import arrayFill from "./arrayFill.js"; import BoundingSphere from "./BoundingSphere.js"; import Cartesian2 from "./Cartesian2.js"; import Cartesian3 from "./Cartesian3.js"; import ComponentDatatype from "./ComponentDatatype.js"; import CylinderGeometryLibrary from "./CylinderGeometryLibrary.js"; import defaultValue from "./defaultValue.js"; import defined from "./defined.js"; import DeveloperError from "./DeveloperError.js"; import Geometry from "./Geometry.js"; import GeometryAttribute from "./GeometryAttribute.js"; import GeometryAttributes from "./GeometryAttributes.js"; import GeometryOffsetAttribute from "./GeometryOffsetAttribute.js"; import IndexDatatype from "./IndexDatatype.js"; import CesiumMath from "./Math.js"; import PrimitiveType from "./PrimitiveType.js"; import VertexFormat from "./VertexFormat.js"; const radiusScratch = new Cartesian2(); const normalScratch = new Cartesian3(); const bitangentScratch = new Cartesian3(); const tangentScratch = new Cartesian3(); const positionScratch = new Cartesian3(); /** * A description of a cylinder. * * @alias CylinderGeometry * @constructor * * @param {Object} options Object with the following properties: * @param {Number} options.length The length of the cylinder. * @param {Number} options.topRadius The radius of the top of the cylinder. * @param {Number} options.bottomRadius The radius of the bottom of the cylinder. * @param {Number} [options.slices=128] The number of edges around the perimeter of the cylinder. * @param {VertexFormat} [options.vertexFormat=VertexFormat.DEFAULT] The vertex attributes to be computed. * * @exception {DeveloperError} options.slices must be greater than or equal to 3. * * @see CylinderGeometry.createGeometry * * @example * // create cylinder geometry * const cylinder = new Cesium.CylinderGeometry({ * length: 200000, * topRadius: 80000, * bottomRadius: 200000, * }); * const geometry = Cesium.CylinderGeometry.createGeometry(cylinder); */ function CylinderGeometry(options) { options = defaultValue(options, defaultValue.EMPTY_OBJECT); const length = options.length; const topRadius = options.topRadius; const bottomRadius = options.bottomRadius; const vertexFormat = defaultValue(options.vertexFormat, VertexFormat.DEFAULT); const slices = defaultValue(options.slices, 128); //>>includeStart('debug', pragmas.debug); if (!defined(length)) { throw new DeveloperError("options.length must be defined."); } if (!defined(topRadius)) { throw new DeveloperError("options.topRadius must be defined."); } if (!defined(bottomRadius)) { throw new DeveloperError("options.bottomRadius must be defined."); } if (slices < 3) { throw new DeveloperError( "options.slices must be greater than or equal to 3." ); } if ( defined(options.offsetAttribute) && options.offsetAttribute === GeometryOffsetAttribute.TOP ) { throw new DeveloperError( "GeometryOffsetAttribute.TOP is not a supported options.offsetAttribute for this geometry." ); } //>>includeEnd('debug'); this._length = length; this._topRadius = topRadius; this._bottomRadius = bottomRadius; this._vertexFormat = VertexFormat.clone(vertexFormat); this._slices = slices; this._offsetAttribute = options.offsetAttribute; this._workerName = "createCylinderGeometry"; } /** * The number of elements used to pack the object into an array. * @type {Number} */ CylinderGeometry.packedLength = VertexFormat.packedLength + 5; /** * Stores the provided instance into the provided array. * * @param {CylinderGeometry} value The value to pack. * @param {Number[]} array The array to pack into. * @param {Number} [startingIndex=0] The index into the array at which to start packing the elements. * * @returns {Number[]} The array that was packed into */ CylinderGeometry.pack = function (value, array, startingIndex) { //>>includeStart('debug', pragmas.debug); if (!defined(value)) { throw new DeveloperError("value is required"); } if (!defined(array)) { throw new DeveloperError("array is required"); } //>>includeEnd('debug'); startingIndex = defaultValue(startingIndex, 0); VertexFormat.pack(value._vertexFormat, array, startingIndex); startingIndex += VertexFormat.packedLength; array[startingIndex++] = value._length; array[startingIndex++] = value._topRadius; array[startingIndex++] = value._bottomRadius; array[startingIndex++] = value._slices; array[startingIndex] = defaultValue(value._offsetAttribute, -1); return array; }; const scratchVertexFormat = new VertexFormat(); const scratchOptions = { vertexFormat: scratchVertexFormat, length: undefined, topRadius: undefined, bottomRadius: undefined, slices: undefined, offsetAttribute: undefined, }; /** * Retrieves an instance from a packed array. * * @param {Number[]} array The packed array. * @param {Number} [startingIndex=0] The starting index of the element to be unpacked. * @param {CylinderGeometry} [result] The object into which to store the result. * @returns {CylinderGeometry} The modified result parameter or a new CylinderGeometry instance if one was not provided. */ CylinderGeometry.unpack = function (array, startingIndex, result) { //>>includeStart('debug', pragmas.debug); if (!defined(array)) { throw new DeveloperError("array is required"); } //>>includeEnd('debug'); startingIndex = defaultValue(startingIndex, 0); const vertexFormat = VertexFormat.unpack( array, startingIndex, scratchVertexFormat ); startingIndex += VertexFormat.packedLength; const length = array[startingIndex++]; const topRadius = array[startingIndex++]; const bottomRadius = array[startingIndex++]; const slices = array[startingIndex++]; const offsetAttribute = array[startingIndex]; if (!defined(result)) { scratchOptions.length = length; scratchOptions.topRadius = topRadius; scratchOptions.bottomRadius = bottomRadius; scratchOptions.slices = slices; scratchOptions.offsetAttribute = offsetAttribute === -1 ? undefined : offsetAttribute; return new CylinderGeometry(scratchOptions); } result._vertexFormat = VertexFormat.clone(vertexFormat, result._vertexFormat); result._length = length; result._topRadius = topRadius; result._bottomRadius = bottomRadius; result._slices = slices; result._offsetAttribute = offsetAttribute === -1 ? undefined : offsetAttribute; return result; }; /** * Computes the geometric representation of a cylinder, including its vertices, indices, and a bounding sphere. * * @param {CylinderGeometry} cylinderGeometry A description of the cylinder. * @returns {Geometry|undefined} The computed vertices and indices. */ CylinderGeometry.createGeometry = function (cylinderGeometry) { let length = cylinderGeometry._length; const topRadius = cylinderGeometry._topRadius; const bottomRadius = cylinderGeometry._bottomRadius; const vertexFormat = cylinderGeometry._vertexFormat; const slices = cylinderGeometry._slices; if ( length <= 0 || topRadius < 0 || bottomRadius < 0 || (topRadius === 0 && bottomRadius === 0) ) { return; } const twoSlices = slices + slices; const threeSlices = slices + twoSlices; const numVertices = twoSlices + twoSlices; const positions = CylinderGeometryLibrary.computePositions( length, topRadius, bottomRadius, slices, true ); const st = vertexFormat.st ? new Float32Array(numVertices * 2) : undefined; const normals = vertexFormat.normal ? new Float32Array(numVertices * 3) : undefined; const tangents = vertexFormat.tangent ? new Float32Array(numVertices * 3) : undefined; const bitangents = vertexFormat.bitangent ? new Float32Array(numVertices * 3) : undefined; let i; const computeNormal = vertexFormat.normal || vertexFormat.tangent || vertexFormat.bitangent; if (computeNormal) { const computeTangent = vertexFormat.tangent || vertexFormat.bitangent; let normalIndex = 0; let tangentIndex = 0; let bitangentIndex = 0; const theta = Math.atan2(bottomRadius - topRadius, length); const normal = normalScratch; normal.z = Math.sin(theta); const normalScale = Math.cos(theta); let tangent = tangentScratch; let bitangent = bitangentScratch; for (i = 0; i < slices; i++) { const angle = (i / slices) * CesiumMath.TWO_PI; const x = normalScale * Math.cos(angle); const y = normalScale * Math.sin(angle); if (computeNormal) { normal.x = x; normal.y = y; if (computeTangent) { tangent = Cartesian3.normalize( Cartesian3.cross(Cartesian3.UNIT_Z, normal, tangent), tangent ); } if (vertexFormat.normal) { normals[normalIndex++] = normal.x; normals[normalIndex++] = normal.y; normals[normalIndex++] = normal.z; normals[normalIndex++] = normal.x; normals[normalIndex++] = normal.y; normals[normalIndex++] = normal.z; } if (vertexFormat.tangent) { tangents[tangentIndex++] = tangent.x; tangents[tangentIndex++] = tangent.y; tangents[tangentIndex++] = tangent.z; tangents[tangentIndex++] = tangent.x; tangents[tangentIndex++] = tangent.y; tangents[tangentIndex++] = tangent.z; } if (vertexFormat.bitangent) { bitangent = Cartesian3.normalize( Cartesian3.cross(normal, tangent, bitangent), bitangent ); bitangents[bitangentIndex++] = bitangent.x; bitangents[bitangentIndex++] = bitangent.y; bitangents[bitangentIndex++] = bitangent.z; bitangents[bitangentIndex++] = bitangent.x; bitangents[bitangentIndex++] = bitangent.y; bitangents[bitangentIndex++] = bitangent.z; } } } for (i = 0; i < slices; i++) { if (vertexFormat.normal) { normals[normalIndex++] = 0; normals[normalIndex++] = 0; normals[normalIndex++] = -1; } if (vertexFormat.tangent) { tangents[tangentIndex++] = 1; tangents[tangentIndex++] = 0; tangents[tangentIndex++] = 0; } if (vertexFormat.bitangent) { bitangents[bitangentIndex++] = 0; bitangents[bitangentIndex++] = -1; bitangents[bitangentIndex++] = 0; } } for (i = 0; i < slices; i++) { if (vertexFormat.normal) { normals[normalIndex++] = 0; normals[normalIndex++] = 0; normals[normalIndex++] = 1; } if (vertexFormat.tangent) { tangents[tangentIndex++] = 1; tangents[tangentIndex++] = 0; tangents[tangentIndex++] = 0; } if (vertexFormat.bitangent) { bitangents[bitangentIndex++] = 0; bitangents[bitangentIndex++] = 1; bitangents[bitangentIndex++] = 0; } } } const numIndices = 12 * slices - 12; const indices = IndexDatatype.createTypedArray(numVertices, numIndices); let index = 0; let j = 0; for (i = 0; i < slices - 1; i++) { indices[index++] = j; indices[index++] = j + 2; indices[index++] = j + 3; indices[index++] = j; indices[index++] = j + 3; indices[index++] = j + 1; j += 2; } indices[index++] = twoSlices - 2; indices[index++] = 0; indices[index++] = 1; indices[index++] = twoSlices - 2; indices[index++] = 1; indices[index++] = twoSlices - 1; for (i = 1; i < slices - 1; i++) { indices[index++] = twoSlices + i + 1; indices[index++] = twoSlices + i; indices[index++] = twoSlices; } for (i = 1; i < slices - 1; i++) { indices[index++] = threeSlices; indices[index++] = threeSlices + i; indices[index++] = threeSlices + i + 1; } let textureCoordIndex = 0; if (vertexFormat.st) { const rad = Math.max(topRadius, bottomRadius); for (i = 0; i < numVertices; i++) { const position = Cartesian3.fromArray(positions, i * 3, positionScratch); st[textureCoordIndex++] = (position.x + rad) / (2.0 * rad); st[textureCoordIndex++] = (position.y + rad) / (2.0 * rad); } } const attributes = new GeometryAttributes(); if (vertexFormat.position) { attributes.position = new GeometryAttribute({ componentDatatype: ComponentDatatype.DOUBLE, componentsPerAttribute: 3, values: positions, }); } if (vertexFormat.normal) { attributes.normal = new GeometryAttribute({ componentDatatype: ComponentDatatype.FLOAT, componentsPerAttribute: 3, values: normals, }); } if (vertexFormat.tangent) { attributes.tangent = new GeometryAttribute({ componentDatatype: ComponentDatatype.FLOAT, componentsPerAttribute: 3, values: tangents, }); } if (vertexFormat.bitangent) { attributes.bitangent = new GeometryAttribute({ componentDatatype: ComponentDatatype.FLOAT, componentsPerAttribute: 3, values: bitangents, }); } if (vertexFormat.st) { attributes.st = new GeometryAttribute({ componentDatatype: ComponentDatatype.FLOAT, componentsPerAttribute: 2, values: st, }); } radiusScratch.x = length * 0.5; radiusScratch.y = Math.max(bottomRadius, topRadius); const boundingSphere = new BoundingSphere( Cartesian3.ZERO, Cartesian2.magnitude(radiusScratch) ); if (defined(cylinderGeometry._offsetAttribute)) { length = positions.length; const applyOffset = new Uint8Array(length / 3); const offsetValue = cylinderGeometry._offsetAttribute === GeometryOffsetAttribute.NONE ? 0 : 1; arrayFill(applyOffset, offsetValue); attributes.applyOffset = new GeometryAttribute({ componentDatatype: ComponentDatatype.UNSIGNED_BYTE, componentsPerAttribute: 1, values: applyOffset, }); } return new Geometry({ attributes: attributes, indices: indices, primitiveType: PrimitiveType.TRIANGLES, boundingSphere: boundingSphere, offsetAttribute: cylinderGeometry._offsetAttribute, }); }; let unitCylinderGeometry; /** * Returns the geometric representation of a unit cylinder, including its vertices, indices, and a bounding sphere. * @returns {Geometry} The computed vertices and indices. * * @private */ CylinderGeometry.getUnitCylinder = function () { if (!defined(unitCylinderGeometry)) { unitCylinderGeometry = CylinderGeometry.createGeometry( new CylinderGeometry({ topRadius: 1.0, bottomRadius: 1.0, length: 1.0, vertexFormat: VertexFormat.POSITION_ONLY, }) ); } return unitCylinderGeometry; }; export default CylinderGeometry;