import arrayRemoveDuplicates from "./arrayRemoveDuplicates.js"; import BoundingRectangle from "./BoundingRectangle.js"; import BoundingSphere from "./BoundingSphere.js"; import Cartesian2 from "./Cartesian2.js"; import Cartesian3 from "./Cartesian3.js"; import Check from "./Check.js"; import ComponentDatatype from "./ComponentDatatype.js"; import CoplanarPolygonGeometryLibrary from "./CoplanarPolygonGeometryLibrary.js"; import defaultValue from "./defaultValue.js"; import defined from "./defined.js"; import Ellipsoid from "./Ellipsoid.js"; import Geometry from "./Geometry.js"; import GeometryAttribute from "./GeometryAttribute.js"; import GeometryAttributes from "./GeometryAttributes.js"; import GeometryInstance from "./GeometryInstance.js"; import GeometryPipeline from "./GeometryPipeline.js"; import IndexDatatype from "./IndexDatatype.js"; import CesiumMath from "./Math.js"; import Matrix3 from "./Matrix3.js"; import PolygonGeometryLibrary from "./PolygonGeometryLibrary.js"; import PolygonPipeline from "./PolygonPipeline.js"; import PrimitiveType from "./PrimitiveType.js"; import Quaternion from "./Quaternion.js"; import VertexFormat from "./VertexFormat.js"; const scratchPosition = new Cartesian3(); const scratchBR = new BoundingRectangle(); const stScratch = new Cartesian2(); const textureCoordinatesOrigin = new Cartesian2(); const scratchNormal = new Cartesian3(); const scratchTangent = new Cartesian3(); const scratchBitangent = new Cartesian3(); const centerScratch = new Cartesian3(); const axis1Scratch = new Cartesian3(); const axis2Scratch = new Cartesian3(); const quaternionScratch = new Quaternion(); const textureMatrixScratch = new Matrix3(); const tangentRotationScratch = new Matrix3(); const surfaceNormalScratch = new Cartesian3(); function createGeometryFromPolygon( polygon, vertexFormat, boundingRectangle, stRotation, projectPointTo2D, normal, tangent, bitangent ) { const positions = polygon.positions; let indices = PolygonPipeline.triangulate(polygon.positions2D, polygon.holes); /* If polygon is completely unrenderable, just use the first three vertices */ if (indices.length < 3) { indices = [0, 1, 2]; } const newIndices = IndexDatatype.createTypedArray( positions.length, indices.length ); newIndices.set(indices); let textureMatrix = textureMatrixScratch; if (stRotation !== 0.0) { let rotation = Quaternion.fromAxisAngle( normal, stRotation, quaternionScratch ); textureMatrix = Matrix3.fromQuaternion(rotation, textureMatrix); if (vertexFormat.tangent || vertexFormat.bitangent) { rotation = Quaternion.fromAxisAngle( normal, -stRotation, quaternionScratch ); const tangentRotation = Matrix3.fromQuaternion( rotation, tangentRotationScratch ); tangent = Cartesian3.normalize( Matrix3.multiplyByVector(tangentRotation, tangent, tangent), tangent ); if (vertexFormat.bitangent) { bitangent = Cartesian3.normalize( Cartesian3.cross(normal, tangent, bitangent), bitangent ); } } } else { textureMatrix = Matrix3.clone(Matrix3.IDENTITY, textureMatrix); } const stOrigin = textureCoordinatesOrigin; if (vertexFormat.st) { stOrigin.x = boundingRectangle.x; stOrigin.y = boundingRectangle.y; } const length = positions.length; const size = length * 3; const flatPositions = new Float64Array(size); const normals = vertexFormat.normal ? new Float32Array(size) : undefined; const tangents = vertexFormat.tangent ? new Float32Array(size) : undefined; const bitangents = vertexFormat.bitangent ? new Float32Array(size) : undefined; const textureCoordinates = vertexFormat.st ? new Float32Array(length * 2) : undefined; let positionIndex = 0; let normalIndex = 0; let bitangentIndex = 0; let tangentIndex = 0; let stIndex = 0; for (let i = 0; i < length; i++) { const position = positions[i]; flatPositions[positionIndex++] = position.x; flatPositions[positionIndex++] = position.y; flatPositions[positionIndex++] = position.z; if (vertexFormat.st) { const p = Matrix3.multiplyByVector( textureMatrix, position, scratchPosition ); const st = projectPointTo2D(p, stScratch); Cartesian2.subtract(st, stOrigin, st); const stx = CesiumMath.clamp(st.x / boundingRectangle.width, 0, 1); const sty = CesiumMath.clamp(st.y / boundingRectangle.height, 0, 1); textureCoordinates[stIndex++] = stx; textureCoordinates[stIndex++] = sty; } if (vertexFormat.normal) { normals[normalIndex++] = normal.x; normals[normalIndex++] = normal.y; normals[normalIndex++] = normal.z; } if (vertexFormat.tangent) { tangents[tangentIndex++] = tangent.x; tangents[tangentIndex++] = tangent.y; tangents[tangentIndex++] = tangent.z; } if (vertexFormat.bitangent) { bitangents[bitangentIndex++] = bitangent.x; bitangents[bitangentIndex++] = bitangent.y; bitangents[bitangentIndex++] = bitangent.z; } } const attributes = new GeometryAttributes(); if (vertexFormat.position) { attributes.position = new GeometryAttribute({ componentDatatype: ComponentDatatype.DOUBLE, componentsPerAttribute: 3, values: flatPositions, }); } if (vertexFormat.normal) { attributes.normal = new GeometryAttribute({ componentDatatype: ComponentDatatype.FLOAT, componentsPerAttribute: 3, values: normals, }); } if (vertexFormat.tangent) { attributes.tangent = new GeometryAttribute({ componentDatatype: ComponentDatatype.FLOAT, componentsPerAttribute: 3, values: tangents, }); } if (vertexFormat.bitangent) { attributes.bitangent = new GeometryAttribute({ componentDatatype: ComponentDatatype.FLOAT, componentsPerAttribute: 3, values: bitangents, }); } if (vertexFormat.st) { attributes.st = new GeometryAttribute({ componentDatatype: ComponentDatatype.FLOAT, componentsPerAttribute: 2, values: textureCoordinates, }); } return new Geometry({ attributes: attributes, indices: newIndices, primitiveType: PrimitiveType.TRIANGLES, }); } /** * A description of a polygon composed of arbitrary coplanar positions. * * @alias CoplanarPolygonGeometry * @constructor * * @param {Object} options Object with the following properties: * @param {PolygonHierarchy} options.polygonHierarchy A polygon hierarchy that can include holes. * @param {Number} [options.stRotation=0.0] The rotation of the texture coordinates, in radians. A positive rotation is counter-clockwise. * @param {VertexFormat} [options.vertexFormat=VertexFormat.DEFAULT] The vertex attributes to be computed. * @param {Ellipsoid} [options.ellipsoid=Ellipsoid.WGS84] The ellipsoid to be used as a reference. * * @example * const polygonGeometry = new Cesium.CoplanarPolygonGeometry({ * polygonHierarchy: new Cesium.PolygonHierarchy( * Cesium.Cartesian3.fromDegreesArrayHeights([ * -90.0, 30.0, 0.0, * -90.0, 30.0, 300000.0, * -80.0, 30.0, 300000.0, * -80.0, 30.0, 0.0 * ])) * }); * */ function CoplanarPolygonGeometry(options) { options = defaultValue(options, defaultValue.EMPTY_OBJECT); const polygonHierarchy = options.polygonHierarchy; //>>includeStart('debug', pragmas.debug); Check.defined("options.polygonHierarchy", polygonHierarchy); //>>includeEnd('debug'); const vertexFormat = defaultValue(options.vertexFormat, VertexFormat.DEFAULT); this._vertexFormat = VertexFormat.clone(vertexFormat); this._polygonHierarchy = polygonHierarchy; this._stRotation = defaultValue(options.stRotation, 0.0); this._ellipsoid = Ellipsoid.clone( defaultValue(options.ellipsoid, Ellipsoid.WGS84) ); this._workerName = "createCoplanarPolygonGeometry"; /** * The number of elements used to pack the object into an array. * @type {Number} */ this.packedLength = PolygonGeometryLibrary.computeHierarchyPackedLength(polygonHierarchy) + VertexFormat.packedLength + Ellipsoid.packedLength + 2; } /** * A description of a coplanar polygon from an array of positions. * * @param {Object} options Object with the following properties: * @param {Cartesian3[]} options.positions An array of positions that defined the corner points of the polygon. * @param {VertexFormat} [options.vertexFormat=VertexFormat.DEFAULT] The vertex attributes to be computed. * @param {Number} [options.stRotation=0.0] The rotation of the texture coordinates, in radians. A positive rotation is counter-clockwise. * @param {Ellipsoid} [options.ellipsoid=Ellipsoid.WGS84] The ellipsoid to be used as a reference. * @returns {CoplanarPolygonGeometry} * * @example * // create a polygon from points * const polygon = Cesium.CoplanarPolygonGeometry.fromPositions({ * positions : Cesium.Cartesian3.fromDegreesArray([ * -72.0, 40.0, * -70.0, 35.0, * -75.0, 30.0, * -70.0, 30.0, * -68.0, 40.0 * ]) * }); * const geometry = Cesium.PolygonGeometry.createGeometry(polygon); * * @see PolygonGeometry#createGeometry */ CoplanarPolygonGeometry.fromPositions = function (options) { options = defaultValue(options, defaultValue.EMPTY_OBJECT); //>>includeStart('debug', pragmas.debug); Check.defined("options.positions", options.positions); //>>includeEnd('debug'); const newOptions = { polygonHierarchy: { positions: options.positions, }, vertexFormat: options.vertexFormat, stRotation: options.stRotation, ellipsoid: options.ellipsoid, }; return new CoplanarPolygonGeometry(newOptions); }; /** * Stores the provided instance into the provided array. * * @param {CoplanarPolygonGeometry} value The value to pack. * @param {Number[]} array The array to pack into. * @param {Number} [startingIndex=0] The index into the array at which to start packing the elements. * * @returns {Number[]} The array that was packed into */ CoplanarPolygonGeometry.pack = function (value, array, startingIndex) { //>>includeStart('debug', pragmas.debug); Check.typeOf.object("value", value); Check.defined("array", array); //>>includeEnd('debug'); startingIndex = defaultValue(startingIndex, 0); startingIndex = PolygonGeometryLibrary.packPolygonHierarchy( value._polygonHierarchy, array, startingIndex ); Ellipsoid.pack(value._ellipsoid, array, startingIndex); startingIndex += Ellipsoid.packedLength; VertexFormat.pack(value._vertexFormat, array, startingIndex); startingIndex += VertexFormat.packedLength; array[startingIndex++] = value._stRotation; array[startingIndex] = value.packedLength; return array; }; const scratchEllipsoid = Ellipsoid.clone(Ellipsoid.UNIT_SPHERE); const scratchVertexFormat = new VertexFormat(); const scratchOptions = { polygonHierarchy: {}, }; /** * Retrieves an instance from a packed array. * * @param {Number[]} array The packed array. * @param {Number} [startingIndex=0] The starting index of the element to be unpacked. * @param {CoplanarPolygonGeometry} [result] The object into which to store the result. * @returns {CoplanarPolygonGeometry} The modified result parameter or a new CoplanarPolygonGeometry instance if one was not provided. */ CoplanarPolygonGeometry.unpack = function (array, startingIndex, result) { //>>includeStart('debug', pragmas.debug); Check.defined("array", array); //>>includeEnd('debug'); startingIndex = defaultValue(startingIndex, 0); const polygonHierarchy = PolygonGeometryLibrary.unpackPolygonHierarchy( array, startingIndex ); startingIndex = polygonHierarchy.startingIndex; delete polygonHierarchy.startingIndex; const ellipsoid = Ellipsoid.unpack(array, startingIndex, scratchEllipsoid); startingIndex += Ellipsoid.packedLength; const vertexFormat = VertexFormat.unpack( array, startingIndex, scratchVertexFormat ); startingIndex += VertexFormat.packedLength; const stRotation = array[startingIndex++]; const packedLength = array[startingIndex]; if (!defined(result)) { result = new CoplanarPolygonGeometry(scratchOptions); } result._polygonHierarchy = polygonHierarchy; result._ellipsoid = Ellipsoid.clone(ellipsoid, result._ellipsoid); result._vertexFormat = VertexFormat.clone(vertexFormat, result._vertexFormat); result._stRotation = stRotation; result.packedLength = packedLength; return result; }; /** * Computes the geometric representation of an arbitrary coplanar polygon, including its vertices, indices, and a bounding sphere. * * @param {CoplanarPolygonGeometry} polygonGeometry A description of the polygon. * @returns {Geometry|undefined} The computed vertices and indices. */ CoplanarPolygonGeometry.createGeometry = function (polygonGeometry) { const vertexFormat = polygonGeometry._vertexFormat; const polygonHierarchy = polygonGeometry._polygonHierarchy; const stRotation = polygonGeometry._stRotation; let outerPositions = polygonHierarchy.positions; outerPositions = arrayRemoveDuplicates( outerPositions, Cartesian3.equalsEpsilon, true ); if (outerPositions.length < 3) { return; } let normal = scratchNormal; let tangent = scratchTangent; let bitangent = scratchBitangent; let axis1 = axis1Scratch; const axis2 = axis2Scratch; const validGeometry = CoplanarPolygonGeometryLibrary.computeProjectTo2DArguments( outerPositions, centerScratch, axis1, axis2 ); if (!validGeometry) { return undefined; } normal = Cartesian3.cross(axis1, axis2, normal); normal = Cartesian3.normalize(normal, normal); if ( !Cartesian3.equalsEpsilon( centerScratch, Cartesian3.ZERO, CesiumMath.EPSILON6 ) ) { const surfaceNormal = polygonGeometry._ellipsoid.geodeticSurfaceNormal( centerScratch, surfaceNormalScratch ); if (Cartesian3.dot(normal, surfaceNormal) < 0) { normal = Cartesian3.negate(normal, normal); axis1 = Cartesian3.negate(axis1, axis1); } } const projectPoints = CoplanarPolygonGeometryLibrary.createProjectPointsTo2DFunction( centerScratch, axis1, axis2 ); const projectPoint = CoplanarPolygonGeometryLibrary.createProjectPointTo2DFunction( centerScratch, axis1, axis2 ); if (vertexFormat.tangent) { tangent = Cartesian3.clone(axis1, tangent); } if (vertexFormat.bitangent) { bitangent = Cartesian3.clone(axis2, bitangent); } const results = PolygonGeometryLibrary.polygonsFromHierarchy( polygonHierarchy, projectPoints, false ); const hierarchy = results.hierarchy; const polygons = results.polygons; if (hierarchy.length === 0) { return; } outerPositions = hierarchy[0].outerRing; const boundingSphere = BoundingSphere.fromPoints(outerPositions); const boundingRectangle = PolygonGeometryLibrary.computeBoundingRectangle( normal, projectPoint, outerPositions, stRotation, scratchBR ); const geometries = []; for (let i = 0; i < polygons.length; i++) { const geometryInstance = new GeometryInstance({ geometry: createGeometryFromPolygon( polygons[i], vertexFormat, boundingRectangle, stRotation, projectPoint, normal, tangent, bitangent ), }); geometries.push(geometryInstance); } const geometry = GeometryPipeline.combineInstances(geometries)[0]; geometry.attributes.position.values = new Float64Array( geometry.attributes.position.values ); geometry.indices = IndexDatatype.createTypedArray( geometry.attributes.position.values.length / 3, geometry.indices ); const attributes = geometry.attributes; if (!vertexFormat.position) { delete attributes.position; } return new Geometry({ attributes: attributes, indices: geometry.indices, primitiveType: geometry.primitiveType, boundingSphere: boundingSphere, }); }; export default CoplanarPolygonGeometry;