y - right.y;
result.z = left.z - right.z;
result.w = left.w - right.w;
return result;
};
/**
* Multiplies the provided Cartesian componentwise by the provided scalar.
*
* @param {Cartesian4} cartesian The Cartesian to be scaled.
* @param {Number} scalar The scalar to multiply with.
* @param {Cartesian4} result The object onto which to store the result.
* @returns {Cartesian4} The modified result parameter.
*/
Cartesian4.multiplyByScalar = function (cartesian, scalar, result) {
//>>includeStart('debug', pragmas.debug);
Check.typeOf.object("cartesian", cartesian);
Check.typeOf.number("scalar", scalar);
Check.typeOf.object("result", result);
//>>includeEnd('debug');
result.x = cartesian.x * scalar;
result.y = cartesian.y * scalar;
result.z = cartesian.z * scalar;
result.w = cartesian.w * scalar;
return result;
};
/**
* Divides the provided Cartesian componentwise by the provided scalar.
*
* @param {Cartesian4} cartesian The Cartesian to be divided.
* @param {Number} scalar The scalar to divide by.
* @param {Cartesian4} result The object onto which to store the result.
* @returns {Cartesian4} The modified result parameter.
*/
Cartesian4.divideByScalar = function (cartesian, scalar, result) {
//>>includeStart('debug', pragmas.debug);
Check.typeOf.object("cartesian", cartesian);
Check.typeOf.number("scalar", scalar);
Check.typeOf.object("result", result);
//>>includeEnd('debug');
result.x = cartesian.x / scalar;
result.y = cartesian.y / scalar;
result.z = cartesian.z / scalar;
result.w = cartesian.w / scalar;
return result;
};
/**
* Negates the provided Cartesian.
*
* @param {Cartesian4} cartesian The Cartesian to be negated.
* @param {Cartesian4} result The object onto which to store the result.
* @returns {Cartesian4} The modified result parameter.
*/
Cartesian4.negate = function (cartesian, result) {
//>>includeStart('debug', pragmas.debug);
Check.typeOf.object("cartesian", cartesian);
Check.typeOf.object("result", result);
//>>includeEnd('debug');
result.x = -cartesian.x;
result.y = -cartesian.y;
result.z = -cartesian.z;
result.w = -cartesian.w;
return result;
};
/**
* Computes the absolute value of the provided Cartesian.
*
* @param {Cartesian4} cartesian The Cartesian whose absolute value is to be computed.
* @param {Cartesian4} result The object onto which to store the result.
* @returns {Cartesian4} The modified result parameter.
*/
Cartesian4.abs = function (cartesian, result) {
//>>includeStart('debug', pragmas.debug);
Check.typeOf.object("cartesian", cartesian);
Check.typeOf.object("result", result);
//>>includeEnd('debug');
result.x = Math.abs(cartesian.x);
result.y = Math.abs(cartesian.y);
result.z = Math.abs(cartesian.z);
result.w = Math.abs(cartesian.w);
return result;
};
const lerpScratch = new Cartesian4();
/**
* Computes the linear interpolation or extrapolation at t using the provided cartesians.
*
* @param {Cartesian4} start The value corresponding to t at 0.0.
* @param {Cartesian4}end The value corresponding to t at 1.0.
* @param {Number} t The point along t at which to interpolate.
* @param {Cartesian4} result The object onto which to store the result.
* @returns {Cartesian4} The modified result parameter.
*/
Cartesian4.lerp = function (start, end, t, result) {
//>>includeStart('debug', pragmas.debug);
Check.typeOf.object("start", start);
Check.typeOf.object("end", end);
Check.typeOf.number("t", t);
Check.typeOf.object("result", result);
//>>includeEnd('debug');
Cartesian4.multiplyByScalar(end, t, lerpScratch);
result = Cartesian4.multiplyByScalar(start, 1.0 - t, result);
return Cartesian4.add(lerpScratch, result, result);
};
const mostOrthogonalAxisScratch = new Cartesian4();
/**
* Returns the axis that is most orthogonal to the provided Cartesian.
*
* @param {Cartesian4} cartesian The Cartesian on which to find the most orthogonal axis.
* @param {Cartesian4} result The object onto which to store the result.
* @returns {Cartesian4} The most orthogonal axis.
*/
Cartesian4.mostOrthogonalAxis = function (cartesian, result) {
//>>includeStart('debug', pragmas.debug);
Check.typeOf.object("cartesian", cartesian);
Check.typeOf.object("result", result);
//>>includeEnd('debug');
const f = Cartesian4.normalize(cartesian, mostOrthogonalAxisScratch);
Cartesian4.abs(f, f);
if (f.x <= f.y) {
if (f.x <= f.z) {
if (f.x <= f.w) {
result = Cartesian4.clone(Cartesian4.UNIT_X, result);
} else {
result = Cartesian4.clone(Cartesian4.UNIT_W, result);
}
} else if (f.z <= f.w) {
result = Cartesian4.clone(Cartesian4.UNIT_Z, result);
} else {
result = Cartesian4.clone(Cartesian4.UNIT_W, result);
}
} else if (f.y <= f.z) {
if (f.y <= f.w) {
result = Cartesian4.clone(Cartesian4.UNIT_Y, result);
} else {
result = Cartesian4.clone(Cartesian4.UNIT_W, result);
}
} else if (f.z <= f.w) {
result = Cartesian4.clone(Cartesian4.UNIT_Z, result);
} else {
result = Cartesian4.clone(Cartesian4.UNIT_W, result);
}
return result;
};
/**
* Compares the provided Cartesians componentwise and returns
* true
if they are equal, false
otherwise.
*
* @param {Cartesian4} [left] The first Cartesian.
* @param {Cartesian4} [right] The second Cartesian.
* @returns {Boolean} true
if left and right are equal, false
otherwise.
*/
Cartesian4.equals = function (left, right) {
return (
left === right ||
(defined(left) &&
defined(right) &&
left.x === right.x &&
left.y === right.y &&
left.z === right.z &&
left.w === right.w)
);
};
/**
* @private
*/
Cartesian4.equalsArray = function (cartesian, array, offset) {
return (
cartesian.x === array[offset] &&
cartesian.y === array[offset + 1] &&
cartesian.z === array[offset + 2] &&
cartesian.w === array[offset + 3]
);
};
/**
* Compares the provided Cartesians componentwise and returns
* true
if they pass an absolute or relative tolerance test,
* false
otherwise.
*
* @param {Cartesian4} [left] The first Cartesian.
* @param {Cartesian4} [right] The second Cartesian.
* @param {Number} [relativeEpsilon=0] The relative epsilon tolerance to use for equality testing.
* @param {Number} [absoluteEpsilon=relativeEpsilon] The absolute epsilon tolerance to use for equality testing.
* @returns {Boolean} true
if left and right are within the provided epsilon, false
otherwise.
*/
Cartesian4.equalsEpsilon = function (
left,
right,
relativeEpsilon,
absoluteEpsilon
) {
return (
left === right ||
(defined(left) &&
defined(right) &&
CesiumMath.equalsEpsilon(
left.x,
right.x,
relativeEpsilon,
absoluteEpsilon
) &&
CesiumMath.equalsEpsilon(
left.y,
right.y,
relativeEpsilon,
absoluteEpsilon
) &&
CesiumMath.equalsEpsilon(
left.z,
right.z,
relativeEpsilon,
absoluteEpsilon
) &&
CesiumMath.equalsEpsilon(
left.w,
right.w,
relativeEpsilon,
absoluteEpsilon
))
);
};
/**
* An immutable Cartesian4 instance initialized to (0.0, 0.0, 0.0, 0.0).
*
* @type {Cartesian4}
* @constant
*/
Cartesian4.ZERO = Object.freeze(new Cartesian4(0.0, 0.0, 0.0, 0.0));
/**
* An immutable Cartesian4 instance initialized to (1.0, 1.0, 1.0, 1.0).
*
* @type {Cartesian4}
* @constant
*/
Cartesian4.ONE = Object.freeze(new Cartesian4(1.0, 1.0, 1.0, 1.0));
/**
* An immutable Cartesian4 instance initialized to (1.0, 0.0, 0.0, 0.0).
*
* @type {Cartesian4}
* @constant
*/
Cartesian4.UNIT_X = Object.freeze(new Cartesian4(1.0, 0.0, 0.0, 0.0));
/**
* An immutable Cartesian4 instance initialized to (0.0, 1.0, 0.0, 0.0).
*
* @type {Cartesian4}
* @constant
*/
Cartesian4.UNIT_Y = Object.freeze(new Cartesian4(0.0, 1.0, 0.0, 0.0));
/**
* An immutable Cartesian4 instance initialized to (0.0, 0.0, 1.0, 0.0).
*
* @type {Cartesian4}
* @constant
*/
Cartesian4.UNIT_Z = Object.freeze(new Cartesian4(0.0, 0.0, 1.0, 0.0));
/**
* An immutable Cartesian4 instance initialized to (0.0, 0.0, 0.0, 1.0).
*
* @type {Cartesian4}
* @constant
*/
Cartesian4.UNIT_W = Object.freeze(new Cartesian4(0.0, 0.0, 0.0, 1.0));
/**
* Duplicates this Cartesian4 instance.
*
* @param {Cartesian4} [result] The object onto which to store the result.
* @returns {Cartesian4} The modified result parameter or a new Cartesian4 instance if one was not provided.
*/
Cartesian4.prototype.clone = function (result) {
return Cartesian4.clone(this, result);
};
/**
* Compares this Cartesian against the provided Cartesian componentwise and returns
* true
if they are equal, false
otherwise.
*
* @param {Cartesian4} [right] The right hand side Cartesian.
* @returns {Boolean} true
if they are equal, false
otherwise.
*/
Cartesian4.prototype.equals = function (right) {
return Cartesian4.equals(this, right);
};
/**
* Compares this Cartesian against the provided Cartesian componentwise and returns
* true
if they pass an absolute or relative tolerance test,
* false
otherwise.
*
* @param {Cartesian4} [right] The right hand side Cartesian.
* @param {Number} [relativeEpsilon=0] The relative epsilon tolerance to use for equality testing.
* @param {Number} [absoluteEpsilon=relativeEpsilon] The absolute epsilon tolerance to use for equality testing.
* @returns {Boolean} true
if they are within the provided epsilon, false
otherwise.
*/
Cartesian4.prototype.equalsEpsilon = function (
right,
relativeEpsilon,
absoluteEpsilon
) {
return Cartesian4.equalsEpsilon(
this,
right,
relativeEpsilon,
absoluteEpsilon
);
};
/**
* Creates a string representing this Cartesian in the format '(x, y, z, w)'.
*
* @returns {String} A string representing the provided Cartesian in the format '(x, y, z, w)'.
*/
Cartesian4.prototype.toString = function () {
return `(${this.x}, ${this.y}, ${this.z}, ${this.w})`;
};
// scratchU8Array and scratchF32Array are views into the same buffer
const scratchF32Array = new Float32Array(1);
const scratchU8Array = new Uint8Array(scratchF32Array.buffer);
const testU32 = new Uint32Array([0x11223344]);
const testU8 = new Uint8Array(testU32.buffer);
const littleEndian = testU8[0] === 0x44;
/**
* Packs an arbitrary floating point value to 4 values representable using uint8.
*
* @param {Number} value A floating point number.
* @param {Cartesian4} [result] The Cartesian4 that will contain the packed float.
* @returns {Cartesian4} A Cartesian4 representing the float packed to values in x, y, z, and w.
*/
Cartesian4.packFloat = function (value, result) {
//>>includeStart('debug', pragmas.debug);
Check.typeOf.number("value", value);
//>>includeEnd('debug');
if (!defined(result)) {
result = new Cartesian4();
}
// scratchU8Array and scratchF32Array are views into the same buffer
scratchF32Array[0] = value;
if (littleEndian) {
result.x = scratchU8Array[0];
result.y = scratchU8Array[1];
result.z = scratchU8Array[2];
result.w = scratchU8Array[3];
} else {
// convert from big-endian to little-endian
result.x = scratchU8Array[3];
result.y = scratchU8Array[2];
result.z = scratchU8Array[1];
result.w = scratchU8Array[0];
}
return result;
};
/**
* Unpacks a float packed using Cartesian4.packFloat.
*
* @param {Cartesian4} packedFloat A Cartesian4 containing a float packed to 4 values representable using uint8.
* @returns {Number} The unpacked float.
* @private
*/
Cartesian4.unpackFloat = function (packedFloat) {
//>>includeStart('debug', pragmas.debug);
Check.typeOf.object("packedFloat", packedFloat);
//>>includeEnd('debug');
// scratchU8Array and scratchF32Array are views into the same buffer
if (littleEndian) {
scratchU8Array[0] = packedFloat.x;
scratchU8Array[1] = packedFloat.y;
scratchU8Array[2] = packedFloat.z;
scratchU8Array[3] = packedFloat.w;
} else {
// convert from little-endian to big-endian
scratchU8Array[0] = packedFloat.w;
scratchU8Array[1] = packedFloat.z;
scratchU8Array[2] = packedFloat.y;
scratchU8Array[3] = packedFloat.x;
}
return scratchF32Array[0];
};
export default Cartesian4;