import Cartesian3 from "./Cartesian3.js"; import Cartographic from "./Cartographic.js"; import defaultValue from "./defaultValue.js"; import defined from "./defined.js"; import DeveloperError from "./DeveloperError.js"; import Interval from "./Interval.js"; import CesiumMath from "./Math.js"; import Matrix3 from "./Matrix3.js"; import QuadraticRealPolynomial from "./QuadraticRealPolynomial.js"; import QuarticRealPolynomial from "./QuarticRealPolynomial.js"; import Ray from "./Ray.js"; /** * Functions for computing the intersection between geometries such as rays, planes, triangles, and ellipsoids. * * @namespace IntersectionTests */ const IntersectionTests = {}; /** * Computes the intersection of a ray and a plane. * * @param {Ray} ray The ray. * @param {Plane} plane The plane. * @param {Cartesian3} [result] The object onto which to store the result. * @returns {Cartesian3} The intersection point or undefined if there is no intersections. */ IntersectionTests.rayPlane = function (ray, plane, result) { //>>includeStart('debug', pragmas.debug); if (!defined(ray)) { throw new DeveloperError("ray is required."); } if (!defined(plane)) { throw new DeveloperError("plane is required."); } //>>includeEnd('debug'); if (!defined(result)) { result = new Cartesian3(); } const origin = ray.origin; const direction = ray.direction; const normal = plane.normal; const denominator = Cartesian3.dot(normal, direction); if (Math.abs(denominator) < CesiumMath.EPSILON15) { // Ray is parallel to plane. The ray may be in the polygon's plane. return undefined; } const t = (-plane.distance - Cartesian3.dot(normal, origin)) / denominator; if (t < 0) { return undefined; } result = Cartesian3.multiplyByScalar(direction, t, result); return Cartesian3.add(origin, result, result); }; const scratchEdge0 = new Cartesian3(); const scratchEdge1 = new Cartesian3(); const scratchPVec = new Cartesian3(); const scratchTVec = new Cartesian3(); const scratchQVec = new Cartesian3(); /** * Computes the intersection of a ray and a triangle as a parametric distance along the input ray. The result is negative when the triangle is behind the ray. * * Implements {@link https://cadxfem.org/inf/Fast%20MinimumStorage%20RayTriangle%20Intersection.pdf| * Fast Minimum Storage Ray/Triangle Intersection} by Tomas Moller and Ben Trumbore. * * @memberof IntersectionTests * * @param {Ray} ray The ray. * @param {Cartesian3} p0 The first vertex of the triangle. * @param {Cartesian3} p1 The second vertex of the triangle. * @param {Cartesian3} p2 The third vertex of the triangle. * @param {Boolean} [cullBackFaces=false] If true, will only compute an intersection with the front face of the triangle * and return undefined for intersections with the back face. * @returns {Number} The intersection as a parametric distance along the ray, or undefined if there is no intersection. */ IntersectionTests.rayTriangleParametric = function ( ray, p0, p1, p2, cullBackFaces ) { //>>includeStart('debug', pragmas.debug); if (!defined(ray)) { throw new DeveloperError("ray is required."); } if (!defined(p0)) { throw new DeveloperError("p0 is required."); } if (!defined(p1)) { throw new DeveloperError("p1 is required."); } if (!defined(p2)) { throw new DeveloperError("p2 is required."); } //>>includeEnd('debug'); cullBackFaces = defaultValue(cullBackFaces, false); const origin = ray.origin; const direction = ray.direction; const edge0 = Cartesian3.subtract(p1, p0, scratchEdge0); const edge1 = Cartesian3.subtract(p2, p0, scratchEdge1); const p = Cartesian3.cross(direction, edge1, scratchPVec); const det = Cartesian3.dot(edge0, p); let tvec; let q; let u; let v; let t; if (cullBackFaces) { if (det < CesiumMath.EPSILON6) { return undefined; } tvec = Cartesian3.subtract(origin, p0, scratchTVec); u = Cartesian3.dot(tvec, p); if (u < 0.0 || u > det) { return undefined; } q = Cartesian3.cross(tvec, edge0, scratchQVec); v = Cartesian3.dot(direction, q); if (v < 0.0 || u + v > det) { return undefined; } t = Cartesian3.dot(edge1, q) / det; } else { if (Math.abs(det) < CesiumMath.EPSILON6) { return undefined; } const invDet = 1.0 / det; tvec = Cartesian3.subtract(origin, p0, scratchTVec); u = Cartesian3.dot(tvec, p) * invDet; if (u < 0.0 || u > 1.0) { return undefined; } q = Cartesian3.cross(tvec, edge0, scratchQVec); v = Cartesian3.dot(direction, q) * invDet; if (v < 0.0 || u + v > 1.0) { return undefined; } t = Cartesian3.dot(edge1, q) * invDet; } return t; }; /** * Computes the intersection of a ray and a triangle as a Cartesian3 coordinate. * * Implements {@link https://cadxfem.org/inf/Fast%20MinimumStorage%20RayTriangle%20Intersection.pdf| * Fast Minimum Storage Ray/Triangle Intersection} by Tomas Moller and Ben Trumbore. * * @memberof IntersectionTests * * @param {Ray} ray The ray. * @param {Cartesian3} p0 The first vertex of the triangle. * @param {Cartesian3} p1 The second vertex of the triangle. * @param {Cartesian3} p2 The third vertex of the triangle. * @param {Boolean} [cullBackFaces=false] If true, will only compute an intersection with the front face of the triangle * and return undefined for intersections with the back face. * @param {Cartesian3} [result] The Cartesian3 onto which to store the result. * @returns {Cartesian3} The intersection point or undefined if there is no intersections. */ IntersectionTests.rayTriangle = function ( ray, p0, p1, p2, cullBackFaces, result ) { const t = IntersectionTests.rayTriangleParametric( ray, p0, p1, p2, cullBackFaces ); if (!defined(t) || t < 0.0) { return undefined; } if (!defined(result)) { result = new Cartesian3(); } Cartesian3.multiplyByScalar(ray.direction, t, result); return Cartesian3.add(ray.origin, result, result); }; const scratchLineSegmentTriangleRay = new Ray(); /** * Computes the intersection of a line segment and a triangle. * @memberof IntersectionTests * * @param {Cartesian3} v0 The an end point of the line segment. * @param {Cartesian3} v1 The other end point of the line segment. * @param {Cartesian3} p0 The first vertex of the triangle. * @param {Cartesian3} p1 The second vertex of the triangle. * @param {Cartesian3} p2 The third vertex of the triangle. * @param {Boolean} [cullBackFaces=false] If true, will only compute an intersection with the front face of the triangle * and return undefined for intersections with the back face. * @param {Cartesian3} [result] The Cartesian3 onto which to store the result. * @returns {Cartesian3} The intersection point or undefined if there is no intersections. */ IntersectionTests.lineSegmentTriangle = function ( v0, v1, p0, p1, p2, cullBackFaces, result ) { //>>includeStart('debug', pragmas.debug); if (!defined(v0)) { throw new DeveloperError("v0 is required."); } if (!defined(v1)) { throw new DeveloperError("v1 is required."); } if (!defined(p0)) { throw new DeveloperError("p0 is required."); } if (!defined(p1)) { throw new DeveloperError("p1 is required."); } if (!defined(p2)) { throw new DeveloperError("p2 is required."); } //>>includeEnd('debug'); const ray = scratchLineSegmentTriangleRay; Cartesian3.clone(v0, ray.origin); Cartesian3.subtract(v1, v0, ray.direction); Cartesian3.normalize(ray.direction, ray.direction); const t = IntersectionTests.rayTriangleParametric( ray, p0, p1, p2, cullBackFaces ); if (!defined(t) || t < 0.0 || t > Cartesian3.distance(v0, v1)) { return undefined; } if (!defined(result)) { result = new Cartesian3(); } Cartesian3.multiplyByScalar(ray.direction, t, result); return Cartesian3.add(ray.origin, result, result); }; function solveQuadratic(a, b, c, result) { const det = b * b - 4.0 * a * c; if (det < 0.0) { return undefined; } else if (det > 0.0) { const denom = 1.0 / (2.0 * a); const disc = Math.sqrt(det); const root0 = (-b + disc) * denom; const root1 = (-b - disc) * denom; if (root0 < root1) { result.root0 = root0; result.root1 = root1; } else { result.root0 = root1; result.root1 = root0; } return result; } const root = -b / (2.0 * a); if (root === 0.0) { return undefined; } result.root0 = result.root1 = root; return result; } const raySphereRoots = { root0: 0.0, root1: 0.0, }; function raySphere(ray, sphere, result) { if (!defined(result)) { result = new Interval(); } const origin = ray.origin; const direction = ray.direction; const center = sphere.center; const radiusSquared = sphere.radius * sphere.radius; const diff = Cartesian3.subtract(origin, center, scratchPVec); const a = Cartesian3.dot(direction, direction); const b = 2.0 * Cartesian3.dot(direction, diff); const c = Cartesian3.magnitudeSquared(diff) - radiusSquared; const roots = solveQuadratic(a, b, c, raySphereRoots); if (!defined(roots)) { return undefined; } result.start = roots.root0; result.stop = roots.root1; return result; } /** * Computes the intersection points of a ray with a sphere. * @memberof IntersectionTests * * @param {Ray} ray The ray. * @param {BoundingSphere} sphere The sphere. * @param {Interval} [result] The result onto which to store the result. * @returns {Interval} The interval containing scalar points along the ray or undefined if there are no intersections. */ IntersectionTests.raySphere = function (ray, sphere, result) { //>>includeStart('debug', pragmas.debug); if (!defined(ray)) { throw new DeveloperError("ray is required."); } if (!defined(sphere)) { throw new DeveloperError("sphere is required."); } //>>includeEnd('debug'); result = raySphere(ray, sphere, result); if (!defined(result) || result.stop < 0.0) { return undefined; } result.start = Math.max(result.start, 0.0); return result; }; const scratchLineSegmentRay = new Ray(); /** * Computes the intersection points of a line segment with a sphere. * @memberof IntersectionTests * * @param {Cartesian3} p0 An end point of the line segment. * @param {Cartesian3} p1 The other end point of the line segment. * @param {BoundingSphere} sphere The sphere. * @param {Interval} [result] The result onto which to store the result. * @returns {Interval} The interval containing scalar points along the ray or undefined if there are no intersections. */ IntersectionTests.lineSegmentSphere = function (p0, p1, sphere, result) { //>>includeStart('debug', pragmas.debug); if (!defined(p0)) { throw new DeveloperError("p0 is required."); } if (!defined(p1)) { throw new DeveloperError("p1 is required."); } if (!defined(sphere)) { throw new DeveloperError("sphere is required."); } //>>includeEnd('debug'); const ray = scratchLineSegmentRay; Cartesian3.clone(p0, ray.origin); const direction = Cartesian3.subtract(p1, p0, ray.direction); const maxT = Cartesian3.magnitude(direction); Cartesian3.normalize(direction, direction); result = raySphere(ray, sphere, result); if (!defined(result) || result.stop < 0.0 || result.start > maxT) { return undefined; } result.start = Math.max(result.start, 0.0); result.stop = Math.min(result.stop, maxT); return result; }; const scratchQ = new Cartesian3(); const scratchW = new Cartesian3(); /** * Computes the intersection points of a ray with an ellipsoid. * * @param {Ray} ray The ray. * @param {Ellipsoid} ellipsoid The ellipsoid. * @returns {Interval} The interval containing scalar points along the ray or undefined if there are no intersections. */ IntersectionTests.rayEllipsoid = function (ray, ellipsoid) { //>>includeStart('debug', pragmas.debug); if (!defined(ray)) { throw new DeveloperError("ray is required."); } if (!defined(ellipsoid)) { throw new DeveloperError("ellipsoid is required."); } //>>includeEnd('debug'); const inverseRadii = ellipsoid.oneOverRadii; const q = Cartesian3.multiplyComponents(inverseRadii, ray.origin, scratchQ); const w = Cartesian3.multiplyComponents( inverseRadii, ray.direction, scratchW ); const q2 = Cartesian3.magnitudeSquared(q); const qw = Cartesian3.dot(q, w); let difference, w2, product, discriminant, temp; if (q2 > 1.0) { // Outside ellipsoid. if (qw >= 0.0) { // Looking outward or tangent (0 intersections). return undefined; } // qw < 0.0. const qw2 = qw * qw; difference = q2 - 1.0; // Positively valued. w2 = Cartesian3.magnitudeSquared(w); product = w2 * difference; if (qw2 < product) { // Imaginary roots (0 intersections). return undefined; } else if (qw2 > product) { // Distinct roots (2 intersections). discriminant = qw * qw - product; temp = -qw + Math.sqrt(discriminant); // Avoid cancellation. const root0 = temp / w2; const root1 = difference / temp; if (root0 < root1) { return new Interval(root0, root1); } return { start: root1, stop: root0, }; } // qw2 == product. Repeated roots (2 intersections). const root = Math.sqrt(difference / w2); return new Interval(root, root); } else if (q2 < 1.0) { // Inside ellipsoid (2 intersections). difference = q2 - 1.0; // Negatively valued. w2 = Cartesian3.magnitudeSquared(w); product = w2 * difference; // Negatively valued. discriminant = qw * qw - product; temp = -qw + Math.sqrt(discriminant); // Positively valued. return new Interval(0.0, temp / w2); } // q2 == 1.0. On ellipsoid. if (qw < 0.0) { // Looking inward. w2 = Cartesian3.magnitudeSquared(w); return new Interval(0.0, -qw / w2); } // qw >= 0.0. Looking outward or tangent. return undefined; }; function addWithCancellationCheck(left, right, tolerance) { const difference = left + right; if ( CesiumMath.sign(left) !== CesiumMath.sign(right) && Math.abs(difference / Math.max(Math.abs(left), Math.abs(right))) < tolerance ) { return 0.0; } return difference; } function quadraticVectorExpression(A, b, c, x, w) { const xSquared = x * x; const wSquared = w * w; const l2 = (A[Matrix3.COLUMN1ROW1] - A[Matrix3.COLUMN2ROW2]) * wSquared; const l1 = w * (x * addWithCancellationCheck( A[Matrix3.COLUMN1ROW0], A[Matrix3.COLUMN0ROW1], CesiumMath.EPSILON15 ) + b.y); const l0 = A[Matrix3.COLUMN0ROW0] * xSquared + A[Matrix3.COLUMN2ROW2] * wSquared + x * b.x + c; const r1 = wSquared * addWithCancellationCheck( A[Matrix3.COLUMN2ROW1], A[Matrix3.COLUMN1ROW2], CesiumMath.EPSILON15 ); const r0 = w * (x * addWithCancellationCheck(A[Matrix3.COLUMN2ROW0], A[Matrix3.COLUMN0ROW2]) + b.z); let cosines; const solutions = []; if (r0 === 0.0 && r1 === 0.0) { cosines = QuadraticRealPolynomial.computeRealRoots(l2, l1, l0); if (cosines.length === 0) { return solutions; } const cosine0 = cosines[0]; const sine0 = Math.sqrt(Math.max(1.0 - cosine0 * cosine0, 0.0)); solutions.push(new Cartesian3(x, w * cosine0, w * -sine0)); solutions.push(new Cartesian3(x, w * cosine0, w * sine0)); if (cosines.length === 2) { const cosine1 = cosines[1]; const sine1 = Math.sqrt(Math.max(1.0 - cosine1 * cosine1, 0.0)); solutions.push(new Cartesian3(x, w * cosine1, w * -sine1)); solutions.push(new Cartesian3(x, w * cosine1, w * sine1)); } return solutions; } const r0Squared = r0 * r0; const r1Squared = r1 * r1; const l2Squared = l2 * l2; const r0r1 = r0 * r1; const c4 = l2Squared + r1Squared; const c3 = 2.0 * (l1 * l2 + r0r1); const c2 = 2.0 * l0 * l2 + l1 * l1 - r1Squared + r0Squared; const c1 = 2.0 * (l0 * l1 - r0r1); const c0 = l0 * l0 - r0Squared; if (c4 === 0.0 && c3 === 0.0 && c2 === 0.0 && c1 === 0.0) { return solutions; } cosines = QuarticRealPolynomial.computeRealRoots(c4, c3, c2, c1, c0); const length = cosines.length; if (length === 0) { return solutions; } for (let i = 0; i < length; ++i) { const cosine = cosines[i]; const cosineSquared = cosine * cosine; const sineSquared = Math.max(1.0 - cosineSquared, 0.0); const sine = Math.sqrt(sineSquared); //const left = l2 * cosineSquared + l1 * cosine + l0; let left; if (CesiumMath.sign(l2) === CesiumMath.sign(l0)) { left = addWithCancellationCheck( l2 * cosineSquared + l0, l1 * cosine, CesiumMath.EPSILON12 ); } else if (CesiumMath.sign(l0) === CesiumMath.sign(l1 * cosine)) { left = addWithCancellationCheck( l2 * cosineSquared, l1 * cosine + l0, CesiumMath.EPSILON12 ); } else { left = addWithCancellationCheck( l2 * cosineSquared + l1 * cosine, l0, CesiumMath.EPSILON12 ); } const right = addWithCancellationCheck( r1 * cosine, r0, CesiumMath.EPSILON15 ); const product = left * right; if (product < 0.0) { solutions.push(new Cartesian3(x, w * cosine, w * sine)); } else if (product > 0.0) { solutions.push(new Cartesian3(x, w * cosine, w * -sine)); } else if (sine !== 0.0) { solutions.push(new Cartesian3(x, w * cosine, w * -sine)); solutions.push(new Cartesian3(x, w * cosine, w * sine)); ++i; } else { solutions.push(new Cartesian3(x, w * cosine, w * sine)); } } return solutions; } const firstAxisScratch = new Cartesian3(); const secondAxisScratch = new Cartesian3(); const thirdAxisScratch = new Cartesian3(); const referenceScratch = new Cartesian3(); const bCart = new Cartesian3(); const bScratch = new Matrix3(); const btScratch = new Matrix3(); const diScratch = new Matrix3(); const dScratch = new Matrix3(); const cScratch = new Matrix3(); const tempMatrix = new Matrix3(); const aScratch = new Matrix3(); const sScratch = new Cartesian3(); const closestScratch = new Cartesian3(); const surfPointScratch = new Cartographic(); /** * Provides the point along the ray which is nearest to the ellipsoid. * * @param {Ray} ray The ray. * @param {Ellipsoid} ellipsoid The ellipsoid. * @returns {Cartesian3} The nearest planetodetic point on the ray. */ IntersectionTests.grazingAltitudeLocation = function (ray, ellipsoid) { //>>includeStart('debug', pragmas.debug); if (!defined(ray)) { throw new DeveloperError("ray is required."); } if (!defined(ellipsoid)) { throw new DeveloperError("ellipsoid is required."); } //>>includeEnd('debug'); const position = ray.origin; const direction = ray.direction; if (!Cartesian3.equals(position, Cartesian3.ZERO)) { const normal = ellipsoid.geodeticSurfaceNormal(position, firstAxisScratch); if (Cartesian3.dot(direction, normal) >= 0.0) { // The location provided is the closest point in altitude return position; } } const intersects = defined(this.rayEllipsoid(ray, ellipsoid)); // Compute the scaled direction vector. const f = ellipsoid.transformPositionToScaledSpace( direction, firstAxisScratch ); // Constructs a basis from the unit scaled direction vector. Construct its rotation and transpose. const firstAxis = Cartesian3.normalize(f, f); const reference = Cartesian3.mostOrthogonalAxis(f, referenceScratch); const secondAxis = Cartesian3.normalize( Cartesian3.cross(reference, firstAxis, secondAxisScratch), secondAxisScratch ); const thirdAxis = Cartesian3.normalize( Cartesian3.cross(firstAxis, secondAxis, thirdAxisScratch), thirdAxisScratch ); const B = bScratch; B[0] = firstAxis.x; B[1] = firstAxis.y; B[2] = firstAxis.z; B[3] = secondAxis.x; B[4] = secondAxis.y; B[5] = secondAxis.z; B[6] = thirdAxis.x; B[7] = thirdAxis.y; B[8] = thirdAxis.z; const B_T = Matrix3.transpose(B, btScratch); // Get the scaling matrix and its inverse. const D_I = Matrix3.fromScale(ellipsoid.radii, diScratch); const D = Matrix3.fromScale(ellipsoid.oneOverRadii, dScratch); const C = cScratch; C[0] = 0.0; C[1] = -direction.z; C[2] = direction.y; C[3] = direction.z; C[4] = 0.0; C[5] = -direction.x; C[6] = -direction.y; C[7] = direction.x; C[8] = 0.0; const temp = Matrix3.multiply( Matrix3.multiply(B_T, D, tempMatrix), C, tempMatrix ); const A = Matrix3.multiply( Matrix3.multiply(temp, D_I, aScratch), B, aScratch ); const b = Matrix3.multiplyByVector(temp, position, bCart); // Solve for the solutions to the expression in standard form: const solutions = quadraticVectorExpression( A, Cartesian3.negate(b, firstAxisScratch), 0.0, 0.0, 1.0 ); let s; let altitude; const length = solutions.length; if (length > 0) { let closest = Cartesian3.clone(Cartesian3.ZERO, closestScratch); let maximumValue = Number.NEGATIVE_INFINITY; for (let i = 0; i < length; ++i) { s = Matrix3.multiplyByVector( D_I, Matrix3.multiplyByVector(B, solutions[i], sScratch), sScratch ); const v = Cartesian3.normalize( Cartesian3.subtract(s, position, referenceScratch), referenceScratch ); const dotProduct = Cartesian3.dot(v, direction); if (dotProduct > maximumValue) { maximumValue = dotProduct; closest = Cartesian3.clone(s, closest); } } const surfacePoint = ellipsoid.cartesianToCartographic( closest, surfPointScratch ); maximumValue = CesiumMath.clamp(maximumValue, 0.0, 1.0); altitude = Cartesian3.magnitude( Cartesian3.subtract(closest, position, referenceScratch) ) * Math.sqrt(1.0 - maximumValue * maximumValue); altitude = intersects ? -altitude : altitude; surfacePoint.height = altitude; return ellipsoid.cartographicToCartesian(surfacePoint, new Cartesian3()); } return undefined; }; const lineSegmentPlaneDifference = new Cartesian3(); /** * Computes the intersection of a line segment and a plane. * * @param {Cartesian3} endPoint0 An end point of the line segment. * @param {Cartesian3} endPoint1 The other end point of the line segment. * @param {Plane} plane The plane. * @param {Cartesian3} [result] The object onto which to store the result. * @returns {Cartesian3} The intersection point or undefined if there is no intersection. * * @example * const origin = Cesium.Cartesian3.fromDegrees(-75.59777, 40.03883); * const normal = ellipsoid.geodeticSurfaceNormal(origin); * const plane = Cesium.Plane.fromPointNormal(origin, normal); * * const p0 = new Cesium.Cartesian3(...); * const p1 = new Cesium.Cartesian3(...); * * // find the intersection of the line segment from p0 to p1 and the tangent plane at origin. * const intersection = Cesium.IntersectionTests.lineSegmentPlane(p0, p1, plane); */ IntersectionTests.lineSegmentPlane = function ( endPoint0, endPoint1, plane, result ) { //>>includeStart('debug', pragmas.debug); if (!defined(endPoint0)) { throw new DeveloperError("endPoint0 is required."); } if (!defined(endPoint1)) { throw new DeveloperError("endPoint1 is required."); } if (!defined(plane)) { throw new DeveloperError("plane is required."); } //>>includeEnd('debug'); if (!defined(result)) { result = new Cartesian3(); } const difference = Cartesian3.subtract( endPoint1, endPoint0, lineSegmentPlaneDifference ); const normal = plane.normal; const nDotDiff = Cartesian3.dot(normal, difference); // check if the segment and plane are parallel if (Math.abs(nDotDiff) < CesiumMath.EPSILON6) { return undefined; } const nDotP0 = Cartesian3.dot(normal, endPoint0); const t = -(plane.distance + nDotP0) / nDotDiff; // intersection only if t is in [0, 1] if (t < 0.0 || t > 1.0) { return undefined; } // intersection is endPoint0 + t * (endPoint1 - endPoint0) Cartesian3.multiplyByScalar(difference, t, result); Cartesian3.add(endPoint0, result, result); return result; }; /** * Computes the intersection of a triangle and a plane * * @param {Cartesian3} p0 First point of the triangle * @param {Cartesian3} p1 Second point of the triangle * @param {Cartesian3} p2 Third point of the triangle * @param {Plane} plane Intersection plane * @returns {Object} An object with properties positions and indices, which are arrays that represent three triangles that do not cross the plane. (Undefined if no intersection exists) * * @example * const origin = Cesium.Cartesian3.fromDegrees(-75.59777, 40.03883); * const normal = ellipsoid.geodeticSurfaceNormal(origin); * const plane = Cesium.Plane.fromPointNormal(origin, normal); * * const p0 = new Cesium.Cartesian3(...); * const p1 = new Cesium.Cartesian3(...); * const p2 = new Cesium.Cartesian3(...); * * // convert the triangle composed of points (p0, p1, p2) to three triangles that don't cross the plane * const triangles = Cesium.IntersectionTests.trianglePlaneIntersection(p0, p1, p2, plane); */ IntersectionTests.trianglePlaneIntersection = function (p0, p1, p2, plane) { //>>includeStart('debug', pragmas.debug); if (!defined(p0) || !defined(p1) || !defined(p2) || !defined(plane)) { throw new DeveloperError("p0, p1, p2, and plane are required."); } //>>includeEnd('debug'); const planeNormal = plane.normal; const planeD = plane.distance; const p0Behind = Cartesian3.dot(planeNormal, p0) + planeD < 0.0; const p1Behind = Cartesian3.dot(planeNormal, p1) + planeD < 0.0; const p2Behind = Cartesian3.dot(planeNormal, p2) + planeD < 0.0; // Given these dots products, the calls to lineSegmentPlaneIntersection // always have defined results. let numBehind = 0; numBehind += p0Behind ? 1 : 0; numBehind += p1Behind ? 1 : 0; numBehind += p2Behind ? 1 : 0; let u1, u2; if (numBehind === 1 || numBehind === 2) { u1 = new Cartesian3(); u2 = new Cartesian3(); } if (numBehind === 1) { if (p0Behind) { IntersectionTests.lineSegmentPlane(p0, p1, plane, u1); IntersectionTests.lineSegmentPlane(p0, p2, plane, u2); return { positions: [p0, p1, p2, u1, u2], indices: [ // Behind 0, 3, 4, // In front 1, 2, 4, 1, 4, 3, ], }; } else if (p1Behind) { IntersectionTests.lineSegmentPlane(p1, p2, plane, u1); IntersectionTests.lineSegmentPlane(p1, p0, plane, u2); return { positions: [p0, p1, p2, u1, u2], indices: [ // Behind 1, 3, 4, // In front 2, 0, 4, 2, 4, 3, ], }; } else if (p2Behind) { IntersectionTests.lineSegmentPlane(p2, p0, plane, u1); IntersectionTests.lineSegmentPlane(p2, p1, plane, u2); return { positions: [p0, p1, p2, u1, u2], indices: [ // Behind 2, 3, 4, // In front 0, 1, 4, 0, 4, 3, ], }; } } else if (numBehind === 2) { if (!p0Behind) { IntersectionTests.lineSegmentPlane(p1, p0, plane, u1); IntersectionTests.lineSegmentPlane(p2, p0, plane, u2); return { positions: [p0, p1, p2, u1, u2], indices: [ // Behind 1, 2, 4, 1, 4, 3, // In front 0, 3, 4, ], }; } else if (!p1Behind) { IntersectionTests.lineSegmentPlane(p2, p1, plane, u1); IntersectionTests.lineSegmentPlane(p0, p1, plane, u2); return { positions: [p0, p1, p2, u1, u2], indices: [ // Behind 2, 0, 4, 2, 4, 3, // In front 1, 3, 4, ], }; } else if (!p2Behind) { IntersectionTests.lineSegmentPlane(p0, p2, plane, u1); IntersectionTests.lineSegmentPlane(p1, p2, plane, u2); return { positions: [p0, p1, p2, u1, u2], indices: [ // Behind 0, 1, 4, 0, 4, 3, // In front 2, 3, 4, ], }; } } // if numBehind is 3, the triangle is completely behind the plane; // otherwise, it is completely in front (numBehind is 0). return undefined; }; export default IntersectionTests;