import Cartesian2 from "./Cartesian2.js"; import Check from "./Check.js"; import defaultValue from "./defaultValue.js"; import defined from "./defined.js"; import DeveloperError from "./DeveloperError.js"; /** * A 2x2 matrix, indexable as a column-major order array. * Constructor parameters are in row-major order for code readability. * @alias Matrix2 * @constructor * @implements {ArrayLike} * * @param {Number} [column0Row0=0.0] The value for column 0, row 0. * @param {Number} [column1Row0=0.0] The value for column 1, row 0. * @param {Number} [column0Row1=0.0] The value for column 0, row 1. * @param {Number} [column1Row1=0.0] The value for column 1, row 1. * * @see Matrix2.fromArray * @see Matrix2.fromColumnMajorArray * @see Matrix2.fromRowMajorArray * @see Matrix2.fromScale * @see Matrix2.fromUniformScale * @see Matrix2.fromRotation * @see Matrix3 * @see Matrix4 */ function Matrix2(column0Row0, column1Row0, column0Row1, column1Row1) { this[0] = defaultValue(column0Row0, 0.0); this[1] = defaultValue(column0Row1, 0.0); this[2] = defaultValue(column1Row0, 0.0); this[3] = defaultValue(column1Row1, 0.0); } /** * The number of elements used to pack the object into an array. * @type {Number} */ Matrix2.packedLength = 4; /** * Stores the provided instance into the provided array. * * @param {Matrix2} value The value to pack. * @param {Number[]} array The array to pack into. * @param {Number} [startingIndex=0] The index into the array at which to start packing the elements. * * @returns {Number[]} The array that was packed into */ Matrix2.pack = function (value, array, startingIndex) { //>>includeStart('debug', pragmas.debug); Check.typeOf.object("value", value); Check.defined("array", array); //>>includeEnd('debug'); startingIndex = defaultValue(startingIndex, 0); array[startingIndex++] = value[0]; array[startingIndex++] = value[1]; array[startingIndex++] = value[2]; array[startingIndex++] = value[3]; return array; }; /** * Retrieves an instance from a packed array. * * @param {Number[]} array The packed array. * @param {Number} [startingIndex=0] The starting index of the element to be unpacked. * @param {Matrix2} [result] The object into which to store the result. * @returns {Matrix2} The modified result parameter or a new Matrix2 instance if one was not provided. */ Matrix2.unpack = function (array, startingIndex, result) { //>>includeStart('debug', pragmas.debug); Check.defined("array", array); //>>includeEnd('debug'); startingIndex = defaultValue(startingIndex, 0); if (!defined(result)) { result = new Matrix2(); } result[0] = array[startingIndex++]; result[1] = array[startingIndex++]; result[2] = array[startingIndex++]; result[3] = array[startingIndex++]; return result; }; /** * Flattens an array of Matrix2s into an array of components. The components * are stored in column-major order. * * @param {Matrix2[]} array The array of matrices to pack. * @param {Number[]} [result] The array onto which to store the result. If this is a typed array, it must have array.length * 4 components, else a {@link DeveloperError} will be thrown. If it is a regular array, it will be resized to have (array.length * 4) elements. * @returns {Number[]} The packed array. */ Matrix2.packArray = function (array, result) { //>>includeStart('debug', pragmas.debug); Check.defined("array", array); //>>includeEnd('debug'); const length = array.length; const resultLength = length * 4; if (!defined(result)) { result = new Array(resultLength); } else if (!Array.isArray(result) && result.length !== resultLength) { //>>includeStart('debug', pragmas.debug); throw new DeveloperError( "If result is a typed array, it must have exactly array.length * 4 elements" ); //>>includeEnd('debug'); } else if (result.length !== resultLength) { result.length = resultLength; } for (let i = 0; i < length; ++i) { Matrix2.pack(array[i], result, i * 4); } return result; }; /** * Unpacks an array of column-major matrix components into an array of Matrix2s. * * @param {Number[]} array The array of components to unpack. * @param {Matrix2[]} [result] The array onto which to store the result. * @returns {Matrix2[]} The unpacked array. */ Matrix2.unpackArray = function (array, result) { //>>includeStart('debug', pragmas.debug); Check.defined("array", array); Check.typeOf.number.greaterThanOrEquals("array.length", array.length, 4); if (array.length % 4 !== 0) { throw new DeveloperError("array length must be a multiple of 4."); } //>>includeEnd('debug'); const length = array.length; if (!defined(result)) { result = new Array(length / 4); } else { result.length = length / 4; } for (let i = 0; i < length; i += 4) { const index = i / 4; result[index] = Matrix2.unpack(array, i, result[index]); } return result; }; /** * Duplicates a Matrix2 instance. * * @param {Matrix2} matrix The matrix to duplicate. * @param {Matrix2} [result] The object onto which to store the result. * @returns {Matrix2} The modified result parameter or a new Matrix2 instance if one was not provided. (Returns undefined if matrix is undefined) */ Matrix2.clone = function (matrix, result) { if (!defined(matrix)) { return undefined; } if (!defined(result)) { return new Matrix2(matrix[0], matrix[2], matrix[1], matrix[3]); } result[0] = matrix[0]; result[1] = matrix[1]; result[2] = matrix[2]; result[3] = matrix[3]; return result; }; /** * Creates a Matrix2 from 4 consecutive elements in an array. * * @function * @param {Number[]} array The array whose 4 consecutive elements correspond to the positions of the matrix. Assumes column-major order. * @param {Number} [startingIndex=0] The offset into the array of the first element, which corresponds to first column first row position in the matrix. * @param {Matrix2} [result] The object onto which to store the result. * @returns {Matrix2} The modified result parameter or a new Matrix2 instance if one was not provided. * * @example * // Create the Matrix2: * // [1.0, 2.0] * // [1.0, 2.0] * * const v = [1.0, 1.0, 2.0, 2.0]; * const m = Cesium.Matrix2.fromArray(v); * * // Create same Matrix2 with using an offset into an array * const v2 = [0.0, 0.0, 1.0, 1.0, 2.0, 2.0]; * const m2 = Cesium.Matrix2.fromArray(v2, 2); */ Matrix2.fromArray = Matrix2.unpack; /** * Creates a Matrix2 instance from a column-major order array. * * @param {Number[]} values The column-major order array. * @param {Matrix2} [result] The object in which the result will be stored, if undefined a new instance will be created. * @returns {Matrix2} The modified result parameter, or a new Matrix2 instance if one was not provided. */ Matrix2.fromColumnMajorArray = function (values, result) { //>>includeStart('debug', pragmas.debug); Check.defined("values", values); //>>includeEnd('debug'); return Matrix2.clone(values, result); }; /** * Creates a Matrix2 instance from a row-major order array. * The resulting matrix will be in column-major order. * * @param {Number[]} values The row-major order array. * @param {Matrix2} [result] The object in which the result will be stored, if undefined a new instance will be created. * @returns {Matrix2} The modified result parameter, or a new Matrix2 instance if one was not provided. */ Matrix2.fromRowMajorArray = function (values, result) { //>>includeStart('debug', pragmas.debug); Check.defined("values", values); //>>includeEnd('debug'); if (!defined(result)) { return new Matrix2(values[0], values[1], values[2], values[3]); } result[0] = values[0]; result[1] = values[2]; result[2] = values[1]; result[3] = values[3]; return result; }; /** * Computes a Matrix2 instance representing a non-uniform scale. * * @param {Cartesian2} scale The x and y scale factors. * @param {Matrix2} [result] The object in which the result will be stored, if undefined a new instance will be created. * @returns {Matrix2} The modified result parameter, or a new Matrix2 instance if one was not provided. * * @example * // Creates * // [7.0, 0.0] * // [0.0, 8.0] * const m = Cesium.Matrix2.fromScale(new Cesium.Cartesian2(7.0, 8.0)); */ Matrix2.fromScale = function (scale, result) { //>>includeStart('debug', pragmas.debug); Check.typeOf.object("scale", scale); //>>includeEnd('debug'); if (!defined(result)) { return new Matrix2(scale.x, 0.0, 0.0, scale.y); } result[0] = scale.x; result[1] = 0.0; result[2] = 0.0; result[3] = scale.y; return result; }; /** * Computes a Matrix2 instance representing a uniform scale. * * @param {Number} scale The uniform scale factor. * @param {Matrix2} [result] The object in which the result will be stored, if undefined a new instance will be created. * @returns {Matrix2} The modified result parameter, or a new Matrix2 instance if one was not provided. * * @example * // Creates * // [2.0, 0.0] * // [0.0, 2.0] * const m = Cesium.Matrix2.fromUniformScale(2.0); */ Matrix2.fromUniformScale = function (scale, result) { //>>includeStart('debug', pragmas.debug); Check.typeOf.number("scale", scale); //>>includeEnd('debug'); if (!defined(result)) { return new Matrix2(scale, 0.0, 0.0, scale); } result[0] = scale; result[1] = 0.0; result[2] = 0.0; result[3] = scale; return result; }; /** * Creates a rotation matrix. * * @param {Number} angle The angle, in radians, of the rotation. Positive angles are counterclockwise. * @param {Matrix2} [result] The object in which the result will be stored, if undefined a new instance will be created. * @returns {Matrix2} The modified result parameter, or a new Matrix2 instance if one was not provided. * * @example * // Rotate a point 45 degrees counterclockwise. * const p = new Cesium.Cartesian2(5, 6); * const m = Cesium.Matrix2.fromRotation(Cesium.Math.toRadians(45.0)); * const rotated = Cesium.Matrix2.multiplyByVector(m, p, new Cesium.Cartesian2()); */ Matrix2.fromRotation = function (angle, result) { //>>includeStart('debug', pragmas.debug); Check.typeOf.number("angle", angle); //>>includeEnd('debug'); const cosAngle = Math.cos(angle); const sinAngle = Math.sin(angle); if (!defined(result)) { return new Matrix2(cosAngle, -sinAngle, sinAngle, cosAngle); } result[0] = cosAngle; result[1] = sinAngle; result[2] = -sinAngle; result[3] = cosAngle; return result; }; /** * Creates an Array from the provided Matrix2 instance. * The array will be in column-major order. * * @param {Matrix2} matrix The matrix to use.. * @param {Number[]} [result] The Array onto which to store the result. * @returns {Number[]} The modified Array parameter or a new Array instance if one was not provided. */ Matrix2.toArray = function (matrix, result) { //>>includeStart('debug', pragmas.debug); Check.typeOf.object("matrix", matrix); //>>includeEnd('debug'); if (!defined(result)) { return [matrix[0], matrix[1], matrix[2], matrix[3]]; } result[0] = matrix[0]; result[1] = matrix[1]; result[2] = matrix[2]; result[3] = matrix[3]; return result; }; /** * Computes the array index of the element at the provided row and column. * * @param {Number} row The zero-based index of the row. * @param {Number} column The zero-based index of the column. * @returns {Number} The index of the element at the provided row and column. * * @exception {DeveloperError} row must be 0 or 1. * @exception {DeveloperError} column must be 0 or 1. * * @example * const myMatrix = new Cesium.Matrix2(); * const column1Row0Index = Cesium.Matrix2.getElementIndex(1, 0); * const column1Row0 = myMatrix[column1Row0Index] * myMatrix[column1Row0Index] = 10.0; */ Matrix2.getElementIndex = function (column, row) { //>>includeStart('debug', pragmas.debug); Check.typeOf.number.greaterThanOrEquals("row", row, 0); Check.typeOf.number.lessThanOrEquals("row", row, 1); Check.typeOf.number.greaterThanOrEquals("column", column, 0); Check.typeOf.number.lessThanOrEquals("column", column, 1); //>>includeEnd('debug'); return column * 2 + row; }; /** * Retrieves a copy of the matrix column at the provided index as a Cartesian2 instance. * * @param {Matrix2} matrix The matrix to use. * @param {Number} index The zero-based index of the column to retrieve. * @param {Cartesian2} result The object onto which to store the result. * @returns {Cartesian2} The modified result parameter. * * @exception {DeveloperError} index must be 0 or 1. */ Matrix2.getColumn = function (matrix, index, result) { //>>includeStart('debug', pragmas.debug); Check.typeOf.object("matrix", matrix); Check.typeOf.number.greaterThanOrEquals("index", index, 0); Check.typeOf.number.lessThanOrEquals("index", index, 1); Check.typeOf.object("result", result); //>>includeEnd('debug'); const startIndex = index * 2; const x = matrix[startIndex]; const y = matrix[startIndex + 1]; result.x = x; result.y = y; return result; }; /** * Computes a new matrix that replaces the specified column in the provided matrix with the provided Cartesian2 instance. * * @param {Matrix2} matrix The matrix to use. * @param {Number} index The zero-based index of the column to set. * @param {Cartesian2} cartesian The Cartesian whose values will be assigned to the specified column. * @param {Cartesian2} result The object onto which to store the result. * @returns {Matrix2} The modified result parameter. * * @exception {DeveloperError} index must be 0 or 1. */ Matrix2.setColumn = function (matrix, index, cartesian, result) { //>>includeStart('debug', pragmas.debug); Check.typeOf.object("matrix", matrix); Check.typeOf.number.greaterThanOrEquals("index", index, 0); Check.typeOf.number.lessThanOrEquals("index", index, 1); Check.typeOf.object("cartesian", cartesian); Check.typeOf.object("result", result); //>>includeEnd('debug'); result = Matrix2.clone(matrix, result); const startIndex = index * 2; result[startIndex] = cartesian.x; result[startIndex + 1] = cartesian.y; return result; }; /** * Retrieves a copy of the matrix row at the provided index as a Cartesian2 instance. * * @param {Matrix2} matrix The matrix to use. * @param {Number} index The zero-based index of the row to retrieve. * @param {Cartesian2} result The object onto which to store the result. * @returns {Cartesian2} The modified result parameter. * * @exception {DeveloperError} index must be 0 or 1. */ Matrix2.getRow = function (matrix, index, result) { //>>includeStart('debug', pragmas.debug); Check.typeOf.object("matrix", matrix); Check.typeOf.number.greaterThanOrEquals("index", index, 0); Check.typeOf.number.lessThanOrEquals("index", index, 1); Check.typeOf.object("result", result); //>>includeEnd('debug'); const x = matrix[index]; const y = matrix[index + 2]; result.x = x; result.y = y; return result; }; /** * Computes a new matrix that replaces the specified row in the provided matrix with the provided Cartesian2 instance. * * @param {Matrix2} matrix The matrix to use. * @param {Number} index The zero-based index of the row to set. * @param {Cartesian2} cartesian The Cartesian whose values will be assigned to the specified row. * @param {Matrix2} result The object onto which to store the result. * @returns {Matrix2} The modified result parameter. * * @exception {DeveloperError} index must be 0 or 1. */ Matrix2.setRow = function (matrix, index, cartesian, result) { //>>includeStart('debug', pragmas.debug); Check.typeOf.object("matrix", matrix); Check.typeOf.number.greaterThanOrEquals("index", index, 0); Check.typeOf.number.lessThanOrEquals("index", index, 1); Check.typeOf.object("cartesian", cartesian); Check.typeOf.object("result", result); //>>includeEnd('debug'); result = Matrix2.clone(matrix, result); result[index] = cartesian.x; result[index + 2] = cartesian.y; return result; }; const scaleScratch1 = new Cartesian2(); /** * Computes a new matrix that replaces the scale with the provided scale. * This assumes the matrix is an affine transformation. * * @param {Matrix2} matrix The matrix to use. * @param {Cartesian2} scale The scale that replaces the scale of the provided matrix. * @param {Matrix2} result The object onto which to store the result. * @returns {Matrix2} The modified result parameter. * * @see Matrix2.setUniformScale * @see Matrix2.fromScale * @see Matrix2.fromUniformScale * @see Matrix2.multiplyByScale * @see Matrix2.multiplyByUniformScale * @see Matrix2.getScale */ Matrix2.setScale = function (matrix, scale, result) { //>>includeStart('debug', pragmas.debug); Check.typeOf.object("matrix", matrix); Check.typeOf.object("scale", scale); Check.typeOf.object("result", result); //>>includeEnd('debug'); const existingScale = Matrix2.getScale(matrix, scaleScratch1); const scaleRatioX = scale.x / existingScale.x; const scaleRatioY = scale.y / existingScale.y; result[0] = matrix[0] * scaleRatioX; result[1] = matrix[1] * scaleRatioX; result[2] = matrix[2] * scaleRatioY; result[3] = matrix[3] * scaleRatioY; return result; }; const scaleScratch2 = new Cartesian2(); /** * Computes a new matrix that replaces the scale with the provided uniform scale. * This assumes the matrix is an affine transformation. * * @param {Matrix2} matrix The matrix to use. * @param {Number} scale The uniform scale that replaces the scale of the provided matrix. * @param {Matrix2} result The object onto which to store the result. * @returns {Matrix2} The modified result parameter. * * @see Matrix2.setScale * @see Matrix2.fromScale * @see Matrix2.fromUniformScale * @see Matrix2.multiplyByScale * @see Matrix2.multiplyByUniformScale * @see Matrix2.getScale */ Matrix2.setUniformScale = function (matrix, scale, result) { //>>includeStart('debug', pragmas.debug); Check.typeOf.object("matrix", matrix); Check.typeOf.number("scale", scale); Check.typeOf.object("result", result); //>>includeEnd('debug'); const existingScale = Matrix2.getScale(matrix, scaleScratch2); const scaleRatioX = scale / existingScale.x; const scaleRatioY = scale / existingScale.y; result[0] = matrix[0] * scaleRatioX; result[1] = matrix[1] * scaleRatioX; result[2] = matrix[2] * scaleRatioY; result[3] = matrix[3] * scaleRatioY; return result; }; const scratchColumn = new Cartesian2(); /** * Extracts the non-uniform scale assuming the matrix is an affine transformation. * * @param {Matrix2} matrix The matrix. * @param {Cartesian2} result The object onto which to store the result. * @returns {Cartesian2} The modified result parameter. * * @see Matrix2.multiplyByScale * @see Matrix2.multiplyByUniformScale * @see Matrix2.fromScale * @see Matrix2.fromUniformScale * @see Matrix2.setScale * @see Matrix2.setUniformScale */ Matrix2.getScale = function (matrix, result) { //>>includeStart('debug', pragmas.debug); Check.typeOf.object("matrix", matrix); Check.typeOf.object("result", result); //>>includeEnd('debug'); result.x = Cartesian2.magnitude( Cartesian2.fromElements(matrix[0], matrix[1], scratchColumn) ); result.y = Cartesian2.magnitude( Cartesian2.fromElements(matrix[2], matrix[3], scratchColumn) ); return result; }; const scaleScratch3 = new Cartesian2(); /** * Computes the maximum scale assuming the matrix is an affine transformation. * The maximum scale is the maximum length of the column vectors. * * @param {Matrix2} matrix The matrix. * @returns {Number} The maximum scale. */ Matrix2.getMaximumScale = function (matrix) { Matrix2.getScale(matrix, scaleScratch3); return Cartesian2.maximumComponent(scaleScratch3); }; const scaleScratch4 = new Cartesian2(); /** * Sets the rotation assuming the matrix is an affine transformation. * * @param {Matrix2} matrix The matrix. * @param {Matrix2} rotation The rotation matrix. * @returns {Matrix2} The modified result parameter. * * @see Matrix2.fromRotation * @see Matrix2.getRotation */ Matrix2.setRotation = function (matrix, rotation, result) { //>>includeStart('debug', pragmas.debug); Check.typeOf.object("matrix", matrix); Check.typeOf.object("result", result); //>>includeEnd('debug'); const scale = Matrix2.getScale(matrix, scaleScratch4); result[0] = rotation[0] * scale.x; result[1] = rotation[1] * scale.x; result[2] = rotation[2] * scale.y; result[3] = rotation[3] * scale.y; return result; }; const scaleScratch5 = new Cartesian2(); /** * Extracts the rotation matrix assuming the matrix is an affine transformation. * * @param {Matrix2} matrix The matrix. * @param {Matrix2} result The object onto which to store the result. * @returns {Matrix2} The modified result parameter. * * @see Matrix2.setRotation * @see Matrix2.fromRotation */ Matrix2.getRotation = function (matrix, result) { //>>includeStart('debug', pragmas.debug); Check.typeOf.object("matrix", matrix); Check.typeOf.object("result", result); //>>includeEnd('debug'); const scale = Matrix2.getScale(matrix, scaleScratch5); result[0] = matrix[0] / scale.x; result[1] = matrix[1] / scale.x; result[2] = matrix[2] / scale.y; result[3] = matrix[3] / scale.y; return result; }; /** * Computes the product of two matrices. * * @param {Matrix2} left The first matrix. * @param {Matrix2} right The second matrix. * @param {Matrix2} result The object onto which to store the result. * @returns {Matrix2} The modified result parameter. */ Matrix2.multiply = function (left, right, result) { //>>includeStart('debug', pragmas.debug); Check.typeOf.object("left", left); Check.typeOf.object("right", right); Check.typeOf.object("result", result); //>>includeEnd('debug'); const column0Row0 = left[0] * right[0] + left[2] * right[1]; const column1Row0 = left[0] * right[2] + left[2] * right[3]; const column0Row1 = left[1] * right[0] + left[3] * right[1]; const column1Row1 = left[1] * right[2] + left[3] * right[3]; result[0] = column0Row0; result[1] = column0Row1; result[2] = column1Row0; result[3] = column1Row1; return result; }; /** * Computes the sum of two matrices. * * @param {Matrix2} left The first matrix. * @param {Matrix2} right The second matrix. * @param {Matrix2} result The object onto which to store the result. * @returns {Matrix2} The modified result parameter. */ Matrix2.add = function (left, right, result) { //>>includeStart('debug', pragmas.debug); Check.typeOf.object("left", left); Check.typeOf.object("right", right); Check.typeOf.object("result", result); //>>includeEnd('debug'); result[0] = left[0] + right[0]; result[1] = left[1] + right[1]; result[2] = left[2] + right[2]; result[3] = left[3] + right[3]; return result; }; /** * Computes the difference of two matrices. * * @param {Matrix2} left The first matrix. * @param {Matrix2} right The second matrix. * @param {Matrix2} result The object onto which to store the result. * @returns {Matrix2} The modified result parameter. */ Matrix2.subtract = function (left, right, result) { //>>includeStart('debug', pragmas.debug); Check.typeOf.object("left", left); Check.typeOf.object("right", right); Check.typeOf.object("result", result); //>>includeEnd('debug'); result[0] = left[0] - right[0]; result[1] = left[1] - right[1]; result[2] = left[2] - right[2]; result[3] = left[3] - right[3]; return result; }; /** * Computes the product of a matrix and a column vector. * * @param {Matrix2} matrix The matrix. * @param {Cartesian2} cartesian The column. * @param {Cartesian2} result The object onto which to store the result. * @returns {Cartesian2} The modified result parameter. */ Matrix2.multiplyByVector = function (matrix, cartesian, result) { //>>includeStart('debug', pragmas.debug); Check.typeOf.object("matrix", matrix); Check.typeOf.object("cartesian", cartesian); Check.typeOf.object("result", result); //>>includeEnd('debug'); const x = matrix[0] * cartesian.x + matrix[2] * cartesian.y; const y = matrix[1] * cartesian.x + matrix[3] * cartesian.y; result.x = x; result.y = y; return result; }; /** * Computes the product of a matrix and a scalar. * * @param {Matrix2} matrix The matrix. * @param {Number} scalar The number to multiply by. * @param {Matrix2} result The object onto which to store the result. * @returns {Matrix2} The modified result parameter. */ Matrix2.multiplyByScalar = function (matrix, scalar, result) { //>>includeStart('debug', pragmas.debug); Check.typeOf.object("matrix", matrix); Check.typeOf.number("scalar", scalar); Check.typeOf.object("result", result); //>>includeEnd('debug'); result[0] = matrix[0] * scalar; result[1] = matrix[1] * scalar; result[2] = matrix[2] * scalar; result[3] = matrix[3] * scalar; return result; }; /** * Computes the product of a matrix times a (non-uniform) scale, as if the scale were a scale matrix. * * @param {Matrix2} matrix The matrix on the left-hand side. * @param {Number} scale The non-uniform scale on the right-hand side. * @param {Matrix2} result The object onto which to store the result. * @returns {Matrix2} The modified result parameter. * * * @example * // Instead of Cesium.Matrix2.multiply(m, Cesium.Matrix2.fromScale(scale), m); * Cesium.Matrix2.multiplyByScale(m, scale, m); * * @see Matrix2.multiplyByUniformScale * @see Matrix2.fromScale * @see Matrix2.fromUniformScale * @see Matrix2.setScale * @see Matrix2.setUniformScale * @see Matrix2.getScale */ Matrix2.multiplyByScale = function (matrix, scale, result) { //>>includeStart('debug', pragmas.debug); Check.typeOf.object("matrix", matrix); Check.typeOf.object("scale", scale); Check.typeOf.object("result", result); //>>includeEnd('debug'); result[0] = matrix[0] * scale.x; result[1] = matrix[1] * scale.x; result[2] = matrix[2] * scale.y; result[3] = matrix[3] * scale.y; return result; }; /** * Computes the product of a matrix times a uniform scale, as if the scale were a scale matrix. * * @param {Matrix2} matrix The matrix on the left-hand side. * @param {Number} scale The uniform scale on the right-hand side. * @param {Matrix2} result The object onto which to store the result. * @returns {Matrix2} The modified result parameter. * * @example * // Instead of Cesium.Matrix2.multiply(m, Cesium.Matrix2.fromUniformScale(scale), m); * Cesium.Matrix2.multiplyByUniformScale(m, scale, m); * * @see Matrix2.multiplyByScale * @see Matrix2.fromScale * @see Matrix2.fromUniformScale * @see Matrix2.setScale * @see Matrix2.setUniformScale * @see Matrix2.getScale */ Matrix2.multiplyByUniformScale = function (matrix, scale, result) { //>>includeStart('debug', pragmas.debug); Check.typeOf.object("matrix", matrix); Check.typeOf.number("scale", scale); Check.typeOf.object("result", result); //>>includeEnd('debug'); result[0] = matrix[0] * scale; result[1] = matrix[1] * scale; result[2] = matrix[2] * scale; result[3] = matrix[3] * scale; return result; }; /** * Creates a negated copy of the provided matrix. * * @param {Matrix2} matrix The matrix to negate. * @param {Matrix2} result The object onto which to store the result. * @returns {Matrix2} The modified result parameter. */ Matrix2.negate = function (matrix, result) { //>>includeStart('debug', pragmas.debug); Check.typeOf.object("matrix", matrix); Check.typeOf.object("result", result); //>>includeEnd('debug'); result[0] = -matrix[0]; result[1] = -matrix[1]; result[2] = -matrix[2]; result[3] = -matrix[3]; return result; }; /** * Computes the transpose of the provided matrix. * * @param {Matrix2} matrix The matrix to transpose. * @param {Matrix2} result The object onto which to store the result. * @returns {Matrix2} The modified result parameter. */ Matrix2.transpose = function (matrix, result) { //>>includeStart('debug', pragmas.debug); Check.typeOf.object("matrix", matrix); Check.typeOf.object("result", result); //>>includeEnd('debug'); const column0Row0 = matrix[0]; const column0Row1 = matrix[2]; const column1Row0 = matrix[1]; const column1Row1 = matrix[3]; result[0] = column0Row0; result[1] = column0Row1; result[2] = column1Row0; result[3] = column1Row1; return result; }; /** * Computes a matrix, which contains the absolute (unsigned) values of the provided matrix's elements. * * @param {Matrix2} matrix The matrix with signed elements. * @param {Matrix2} result The object onto which to store the result. * @returns {Matrix2} The modified result parameter. */ Matrix2.abs = function (matrix, result) { //>>includeStart('debug', pragmas.debug); Check.typeOf.object("matrix", matrix); Check.typeOf.object("result", result); //>>includeEnd('debug'); result[0] = Math.abs(matrix[0]); result[1] = Math.abs(matrix[1]); result[2] = Math.abs(matrix[2]); result[3] = Math.abs(matrix[3]); return result; }; /** * Compares the provided matrices componentwise and returns * true if they are equal, false otherwise. * * @param {Matrix2} [left] The first matrix. * @param {Matrix2} [right] The second matrix. * @returns {Boolean} true if left and right are equal, false otherwise. */ Matrix2.equals = function (left, right) { return ( left === right || (defined(left) && defined(right) && left[0] === right[0] && left[1] === right[1] && left[2] === right[2] && left[3] === right[3]) ); }; /** * @private */ Matrix2.equalsArray = function (matrix, array, offset) { return ( matrix[0] === array[offset] && matrix[1] === array[offset + 1] && matrix[2] === array[offset + 2] && matrix[3] === array[offset + 3] ); }; /** * Compares the provided matrices componentwise and returns * true if they are within the provided epsilon, * false otherwise. * * @param {Matrix2} [left] The first matrix. * @param {Matrix2} [right] The second matrix. * @param {Number} [epsilon=0] The epsilon to use for equality testing. * @returns {Boolean} true if left and right are within the provided epsilon, false otherwise. */ Matrix2.equalsEpsilon = function (left, right, epsilon) { epsilon = defaultValue(epsilon, 0); return ( left === right || (defined(left) && defined(right) && Math.abs(left[0] - right[0]) <= epsilon && Math.abs(left[1] - right[1]) <= epsilon && Math.abs(left[2] - right[2]) <= epsilon && Math.abs(left[3] - right[3]) <= epsilon) ); }; /** * An immutable Matrix2 instance initialized to the identity matrix. * * @type {Matrix2} * @constant */ Matrix2.IDENTITY = Object.freeze(new Matrix2(1.0, 0.0, 0.0, 1.0)); /** * An immutable Matrix2 instance initialized to the zero matrix. * * @type {Matrix2} * @constant */ Matrix2.ZERO = Object.freeze(new Matrix2(0.0, 0.0, 0.0, 0.0)); /** * The index into Matrix2 for column 0, row 0. * * @type {Number} * @constant * * @example * const matrix = new Cesium.Matrix2(); * matrix[Cesium.Matrix2.COLUMN0ROW0] = 5.0; // set column 0, row 0 to 5.0 */ Matrix2.COLUMN0ROW0 = 0; /** * The index into Matrix2 for column 0, row 1. * * @type {Number} * @constant * * @example * const matrix = new Cesium.Matrix2(); * matrix[Cesium.Matrix2.COLUMN0ROW1] = 5.0; // set column 0, row 1 to 5.0 */ Matrix2.COLUMN0ROW1 = 1; /** * The index into Matrix2 for column 1, row 0. * * @type {Number} * @constant * * @example * const matrix = new Cesium.Matrix2(); * matrix[Cesium.Matrix2.COLUMN1ROW0] = 5.0; // set column 1, row 0 to 5.0 */ Matrix2.COLUMN1ROW0 = 2; /** * The index into Matrix2 for column 1, row 1. * * @type {Number} * @constant * * @example * const matrix = new Cesium.Matrix2(); * matrix[Cesium.Matrix2.COLUMN1ROW1] = 5.0; // set column 1, row 1 to 5.0 */ Matrix2.COLUMN1ROW1 = 3; Object.defineProperties(Matrix2.prototype, { /** * Gets the number of items in the collection. * @memberof Matrix2.prototype * * @type {Number} */ length: { get: function () { return Matrix2.packedLength; }, }, }); /** * Duplicates the provided Matrix2 instance. * * @param {Matrix2} [result] The object onto which to store the result. * @returns {Matrix2} The modified result parameter or a new Matrix2 instance if one was not provided. */ Matrix2.prototype.clone = function (result) { return Matrix2.clone(this, result); }; /** * Compares this matrix to the provided matrix componentwise and returns * true if they are equal, false otherwise. * * @param {Matrix2} [right] The right hand side matrix. * @returns {Boolean} true if they are equal, false otherwise. */ Matrix2.prototype.equals = function (right) { return Matrix2.equals(this, right); }; /** * Compares this matrix to the provided matrix componentwise and returns * true if they are within the provided epsilon, * false otherwise. * * @param {Matrix2} [right] The right hand side matrix. * @param {Number} [epsilon=0] The epsilon to use for equality testing. * @returns {Boolean} true if they are within the provided epsilon, false otherwise. */ Matrix2.prototype.equalsEpsilon = function (right, epsilon) { return Matrix2.equalsEpsilon(this, right, epsilon); }; /** * Creates a string representing this Matrix with each row being * on a separate line and in the format '(column0, column1)'. * * @returns {String} A string representing the provided Matrix with each row being on a separate line and in the format '(column0, column1)'. */ Matrix2.prototype.toString = function () { return `(${this[0]}, ${this[2]})\n` + `(${this[1]}, ${this[3]})`; }; export default Matrix2;