import BoundingSphere from "./BoundingSphere.js";
import Cartesian2 from "./Cartesian2.js";
import Cartesian3 from "./Cartesian3.js";
import Check from "./Check.js";
import defaultValue from "./defaultValue.js";
import defined from "./defined.js";
import DeveloperError from "./DeveloperError.js";
import IndexDatatype from "./IndexDatatype.js";
import Intersections2D from "./Intersections2D.js";
import CesiumMath from "./Math.js";
import OrientedBoundingBox from "./OrientedBoundingBox.js";
import QuantizedMeshTerrainData from "./QuantizedMeshTerrainData.js";
import Rectangle from "./Rectangle.js";
import TaskProcessor from "./TaskProcessor.js";
import TerrainData from "./TerrainData.js";
import TerrainEncoding from "./TerrainEncoding.js";
import TerrainMesh from "./TerrainMesh.js";
/**
* Terrain data for a single tile from a Google Earth Enterprise server.
*
* @alias GoogleEarthEnterpriseTerrainData
* @constructor
*
* @param {Object} options Object with the following properties:
* @param {ArrayBuffer} options.buffer The buffer containing terrain data.
* @param {Number} options.negativeAltitudeExponentBias Multiplier for negative terrain heights that are encoded as very small positive values.
* @param {Number} options.negativeElevationThreshold Threshold for negative values
* @param {Number} [options.childTileMask=15] A bit mask indicating which of this tile's four children exist.
* If a child's bit is set, geometry will be requested for that tile as well when it
* is needed. If the bit is cleared, the child tile is not requested and geometry is
* instead upsampled from the parent. The bit values are as follows:
*
* Bit Position | Bit Value | Child Tile |
* 0 | 1 | Southwest |
* 1 | 2 | Southeast |
* 2 | 4 | Northeast |
* 3 | 8 | Northwest |
*
* @param {Boolean} [options.createdByUpsampling=false] True if this instance was created by upsampling another instance;
* otherwise, false.
* @param {Credit[]} [options.credits] Array of credits for this tile.
*
*
* @example
* const buffer = ...
* const childTileMask = ...
* const terrainData = new Cesium.GoogleEarthEnterpriseTerrainData({
* buffer : heightBuffer,
* childTileMask : childTileMask
* });
*
* @see TerrainData
* @see HeightmapTerrainData
* @see QuantizedMeshTerrainData
*/
function GoogleEarthEnterpriseTerrainData(options) {
options = defaultValue(options, defaultValue.EMPTY_OBJECT);
//>>includeStart('debug', pragmas.debug);
Check.typeOf.object("options.buffer", options.buffer);
Check.typeOf.number(
"options.negativeAltitudeExponentBias",
options.negativeAltitudeExponentBias
);
Check.typeOf.number(
"options.negativeElevationThreshold",
options.negativeElevationThreshold
);
//>>includeEnd('debug');
this._buffer = options.buffer;
this._credits = options.credits;
this._negativeAltitudeExponentBias = options.negativeAltitudeExponentBias;
this._negativeElevationThreshold = options.negativeElevationThreshold;
// Convert from google layout to layout of other providers
// 3 2 -> 2 3
// 0 1 -> 0 1
const googleChildTileMask = defaultValue(options.childTileMask, 15);
let childTileMask = googleChildTileMask & 3; // Bottom row is identical
childTileMask |= googleChildTileMask & 4 ? 8 : 0; // NE
childTileMask |= googleChildTileMask & 8 ? 4 : 0; // NW
this._childTileMask = childTileMask;
this._createdByUpsampling = defaultValue(options.createdByUpsampling, false);
this._skirtHeight = undefined;
this._bufferType = this._buffer.constructor;
this._mesh = undefined;
this._minimumHeight = undefined;
this._maximumHeight = undefined;
}
Object.defineProperties(GoogleEarthEnterpriseTerrainData.prototype, {
/**
* An array of credits for this tile
* @memberof GoogleEarthEnterpriseTerrainData.prototype
* @type {Credit[]}
*/
credits: {
get: function () {
return this._credits;
},
},
/**
* The water mask included in this terrain data, if any. A water mask is a rectangular
* Uint8Array or image where a value of 255 indicates water and a value of 0 indicates land.
* Values in between 0 and 255 are allowed as well to smoothly blend between land and water.
* @memberof GoogleEarthEnterpriseTerrainData.prototype
* @type {Uint8Array|HTMLImageElement|HTMLCanvasElement}
*/
waterMask: {
get: function () {
return undefined;
},
},
});
const createMeshTaskName = "createVerticesFromGoogleEarthEnterpriseBuffer";
const createMeshTaskProcessorNoThrottle = new TaskProcessor(createMeshTaskName);
const createMeshTaskProcessorThrottle = new TaskProcessor(
createMeshTaskName,
TerrainData.maximumAsynchronousTasks
);
const nativeRectangleScratch = new Rectangle();
const rectangleScratch = new Rectangle();
/**
* Creates a {@link TerrainMesh} from this terrain data.
*
* @private
*
* @param {Object} options Object with the following properties:
* @param {TilingScheme} options.tilingScheme The tiling scheme to which this tile belongs.
* @param {Number} options.x The X coordinate of the tile for which to create the terrain data.
* @param {Number} options.y The Y coordinate of the tile for which to create the terrain data.
* @param {Number} options.level The level of the tile for which to create the terrain data.
* @param {Number} [options.exaggeration=1.0] The scale used to exaggerate the terrain.
* @param {Number} [options.exaggerationRelativeHeight=0.0] The height from which terrain is exaggerated.
* @param {Boolean} [options.throttle=true] If true, indicates that this operation will need to be retried if too many asynchronous mesh creations are already in progress.
* @returns {Promise.|undefined} A promise for the terrain mesh, or undefined if too many
* asynchronous mesh creations are already in progress and the operation should
* be retried later.
*/
GoogleEarthEnterpriseTerrainData.prototype.createMesh = function (options) {
options = defaultValue(options, defaultValue.EMPTY_OBJECT);
//>>includeStart('debug', pragmas.debug);
Check.typeOf.object("options.tilingScheme", options.tilingScheme);
Check.typeOf.number("options.x", options.x);
Check.typeOf.number("options.y", options.y);
Check.typeOf.number("options.level", options.level);
//>>includeEnd('debug');
const tilingScheme = options.tilingScheme;
const x = options.x;
const y = options.y;
const level = options.level;
const exaggeration = defaultValue(options.exaggeration, 1.0);
const exaggerationRelativeHeight = defaultValue(
options.exaggerationRelativeHeight,
0.0
);
const throttle = defaultValue(options.throttle, true);
const ellipsoid = tilingScheme.ellipsoid;
tilingScheme.tileXYToNativeRectangle(x, y, level, nativeRectangleScratch);
tilingScheme.tileXYToRectangle(x, y, level, rectangleScratch);
// Compute the center of the tile for RTC rendering.
const center = ellipsoid.cartographicToCartesian(
Rectangle.center(rectangleScratch)
);
const levelZeroMaxError = 40075.16; // From Google's Doc
const thisLevelMaxError = levelZeroMaxError / (1 << level);
this._skirtHeight = Math.min(thisLevelMaxError * 8.0, 1000.0);
const createMeshTaskProcessor = throttle
? createMeshTaskProcessorThrottle
: createMeshTaskProcessorNoThrottle;
const verticesPromise = createMeshTaskProcessor.scheduleTask({
buffer: this._buffer,
nativeRectangle: nativeRectangleScratch,
rectangle: rectangleScratch,
relativeToCenter: center,
ellipsoid: ellipsoid,
skirtHeight: this._skirtHeight,
exaggeration: exaggeration,
exaggerationRelativeHeight: exaggerationRelativeHeight,
includeWebMercatorT: true,
negativeAltitudeExponentBias: this._negativeAltitudeExponentBias,
negativeElevationThreshold: this._negativeElevationThreshold,
});
if (!defined(verticesPromise)) {
// Postponed
return undefined;
}
const that = this;
return verticesPromise.then(function (result) {
// Clone complex result objects because the transfer from the web worker
// has stripped them down to JSON-style objects.
that._mesh = new TerrainMesh(
center,
new Float32Array(result.vertices),
new Uint16Array(result.indices),
result.indexCountWithoutSkirts,
result.vertexCountWithoutSkirts,
result.minimumHeight,
result.maximumHeight,
BoundingSphere.clone(result.boundingSphere3D),
Cartesian3.clone(result.occludeePointInScaledSpace),
result.numberOfAttributes,
OrientedBoundingBox.clone(result.orientedBoundingBox),
TerrainEncoding.clone(result.encoding),
result.westIndicesSouthToNorth,
result.southIndicesEastToWest,
result.eastIndicesNorthToSouth,
result.northIndicesWestToEast
);
that._minimumHeight = result.minimumHeight;
that._maximumHeight = result.maximumHeight;
// Free memory received from server after mesh is created.
that._buffer = undefined;
return that._mesh;
});
};
/**
* Computes the terrain height at a specified longitude and latitude.
*
* @param {Rectangle} rectangle The rectangle covered by this terrain data.
* @param {Number} longitude The longitude in radians.
* @param {Number} latitude The latitude in radians.
* @returns {Number} The terrain height at the specified position. If the position
* is outside the rectangle, this method will extrapolate the height, which is likely to be wildly
* incorrect for positions far outside the rectangle.
*/
GoogleEarthEnterpriseTerrainData.prototype.interpolateHeight = function (
rectangle,
longitude,
latitude
) {
const u = CesiumMath.clamp(
(longitude - rectangle.west) / rectangle.width,
0.0,
1.0
);
const v = CesiumMath.clamp(
(latitude - rectangle.south) / rectangle.height,
0.0,
1.0
);
if (!defined(this._mesh)) {
return interpolateHeight(this, u, v, rectangle);
}
return interpolateMeshHeight(this, u, v);
};
const upsampleTaskProcessor = new TaskProcessor(
"upsampleQuantizedTerrainMesh",
TerrainData.maximumAsynchronousTasks
);
/**
* Upsamples this terrain data for use by a descendant tile. The resulting instance will contain a subset of the
* height samples in this instance, interpolated if necessary.
*
* @param {TilingScheme} tilingScheme The tiling scheme of this terrain data.
* @param {Number} thisX The X coordinate of this tile in the tiling scheme.
* @param {Number} thisY The Y coordinate of this tile in the tiling scheme.
* @param {Number} thisLevel The level of this tile in the tiling scheme.
* @param {Number} descendantX The X coordinate within the tiling scheme of the descendant tile for which we are upsampling.
* @param {Number} descendantY The Y coordinate within the tiling scheme of the descendant tile for which we are upsampling.
* @param {Number} descendantLevel The level within the tiling scheme of the descendant tile for which we are upsampling.
* @returns {Promise.|undefined} A promise for upsampled heightmap terrain data for the descendant tile,
* or undefined if too many asynchronous upsample operations are in progress and the request has been
* deferred.
*/
GoogleEarthEnterpriseTerrainData.prototype.upsample = function (
tilingScheme,
thisX,
thisY,
thisLevel,
descendantX,
descendantY,
descendantLevel
) {
//>>includeStart('debug', pragmas.debug);
Check.typeOf.object("tilingScheme", tilingScheme);
Check.typeOf.number("thisX", thisX);
Check.typeOf.number("thisY", thisY);
Check.typeOf.number("thisLevel", thisLevel);
Check.typeOf.number("descendantX", descendantX);
Check.typeOf.number("descendantY", descendantY);
Check.typeOf.number("descendantLevel", descendantLevel);
const levelDifference = descendantLevel - thisLevel;
if (levelDifference > 1) {
throw new DeveloperError(
"Upsampling through more than one level at a time is not currently supported."
);
}
//>>includeEnd('debug');
const mesh = this._mesh;
if (!defined(this._mesh)) {
return undefined;
}
const isEastChild = thisX * 2 !== descendantX;
const isNorthChild = thisY * 2 === descendantY;
const ellipsoid = tilingScheme.ellipsoid;
const childRectangle = tilingScheme.tileXYToRectangle(
descendantX,
descendantY,
descendantLevel
);
const upsamplePromise = upsampleTaskProcessor.scheduleTask({
vertices: mesh.vertices,
indices: mesh.indices,
indexCountWithoutSkirts: mesh.indexCountWithoutSkirts,
vertexCountWithoutSkirts: mesh.vertexCountWithoutSkirts,
encoding: mesh.encoding,
minimumHeight: this._minimumHeight,
maximumHeight: this._maximumHeight,
isEastChild: isEastChild,
isNorthChild: isNorthChild,
childRectangle: childRectangle,
ellipsoid: ellipsoid,
});
if (!defined(upsamplePromise)) {
// Postponed
return undefined;
}
const that = this;
return upsamplePromise.then(function (result) {
const quantizedVertices = new Uint16Array(result.vertices);
const indicesTypedArray = IndexDatatype.createTypedArray(
quantizedVertices.length / 3,
result.indices
);
const skirtHeight = that._skirtHeight;
// Use QuantizedMeshTerrainData since we have what we need already parsed
return new QuantizedMeshTerrainData({
quantizedVertices: quantizedVertices,
indices: indicesTypedArray,
minimumHeight: result.minimumHeight,
maximumHeight: result.maximumHeight,
boundingSphere: BoundingSphere.clone(result.boundingSphere),
orientedBoundingBox: OrientedBoundingBox.clone(
result.orientedBoundingBox
),
horizonOcclusionPoint: Cartesian3.clone(result.horizonOcclusionPoint),
westIndices: result.westIndices,
southIndices: result.southIndices,
eastIndices: result.eastIndices,
northIndices: result.northIndices,
westSkirtHeight: skirtHeight,
southSkirtHeight: skirtHeight,
eastSkirtHeight: skirtHeight,
northSkirtHeight: skirtHeight,
childTileMask: 0,
createdByUpsampling: true,
credits: that._credits,
});
});
};
/**
* Determines if a given child tile is available, based on the
* {@link HeightmapTerrainData.childTileMask}. The given child tile coordinates are assumed
* to be one of the four children of this tile. If non-child tile coordinates are
* given, the availability of the southeast child tile is returned.
*
* @param {Number} thisX The tile X coordinate of this (the parent) tile.
* @param {Number} thisY The tile Y coordinate of this (the parent) tile.
* @param {Number} childX The tile X coordinate of the child tile to check for availability.
* @param {Number} childY The tile Y coordinate of the child tile to check for availability.
* @returns {Boolean} True if the child tile is available; otherwise, false.
*/
GoogleEarthEnterpriseTerrainData.prototype.isChildAvailable = function (
thisX,
thisY,
childX,
childY
) {
//>>includeStart('debug', pragmas.debug);
Check.typeOf.number("thisX", thisX);
Check.typeOf.number("thisY", thisY);
Check.typeOf.number("childX", childX);
Check.typeOf.number("childY", childY);
//>>includeEnd('debug');
let bitNumber = 2; // northwest child
if (childX !== thisX * 2) {
++bitNumber; // east child
}
if (childY !== thisY * 2) {
bitNumber -= 2; // south child
}
return (this._childTileMask & (1 << bitNumber)) !== 0;
};
/**
* Gets a value indicating whether or not this terrain data was created by upsampling lower resolution
* terrain data. If this value is false, the data was obtained from some other source, such
* as by downloading it from a remote server. This method should return true for instances
* returned from a call to {@link HeightmapTerrainData#upsample}.
*
* @returns {Boolean} True if this instance was created by upsampling; otherwise, false.
*/
GoogleEarthEnterpriseTerrainData.prototype.wasCreatedByUpsampling = function () {
return this._createdByUpsampling;
};
const texCoordScratch0 = new Cartesian2();
const texCoordScratch1 = new Cartesian2();
const texCoordScratch2 = new Cartesian2();
const barycentricCoordinateScratch = new Cartesian3();
function interpolateMeshHeight(terrainData, u, v) {
const mesh = terrainData._mesh;
const vertices = mesh.vertices;
const encoding = mesh.encoding;
const indices = mesh.indices;
for (let i = 0, len = indices.length; i < len; i += 3) {
const i0 = indices[i];
const i1 = indices[i + 1];
const i2 = indices[i + 2];
const uv0 = encoding.decodeTextureCoordinates(
vertices,
i0,
texCoordScratch0
);
const uv1 = encoding.decodeTextureCoordinates(
vertices,
i1,
texCoordScratch1
);
const uv2 = encoding.decodeTextureCoordinates(
vertices,
i2,
texCoordScratch2
);
const barycentric = Intersections2D.computeBarycentricCoordinates(
u,
v,
uv0.x,
uv0.y,
uv1.x,
uv1.y,
uv2.x,
uv2.y,
barycentricCoordinateScratch
);
if (
barycentric.x >= -1e-15 &&
barycentric.y >= -1e-15 &&
barycentric.z >= -1e-15
) {
const h0 = encoding.decodeHeight(vertices, i0);
const h1 = encoding.decodeHeight(vertices, i1);
const h2 = encoding.decodeHeight(vertices, i2);
return barycentric.x * h0 + barycentric.y * h1 + barycentric.z * h2;
}
}
// Position does not lie in any triangle in this mesh.
return undefined;
}
const sizeOfUint16 = Uint16Array.BYTES_PER_ELEMENT;
const sizeOfUint32 = Uint32Array.BYTES_PER_ELEMENT;
const sizeOfInt32 = Int32Array.BYTES_PER_ELEMENT;
const sizeOfFloat = Float32Array.BYTES_PER_ELEMENT;
const sizeOfDouble = Float64Array.BYTES_PER_ELEMENT;
function interpolateHeight(terrainData, u, v, rectangle) {
const buffer = terrainData._buffer;
let quad = 0; // SW
let uStart = 0.0;
let vStart = 0.0;
if (v > 0.5) {
// Upper row
if (u > 0.5) {
// NE
quad = 2;
uStart = 0.5;
} else {
// NW
quad = 3;
}
vStart = 0.5;
} else if (u > 0.5) {
// SE
quad = 1;
uStart = 0.5;
}
const dv = new DataView(buffer);
let offset = 0;
for (let q = 0; q < quad; ++q) {
offset += dv.getUint32(offset, true);
offset += sizeOfUint32;
}
offset += sizeOfUint32; // Skip length of quad
offset += 2 * sizeOfDouble; // Skip origin
// Read sizes
const xSize = CesiumMath.toRadians(dv.getFloat64(offset, true) * 180.0);
offset += sizeOfDouble;
const ySize = CesiumMath.toRadians(dv.getFloat64(offset, true) * 180.0);
offset += sizeOfDouble;
// Samples per quad
const xScale = rectangle.width / xSize / 2;
const yScale = rectangle.height / ySize / 2;
// Number of points
const numPoints = dv.getInt32(offset, true);
offset += sizeOfInt32;
// Number of faces
const numIndices = dv.getInt32(offset, true) * 3;
offset += sizeOfInt32;
offset += sizeOfInt32; // Skip Level
const uBuffer = new Array(numPoints);
const vBuffer = new Array(numPoints);
const heights = new Array(numPoints);
let i;
for (i = 0; i < numPoints; ++i) {
uBuffer[i] = uStart + dv.getUint8(offset++) * xScale;
vBuffer[i] = vStart + dv.getUint8(offset++) * yScale;
// Height is stored in units of (1/EarthRadius) or (1/6371010.0)
heights[i] = dv.getFloat32(offset, true) * 6371010.0;
offset += sizeOfFloat;
}
const indices = new Array(numIndices);
for (i = 0; i < numIndices; ++i) {
indices[i] = dv.getUint16(offset, true);
offset += sizeOfUint16;
}
for (i = 0; i < numIndices; i += 3) {
const i0 = indices[i];
const i1 = indices[i + 1];
const i2 = indices[i + 2];
const u0 = uBuffer[i0];
const u1 = uBuffer[i1];
const u2 = uBuffer[i2];
const v0 = vBuffer[i0];
const v1 = vBuffer[i1];
const v2 = vBuffer[i2];
const barycentric = Intersections2D.computeBarycentricCoordinates(
u,
v,
u0,
v0,
u1,
v1,
u2,
v2,
barycentricCoordinateScratch
);
if (
barycentric.x >= -1e-15 &&
barycentric.y >= -1e-15 &&
barycentric.z >= -1e-15
) {
return (
barycentric.x * heights[i0] +
barycentric.y * heights[i1] +
barycentric.z * heights[i2]
);
}
}
// Position does not lie in any triangle in this mesh.
return undefined;
}
export default GoogleEarthEnterpriseTerrainData;