import Cartesian3 from "./Cartesian3.js"; import Check from "./Check.js"; import defaultValue from "./defaultValue.js"; import defined from "./defined.js"; import DeveloperError from "./DeveloperError.js"; import CesiumMath from "./Math.js"; /** * A 3x3 matrix, indexable as a column-major order array. * Constructor parameters are in row-major order for code readability. * @alias Matrix3 * @constructor * @implements {ArrayLike} * * @param {Number} [column0Row0=0.0] The value for column 0, row 0. * @param {Number} [column1Row0=0.0] The value for column 1, row 0. * @param {Number} [column2Row0=0.0] The value for column 2, row 0. * @param {Number} [column0Row1=0.0] The value for column 0, row 1. * @param {Number} [column1Row1=0.0] The value for column 1, row 1. * @param {Number} [column2Row1=0.0] The value for column 2, row 1. * @param {Number} [column0Row2=0.0] The value for column 0, row 2. * @param {Number} [column1Row2=0.0] The value for column 1, row 2. * @param {Number} [column2Row2=0.0] The value for column 2, row 2. * * @see Matrix3.fromArray * @see Matrix3.fromColumnMajorArray * @see Matrix3.fromRowMajorArray * @see Matrix3.fromQuaternion * @see Matrix3.fromHeadingPitchRoll * @see Matrix3.fromScale * @see Matrix3.fromUniformScale * @see Matrix3.fromCrossProduct * @see Matrix3.fromRotationX * @see Matrix3.fromRotationY * @see Matrix3.fromRotationZ * @see Matrix2 * @see Matrix4 */ function Matrix3( column0Row0, column1Row0, column2Row0, column0Row1, column1Row1, column2Row1, column0Row2, column1Row2, column2Row2 ) { this[0] = defaultValue(column0Row0, 0.0); this[1] = defaultValue(column0Row1, 0.0); this[2] = defaultValue(column0Row2, 0.0); this[3] = defaultValue(column1Row0, 0.0); this[4] = defaultValue(column1Row1, 0.0); this[5] = defaultValue(column1Row2, 0.0); this[6] = defaultValue(column2Row0, 0.0); this[7] = defaultValue(column2Row1, 0.0); this[8] = defaultValue(column2Row2, 0.0); } /** * The number of elements used to pack the object into an array. * @type {Number} */ Matrix3.packedLength = 9; /** * Stores the provided instance into the provided array. * * @param {Matrix3} value The value to pack. * @param {Number[]} array The array to pack into. * @param {Number} [startingIndex=0] The index into the array at which to start packing the elements. * * @returns {Number[]} The array that was packed into */ Matrix3.pack = function (value, array, startingIndex) { //>>includeStart('debug', pragmas.debug); Check.typeOf.object("value", value); Check.defined("array", array); //>>includeEnd('debug'); startingIndex = defaultValue(startingIndex, 0); array[startingIndex++] = value[0]; array[startingIndex++] = value[1]; array[startingIndex++] = value[2]; array[startingIndex++] = value[3]; array[startingIndex++] = value[4]; array[startingIndex++] = value[5]; array[startingIndex++] = value[6]; array[startingIndex++] = value[7]; array[startingIndex++] = value[8]; return array; }; /** * Retrieves an instance from a packed array. * * @param {Number[]} array The packed array. * @param {Number} [startingIndex=0] The starting index of the element to be unpacked. * @param {Matrix3} [result] The object into which to store the result. * @returns {Matrix3} The modified result parameter or a new Matrix3 instance if one was not provided. */ Matrix3.unpack = function (array, startingIndex, result) { //>>includeStart('debug', pragmas.debug); Check.defined("array", array); //>>includeEnd('debug'); startingIndex = defaultValue(startingIndex, 0); if (!defined(result)) { result = new Matrix3(); } result[0] = array[startingIndex++]; result[1] = array[startingIndex++]; result[2] = array[startingIndex++]; result[3] = array[startingIndex++]; result[4] = array[startingIndex++]; result[5] = array[startingIndex++]; result[6] = array[startingIndex++]; result[7] = array[startingIndex++]; result[8] = array[startingIndex++]; return result; }; /** * Flattens an array of Matrix3s into an array of components. The components * are stored in column-major order. * * @param {Matrix3[]} array The array of matrices to pack. * @param {Number[]} [result] The array onto which to store the result. If this is a typed array, it must have array.length * 9 components, else a {@link DeveloperError} will be thrown. If it is a regular array, it will be resized to have (array.length * 9) elements. * @returns {Number[]} The packed array. */ Matrix3.packArray = function (array, result) { //>>includeStart('debug', pragmas.debug); Check.defined("array", array); //>>includeEnd('debug'); const length = array.length; const resultLength = length * 9; if (!defined(result)) { result = new Array(resultLength); } else if (!Array.isArray(result) && result.length !== resultLength) { //>>includeStart('debug', pragmas.debug); throw new DeveloperError( "If result is a typed array, it must have exactly array.length * 9 elements" ); //>>includeEnd('debug'); } else if (result.length !== resultLength) { result.length = resultLength; } for (let i = 0; i < length; ++i) { Matrix3.pack(array[i], result, i * 9); } return result; }; /** * Unpacks an array of column-major matrix components into an array of Matrix3s. * * @param {Number[]} array The array of components to unpack. * @param {Matrix3[]} [result] The array onto which to store the result. * @returns {Matrix3[]} The unpacked array. */ Matrix3.unpackArray = function (array, result) { //>>includeStart('debug', pragmas.debug); Check.defined("array", array); Check.typeOf.number.greaterThanOrEquals("array.length", array.length, 9); if (array.length % 9 !== 0) { throw new DeveloperError("array length must be a multiple of 9."); } //>>includeEnd('debug'); const length = array.length; if (!defined(result)) { result = new Array(length / 9); } else { result.length = length / 9; } for (let i = 0; i < length; i += 9) { const index = i / 9; result[index] = Matrix3.unpack(array, i, result[index]); } return result; }; /** * Duplicates a Matrix3 instance. * * @param {Matrix3} matrix The matrix to duplicate. * @param {Matrix3} [result] The object onto which to store the result. * @returns {Matrix3} The modified result parameter or a new Matrix3 instance if one was not provided. (Returns undefined if matrix is undefined) */ Matrix3.clone = function (matrix, result) { if (!defined(matrix)) { return undefined; } if (!defined(result)) { return new Matrix3( matrix[0], matrix[3], matrix[6], matrix[1], matrix[4], matrix[7], matrix[2], matrix[5], matrix[8] ); } result[0] = matrix[0]; result[1] = matrix[1]; result[2] = matrix[2]; result[3] = matrix[3]; result[4] = matrix[4]; result[5] = matrix[5]; result[6] = matrix[6]; result[7] = matrix[7]; result[8] = matrix[8]; return result; }; /** * Creates a Matrix3 from 9 consecutive elements in an array. * * @function * @param {Number[]} array The array whose 9 consecutive elements correspond to the positions of the matrix. Assumes column-major order. * @param {Number} [startingIndex=0] The offset into the array of the first element, which corresponds to first column first row position in the matrix. * @param {Matrix3} [result] The object onto which to store the result. * @returns {Matrix3} The modified result parameter or a new Matrix3 instance if one was not provided. * * @example * // Create the Matrix3: * // [1.0, 2.0, 3.0] * // [1.0, 2.0, 3.0] * // [1.0, 2.0, 3.0] * * const v = [1.0, 1.0, 1.0, 2.0, 2.0, 2.0, 3.0, 3.0, 3.0]; * const m = Cesium.Matrix3.fromArray(v); * * // Create same Matrix3 with using an offset into an array * const v2 = [0.0, 0.0, 1.0, 1.0, 1.0, 2.0, 2.0, 2.0, 3.0, 3.0, 3.0]; * const m2 = Cesium.Matrix3.fromArray(v2, 2); */ Matrix3.fromArray = Matrix3.unpack; /** * Creates a Matrix3 instance from a column-major order array. * * @param {Number[]} values The column-major order array. * @param {Matrix3} [result] The object in which the result will be stored, if undefined a new instance will be created. * @returns {Matrix3} The modified result parameter, or a new Matrix3 instance if one was not provided. */ Matrix3.fromColumnMajorArray = function (values, result) { //>>includeStart('debug', pragmas.debug); Check.defined("values", values); //>>includeEnd('debug'); return Matrix3.clone(values, result); }; /** * Creates a Matrix3 instance from a row-major order array. * The resulting matrix will be in column-major order. * * @param {Number[]} values The row-major order array. * @param {Matrix3} [result] The object in which the result will be stored, if undefined a new instance will be created. * @returns {Matrix3} The modified result parameter, or a new Matrix3 instance if one was not provided. */ Matrix3.fromRowMajorArray = function (values, result) { //>>includeStart('debug', pragmas.debug); Check.defined("values", values); //>>includeEnd('debug'); if (!defined(result)) { return new Matrix3( values[0], values[1], values[2], values[3], values[4], values[5], values[6], values[7], values[8] ); } result[0] = values[0]; result[1] = values[3]; result[2] = values[6]; result[3] = values[1]; result[4] = values[4]; result[5] = values[7]; result[6] = values[2]; result[7] = values[5]; result[8] = values[8]; return result; }; /** * Computes a 3x3 rotation matrix from the provided quaternion. * * @param {Quaternion} quaternion the quaternion to use. * @param {Matrix3} [result] The object in which the result will be stored, if undefined a new instance will be created. * @returns {Matrix3} The 3x3 rotation matrix from this quaternion. */ Matrix3.fromQuaternion = function (quaternion, result) { //>>includeStart('debug', pragmas.debug); Check.typeOf.object("quaternion", quaternion); //>>includeEnd('debug'); const x2 = quaternion.x * quaternion.x; const xy = quaternion.x * quaternion.y; const xz = quaternion.x * quaternion.z; const xw = quaternion.x * quaternion.w; const y2 = quaternion.y * quaternion.y; const yz = quaternion.y * quaternion.z; const yw = quaternion.y * quaternion.w; const z2 = quaternion.z * quaternion.z; const zw = quaternion.z * quaternion.w; const w2 = quaternion.w * quaternion.w; const m00 = x2 - y2 - z2 + w2; const m01 = 2.0 * (xy - zw); const m02 = 2.0 * (xz + yw); const m10 = 2.0 * (xy + zw); const m11 = -x2 + y2 - z2 + w2; const m12 = 2.0 * (yz - xw); const m20 = 2.0 * (xz - yw); const m21 = 2.0 * (yz + xw); const m22 = -x2 - y2 + z2 + w2; if (!defined(result)) { return new Matrix3(m00, m01, m02, m10, m11, m12, m20, m21, m22); } result[0] = m00; result[1] = m10; result[2] = m20; result[3] = m01; result[4] = m11; result[5] = m21; result[6] = m02; result[7] = m12; result[8] = m22; return result; }; /** * Computes a 3x3 rotation matrix from the provided headingPitchRoll. (see http://en.wikipedia.org/wiki/Conversion_between_quaternions_and_Euler_angles ) * * @param {HeadingPitchRoll} headingPitchRoll the headingPitchRoll to use. * @param {Matrix3} [result] The object in which the result will be stored, if undefined a new instance will be created. * @returns {Matrix3} The 3x3 rotation matrix from this headingPitchRoll. */ Matrix3.fromHeadingPitchRoll = function (headingPitchRoll, result) { //>>includeStart('debug', pragmas.debug); Check.typeOf.object("headingPitchRoll", headingPitchRoll); //>>includeEnd('debug'); const cosTheta = Math.cos(-headingPitchRoll.pitch); const cosPsi = Math.cos(-headingPitchRoll.heading); const cosPhi = Math.cos(headingPitchRoll.roll); const sinTheta = Math.sin(-headingPitchRoll.pitch); const sinPsi = Math.sin(-headingPitchRoll.heading); const sinPhi = Math.sin(headingPitchRoll.roll); const m00 = cosTheta * cosPsi; const m01 = -cosPhi * sinPsi + sinPhi * sinTheta * cosPsi; const m02 = sinPhi * sinPsi + cosPhi * sinTheta * cosPsi; const m10 = cosTheta * sinPsi; const m11 = cosPhi * cosPsi + sinPhi * sinTheta * sinPsi; const m12 = -sinPhi * cosPsi + cosPhi * sinTheta * sinPsi; const m20 = -sinTheta; const m21 = sinPhi * cosTheta; const m22 = cosPhi * cosTheta; if (!defined(result)) { return new Matrix3(m00, m01, m02, m10, m11, m12, m20, m21, m22); } result[0] = m00; result[1] = m10; result[2] = m20; result[3] = m01; result[4] = m11; result[5] = m21; result[6] = m02; result[7] = m12; result[8] = m22; return result; }; /** * Computes a Matrix3 instance representing a non-uniform scale. * * @param {Cartesian3} scale The x, y, and z scale factors. * @param {Matrix3} [result] The object in which the result will be stored, if undefined a new instance will be created. * @returns {Matrix3} The modified result parameter, or a new Matrix3 instance if one was not provided. * * @example * // Creates * // [7.0, 0.0, 0.0] * // [0.0, 8.0, 0.0] * // [0.0, 0.0, 9.0] * const m = Cesium.Matrix3.fromScale(new Cesium.Cartesian3(7.0, 8.0, 9.0)); */ Matrix3.fromScale = function (scale, result) { //>>includeStart('debug', pragmas.debug); Check.typeOf.object("scale", scale); //>>includeEnd('debug'); if (!defined(result)) { return new Matrix3(scale.x, 0.0, 0.0, 0.0, scale.y, 0.0, 0.0, 0.0, scale.z); } result[0] = scale.x; result[1] = 0.0; result[2] = 0.0; result[3] = 0.0; result[4] = scale.y; result[5] = 0.0; result[6] = 0.0; result[7] = 0.0; result[8] = scale.z; return result; }; /** * Computes a Matrix3 instance representing a uniform scale. * * @param {Number} scale The uniform scale factor. * @param {Matrix3} [result] The object in which the result will be stored, if undefined a new instance will be created. * @returns {Matrix3} The modified result parameter, or a new Matrix3 instance if one was not provided. * * @example * // Creates * // [2.0, 0.0, 0.0] * // [0.0, 2.0, 0.0] * // [0.0, 0.0, 2.0] * const m = Cesium.Matrix3.fromUniformScale(2.0); */ Matrix3.fromUniformScale = function (scale, result) { //>>includeStart('debug', pragmas.debug); Check.typeOf.number("scale", scale); //>>includeEnd('debug'); if (!defined(result)) { return new Matrix3(scale, 0.0, 0.0, 0.0, scale, 0.0, 0.0, 0.0, scale); } result[0] = scale; result[1] = 0.0; result[2] = 0.0; result[3] = 0.0; result[4] = scale; result[5] = 0.0; result[6] = 0.0; result[7] = 0.0; result[8] = scale; return result; }; /** * Computes a Matrix3 instance representing the cross product equivalent matrix of a Cartesian3 vector. * * @param {Cartesian3} vector the vector on the left hand side of the cross product operation. * @param {Matrix3} [result] The object in which the result will be stored, if undefined a new instance will be created. * @returns {Matrix3} The modified result parameter, or a new Matrix3 instance if one was not provided. * * @example * // Creates * // [0.0, -9.0, 8.0] * // [9.0, 0.0, -7.0] * // [-8.0, 7.0, 0.0] * const m = Cesium.Matrix3.fromCrossProduct(new Cesium.Cartesian3(7.0, 8.0, 9.0)); */ Matrix3.fromCrossProduct = function (vector, result) { //>>includeStart('debug', pragmas.debug); Check.typeOf.object("vector", vector); //>>includeEnd('debug'); if (!defined(result)) { return new Matrix3( 0.0, -vector.z, vector.y, vector.z, 0.0, -vector.x, -vector.y, vector.x, 0.0 ); } result[0] = 0.0; result[1] = vector.z; result[2] = -vector.y; result[3] = -vector.z; result[4] = 0.0; result[5] = vector.x; result[6] = vector.y; result[7] = -vector.x; result[8] = 0.0; return result; }; /** * Creates a rotation matrix around the x-axis. * * @param {Number} angle The angle, in radians, of the rotation. Positive angles are counterclockwise. * @param {Matrix3} [result] The object in which the result will be stored, if undefined a new instance will be created. * @returns {Matrix3} The modified result parameter, or a new Matrix3 instance if one was not provided. * * @example * // Rotate a point 45 degrees counterclockwise around the x-axis. * const p = new Cesium.Cartesian3(5, 6, 7); * const m = Cesium.Matrix3.fromRotationX(Cesium.Math.toRadians(45.0)); * const rotated = Cesium.Matrix3.multiplyByVector(m, p, new Cesium.Cartesian3()); */ Matrix3.fromRotationX = function (angle, result) { //>>includeStart('debug', pragmas.debug); Check.typeOf.number("angle", angle); //>>includeEnd('debug'); const cosAngle = Math.cos(angle); const sinAngle = Math.sin(angle); if (!defined(result)) { return new Matrix3( 1.0, 0.0, 0.0, 0.0, cosAngle, -sinAngle, 0.0, sinAngle, cosAngle ); } result[0] = 1.0; result[1] = 0.0; result[2] = 0.0; result[3] = 0.0; result[4] = cosAngle; result[5] = sinAngle; result[6] = 0.0; result[7] = -sinAngle; result[8] = cosAngle; return result; }; /** * Creates a rotation matrix around the y-axis. * * @param {Number} angle The angle, in radians, of the rotation. Positive angles are counterclockwise. * @param {Matrix3} [result] The object in which the result will be stored, if undefined a new instance will be created. * @returns {Matrix3} The modified result parameter, or a new Matrix3 instance if one was not provided. * * @example * // Rotate a point 45 degrees counterclockwise around the y-axis. * const p = new Cesium.Cartesian3(5, 6, 7); * const m = Cesium.Matrix3.fromRotationY(Cesium.Math.toRadians(45.0)); * const rotated = Cesium.Matrix3.multiplyByVector(m, p, new Cesium.Cartesian3()); */ Matrix3.fromRotationY = function (angle, result) { //>>includeStart('debug', pragmas.debug); Check.typeOf.number("angle", angle); //>>includeEnd('debug'); const cosAngle = Math.cos(angle); const sinAngle = Math.sin(angle); if (!defined(result)) { return new Matrix3( cosAngle, 0.0, sinAngle, 0.0, 1.0, 0.0, -sinAngle, 0.0, cosAngle ); } result[0] = cosAngle; result[1] = 0.0; result[2] = -sinAngle; result[3] = 0.0; result[4] = 1.0; result[5] = 0.0; result[6] = sinAngle; result[7] = 0.0; result[8] = cosAngle; return result; }; /** * Creates a rotation matrix around the z-axis. * * @param {Number} angle The angle, in radians, of the rotation. Positive angles are counterclockwise. * @param {Matrix3} [result] The object in which the result will be stored, if undefined a new instance will be created. * @returns {Matrix3} The modified result parameter, or a new Matrix3 instance if one was not provided. * * @example * // Rotate a point 45 degrees counterclockwise around the z-axis. * const p = new Cesium.Cartesian3(5, 6, 7); * const m = Cesium.Matrix3.fromRotationZ(Cesium.Math.toRadians(45.0)); * const rotated = Cesium.Matrix3.multiplyByVector(m, p, new Cesium.Cartesian3()); */ Matrix3.fromRotationZ = function (angle, result) { //>>includeStart('debug', pragmas.debug); Check.typeOf.number("angle", angle); //>>includeEnd('debug'); const cosAngle = Math.cos(angle); const sinAngle = Math.sin(angle); if (!defined(result)) { return new Matrix3( cosAngle, -sinAngle, 0.0, sinAngle, cosAngle, 0.0, 0.0, 0.0, 1.0 ); } result[0] = cosAngle; result[1] = sinAngle; result[2] = 0.0; result[3] = -sinAngle; result[4] = cosAngle; result[5] = 0.0; result[6] = 0.0; result[7] = 0.0; result[8] = 1.0; return result; }; /** * Creates an Array from the provided Matrix3 instance. * The array will be in column-major order. * * @param {Matrix3} matrix The matrix to use.. * @param {Number[]} [result] The Array onto which to store the result. * @returns {Number[]} The modified Array parameter or a new Array instance if one was not provided. */ Matrix3.toArray = function (matrix, result) { //>>includeStart('debug', pragmas.debug); Check.typeOf.object("matrix", matrix); //>>includeEnd('debug'); if (!defined(result)) { return [ matrix[0], matrix[1], matrix[2], matrix[3], matrix[4], matrix[5], matrix[6], matrix[7], matrix[8], ]; } result[0] = matrix[0]; result[1] = matrix[1]; result[2] = matrix[2]; result[3] = matrix[3]; result[4] = matrix[4]; result[5] = matrix[5]; result[6] = matrix[6]; result[7] = matrix[7]; result[8] = matrix[8]; return result; }; /** * Computes the array index of the element at the provided row and column. * * @param {Number} column The zero-based index of the column. * @param {Number} row The zero-based index of the row. * @returns {Number} The index of the element at the provided row and column. * * @exception {DeveloperError} row must be 0, 1, or 2. * @exception {DeveloperError} column must be 0, 1, or 2. * * @example * const myMatrix = new Cesium.Matrix3(); * const column1Row0Index = Cesium.Matrix3.getElementIndex(1, 0); * const column1Row0 = myMatrix[column1Row0Index] * myMatrix[column1Row0Index] = 10.0; */ Matrix3.getElementIndex = function (column, row) { //>>includeStart('debug', pragmas.debug); Check.typeOf.number.greaterThanOrEquals("row", row, 0); Check.typeOf.number.lessThanOrEquals("row", row, 2); Check.typeOf.number.greaterThanOrEquals("column", column, 0); Check.typeOf.number.lessThanOrEquals("column", column, 2); //>>includeEnd('debug'); return column * 3 + row; }; /** * Retrieves a copy of the matrix column at the provided index as a Cartesian3 instance. * * @param {Matrix3} matrix The matrix to use. * @param {Number} index The zero-based index of the column to retrieve. * @param {Cartesian3} result The object onto which to store the result. * @returns {Cartesian3} The modified result parameter. * * @exception {DeveloperError} index must be 0, 1, or 2. */ Matrix3.getColumn = function (matrix, index, result) { //>>includeStart('debug', pragmas.debug); Check.typeOf.object("matrix", matrix); Check.typeOf.number.greaterThanOrEquals("index", index, 0); Check.typeOf.number.lessThanOrEquals("index", index, 2); Check.typeOf.object("result", result); //>>includeEnd('debug'); const startIndex = index * 3; const x = matrix[startIndex]; const y = matrix[startIndex + 1]; const z = matrix[startIndex + 2]; result.x = x; result.y = y; result.z = z; return result; }; /** * Computes a new matrix that replaces the specified column in the provided matrix with the provided Cartesian3 instance. * * @param {Matrix3} matrix The matrix to use. * @param {Number} index The zero-based index of the column to set. * @param {Cartesian3} cartesian The Cartesian whose values will be assigned to the specified column. * @param {Matrix3} result The object onto which to store the result. * @returns {Matrix3} The modified result parameter. * * @exception {DeveloperError} index must be 0, 1, or 2. */ Matrix3.setColumn = function (matrix, index, cartesian, result) { //>>includeStart('debug', pragmas.debug); Check.typeOf.object("matrix", matrix); Check.typeOf.number.greaterThanOrEquals("index", index, 0); Check.typeOf.number.lessThanOrEquals("index", index, 2); Check.typeOf.object("cartesian", cartesian); Check.typeOf.object("result", result); //>>includeEnd('debug'); result = Matrix3.clone(matrix, result); const startIndex = index * 3; result[startIndex] = cartesian.x; result[startIndex + 1] = cartesian.y; result[startIndex + 2] = cartesian.z; return result; }; /** * Retrieves a copy of the matrix row at the provided index as a Cartesian3 instance. * * @param {Matrix3} matrix The matrix to use. * @param {Number} index The zero-based index of the row to retrieve. * @param {Cartesian3} result The object onto which to store the result. * @returns {Cartesian3} The modified result parameter. * * @exception {DeveloperError} index must be 0, 1, or 2. */ Matrix3.getRow = function (matrix, index, result) { //>>includeStart('debug', pragmas.debug); Check.typeOf.object("matrix", matrix); Check.typeOf.number.greaterThanOrEquals("index", index, 0); Check.typeOf.number.lessThanOrEquals("index", index, 2); Check.typeOf.object("result", result); //>>includeEnd('debug'); const x = matrix[index]; const y = matrix[index + 3]; const z = matrix[index + 6]; result.x = x; result.y = y; result.z = z; return result; }; /** * Computes a new matrix that replaces the specified row in the provided matrix with the provided Cartesian3 instance. * * @param {Matrix3} matrix The matrix to use. * @param {Number} index The zero-based index of the row to set. * @param {Cartesian3} cartesian The Cartesian whose values will be assigned to the specified row. * @param {Matrix3} result The object onto which to store the result. * @returns {Matrix3} The modified result parameter. * * @exception {DeveloperError} index must be 0, 1, or 2. */ Matrix3.setRow = function (matrix, index, cartesian, result) { //>>includeStart('debug', pragmas.debug); Check.typeOf.object("matrix", matrix); Check.typeOf.number.greaterThanOrEquals("index", index, 0); Check.typeOf.number.lessThanOrEquals("index", index, 2); Check.typeOf.object("cartesian", cartesian); Check.typeOf.object("result", result); //>>includeEnd('debug'); result = Matrix3.clone(matrix, result); result[index] = cartesian.x; result[index + 3] = cartesian.y; result[index + 6] = cartesian.z; return result; }; const scaleScratch1 = new Cartesian3(); /** * Computes a new matrix that replaces the scale with the provided scale. * This assumes the matrix is an affine transformation. * * @param {Matrix3} matrix The matrix to use. * @param {Cartesian3} scale The scale that replaces the scale of the provided matrix. * @param {Matrix3} result The object onto which to store the result. * @returns {Matrix3} The modified result parameter. * * @see Matrix3.setUniformScale * @see Matrix3.fromScale * @see Matrix3.fromUniformScale * @see Matrix3.multiplyByScale * @see Matrix3.multiplyByUniformScale * @see Matrix3.getScale */ Matrix3.setScale = function (matrix, scale, result) { //>>includeStart('debug', pragmas.debug); Check.typeOf.object("matrix", matrix); Check.typeOf.object("scale", scale); Check.typeOf.object("result", result); //>>includeEnd('debug'); const existingScale = Matrix3.getScale(matrix, scaleScratch1); const scaleRatioX = scale.x / existingScale.x; const scaleRatioY = scale.y / existingScale.y; const scaleRatioZ = scale.z / existingScale.z; result[0] = matrix[0] * scaleRatioX; result[1] = matrix[1] * scaleRatioX; result[2] = matrix[2] * scaleRatioX; result[3] = matrix[3] * scaleRatioY; result[4] = matrix[4] * scaleRatioY; result[5] = matrix[5] * scaleRatioY; result[6] = matrix[6] * scaleRatioZ; result[7] = matrix[7] * scaleRatioZ; result[8] = matrix[8] * scaleRatioZ; return result; }; const scaleScratch2 = new Cartesian3(); /** * Computes a new matrix that replaces the scale with the provided uniform scale. * This assumes the matrix is an affine transformation. * * @param {Matrix3} matrix The matrix to use. * @param {Number} scale The uniform scale that replaces the scale of the provided matrix. * @param {Matrix3} result The object onto which to store the result. * @returns {Matrix3} The modified result parameter. * * @see Matrix3.setScale * @see Matrix3.fromScale * @see Matrix3.fromUniformScale * @see Matrix3.multiplyByScale * @see Matrix3.multiplyByUniformScale * @see Matrix3.getScale */ Matrix3.setUniformScale = function (matrix, scale, result) { //>>includeStart('debug', pragmas.debug); Check.typeOf.object("matrix", matrix); Check.typeOf.number("scale", scale); Check.typeOf.object("result", result); //>>includeEnd('debug'); const existingScale = Matrix3.getScale(matrix, scaleScratch2); const scaleRatioX = scale / existingScale.x; const scaleRatioY = scale / existingScale.y; const scaleRatioZ = scale / existingScale.z; result[0] = matrix[0] * scaleRatioX; result[1] = matrix[1] * scaleRatioX; result[2] = matrix[2] * scaleRatioX; result[3] = matrix[3] * scaleRatioY; result[4] = matrix[4] * scaleRatioY; result[5] = matrix[5] * scaleRatioY; result[6] = matrix[6] * scaleRatioZ; result[7] = matrix[7] * scaleRatioZ; result[8] = matrix[8] * scaleRatioZ; return result; }; const scratchColumn = new Cartesian3(); /** * Extracts the non-uniform scale assuming the matrix is an affine transformation. * * @param {Matrix3} matrix The matrix. * @param {Cartesian3} result The object onto which to store the result. * @returns {Cartesian3} The modified result parameter. * * @see Matrix3.multiplyByScale * @see Matrix3.multiplyByUniformScale * @see Matrix3.fromScale * @see Matrix3.fromUniformScale * @see Matrix3.setScale * @see Matrix3.setUniformScale */ Matrix3.getScale = function (matrix, result) { //>>includeStart('debug', pragmas.debug); Check.typeOf.object("matrix", matrix); Check.typeOf.object("result", result); //>>includeEnd('debug'); result.x = Cartesian3.magnitude( Cartesian3.fromElements(matrix[0], matrix[1], matrix[2], scratchColumn) ); result.y = Cartesian3.magnitude( Cartesian3.fromElements(matrix[3], matrix[4], matrix[5], scratchColumn) ); result.z = Cartesian3.magnitude( Cartesian3.fromElements(matrix[6], matrix[7], matrix[8], scratchColumn) ); return result; }; const scaleScratch3 = new Cartesian3(); /** * Computes the maximum scale assuming the matrix is an affine transformation. * The maximum scale is the maximum length of the column vectors. * * @param {Matrix3} matrix The matrix. * @returns {Number} The maximum scale. */ Matrix3.getMaximumScale = function (matrix) { Matrix3.getScale(matrix, scaleScratch3); return Cartesian3.maximumComponent(scaleScratch3); }; const scaleScratch4 = new Cartesian3(); /** * Sets the rotation assuming the matrix is an affine transformation. * * @param {Matrix3} matrix The matrix. * @param {Matrix3} rotation The rotation matrix. * @returns {Matrix3} The modified result parameter. * * @see Matrix3.getRotation */ Matrix3.setRotation = function (matrix, rotation, result) { //>>includeStart('debug', pragmas.debug); Check.typeOf.object("matrix", matrix); Check.typeOf.object("result", result); //>>includeEnd('debug'); const scale = Matrix3.getScale(matrix, scaleScratch4); result[0] = rotation[0] * scale.x; result[1] = rotation[1] * scale.x; result[2] = rotation[2] * scale.x; result[3] = rotation[3] * scale.y; result[4] = rotation[4] * scale.y; result[5] = rotation[5] * scale.y; result[6] = rotation[6] * scale.z; result[7] = rotation[7] * scale.z; result[8] = rotation[8] * scale.z; return result; }; const scaleScratch5 = new Cartesian3(); /** * Extracts the rotation matrix assuming the matrix is an affine transformation. * * @param {Matrix3} matrix The matrix. * @param {Matrix3} result The object onto which to store the result. * @returns {Matrix3} The modified result parameter. * * @see Matrix3.setRotation */ Matrix3.getRotation = function (matrix, result) { //>>includeStart('debug', pragmas.debug); Check.typeOf.object("matrix", matrix); Check.typeOf.object("result", result); //>>includeEnd('debug'); const scale = Matrix3.getScale(matrix, scaleScratch5); result[0] = matrix[0] / scale.x; result[1] = matrix[1] / scale.x; result[2] = matrix[2] / scale.x; result[3] = matrix[3] / scale.y; result[4] = matrix[4] / scale.y; result[5] = matrix[5] / scale.y; result[6] = matrix[6] / scale.z; result[7] = matrix[7] / scale.z; result[8] = matrix[8] / scale.z; return result; }; /** * Computes the product of two matrices. * * @param {Matrix3} left The first matrix. * @param {Matrix3} right The second matrix. * @param {Matrix3} result The object onto which to store the result. * @returns {Matrix3} The modified result parameter. */ Matrix3.multiply = function (left, right, result) { //>>includeStart('debug', pragmas.debug); Check.typeOf.object("left", left); Check.typeOf.object("right", right); Check.typeOf.object("result", result); //>>includeEnd('debug'); const column0Row0 = left[0] * right[0] + left[3] * right[1] + left[6] * right[2]; const column0Row1 = left[1] * right[0] + left[4] * right[1] + left[7] * right[2]; const column0Row2 = left[2] * right[0] + left[5] * right[1] + left[8] * right[2]; const column1Row0 = left[0] * right[3] + left[3] * right[4] + left[6] * right[5]; const column1Row1 = left[1] * right[3] + left[4] * right[4] + left[7] * right[5]; const column1Row2 = left[2] * right[3] + left[5] * right[4] + left[8] * right[5]; const column2Row0 = left[0] * right[6] + left[3] * right[7] + left[6] * right[8]; const column2Row1 = left[1] * right[6] + left[4] * right[7] + left[7] * right[8]; const column2Row2 = left[2] * right[6] + left[5] * right[7] + left[8] * right[8]; result[0] = column0Row0; result[1] = column0Row1; result[2] = column0Row2; result[3] = column1Row0; result[4] = column1Row1; result[5] = column1Row2; result[6] = column2Row0; result[7] = column2Row1; result[8] = column2Row2; return result; }; /** * Computes the sum of two matrices. * * @param {Matrix3} left The first matrix. * @param {Matrix3} right The second matrix. * @param {Matrix3} result The object onto which to store the result. * @returns {Matrix3} The modified result parameter. */ Matrix3.add = function (left, right, result) { //>>includeStart('debug', pragmas.debug); Check.typeOf.object("left", left); Check.typeOf.object("right", right); Check.typeOf.object("result", result); //>>includeEnd('debug'); result[0] = left[0] + right[0]; result[1] = left[1] + right[1]; result[2] = left[2] + right[2]; result[3] = left[3] + right[3]; result[4] = left[4] + right[4]; result[5] = left[5] + right[5]; result[6] = left[6] + right[6]; result[7] = left[7] + right[7]; result[8] = left[8] + right[8]; return result; }; /** * Computes the difference of two matrices. * * @param {Matrix3} left The first matrix. * @param {Matrix3} right The second matrix. * @param {Matrix3} result The object onto which to store the result. * @returns {Matrix3} The modified result parameter. */ Matrix3.subtract = function (left, right, result) { //>>includeStart('debug', pragmas.debug); Check.typeOf.object("left", left); Check.typeOf.object("right", right); Check.typeOf.object("result", result); //>>includeEnd('debug'); result[0] = left[0] - right[0]; result[1] = left[1] - right[1]; result[2] = left[2] - right[2]; result[3] = left[3] - right[3]; result[4] = left[4] - right[4]; result[5] = left[5] - right[5]; result[6] = left[6] - right[6]; result[7] = left[7] - right[7]; result[8] = left[8] - right[8]; return result; }; /** * Computes the product of a matrix and a column vector. * * @param {Matrix3} matrix The matrix. * @param {Cartesian3} cartesian The column. * @param {Cartesian3} result The object onto which to store the result. * @returns {Cartesian3} The modified result parameter. */ Matrix3.multiplyByVector = function (matrix, cartesian, result) { //>>includeStart('debug', pragmas.debug); Check.typeOf.object("matrix", matrix); Check.typeOf.object("cartesian", cartesian); Check.typeOf.object("result", result); //>>includeEnd('debug'); const vX = cartesian.x; const vY = cartesian.y; const vZ = cartesian.z; const x = matrix[0] * vX + matrix[3] * vY + matrix[6] * vZ; const y = matrix[1] * vX + matrix[4] * vY + matrix[7] * vZ; const z = matrix[2] * vX + matrix[5] * vY + matrix[8] * vZ; result.x = x; result.y = y; result.z = z; return result; }; /** * Computes the product of a matrix and a scalar. * * @param {Matrix3} matrix The matrix. * @param {Number} scalar The number to multiply by. * @param {Matrix3} result The object onto which to store the result. * @returns {Matrix3} The modified result parameter. */ Matrix3.multiplyByScalar = function (matrix, scalar, result) { //>>includeStart('debug', pragmas.debug); Check.typeOf.object("matrix", matrix); Check.typeOf.number("scalar", scalar); Check.typeOf.object("result", result); //>>includeEnd('debug'); result[0] = matrix[0] * scalar; result[1] = matrix[1] * scalar; result[2] = matrix[2] * scalar; result[3] = matrix[3] * scalar; result[4] = matrix[4] * scalar; result[5] = matrix[5] * scalar; result[6] = matrix[6] * scalar; result[7] = matrix[7] * scalar; result[8] = matrix[8] * scalar; return result; }; /** * Computes the product of a matrix times a (non-uniform) scale, as if the scale were a scale matrix. * * @param {Matrix3} matrix The matrix on the left-hand side. * @param {Number} scale The non-uniform scale on the right-hand side. * @param {Matrix3} result The object onto which to store the result. * @returns {Matrix3} The modified result parameter. * * * @example * // Instead of Cesium.Matrix3.multiply(m, Cesium.Matrix3.fromScale(scale), m); * Cesium.Matrix3.multiplyByScale(m, scale, m); * * @see Matrix3.multiplyByUniformScale * @see Matrix3.fromScale * @see Matrix3.fromUniformScale * @see Matrix3.setScale * @see Matrix3.setUniformScale * @see Matrix3.getScale */ Matrix3.multiplyByScale = function (matrix, scale, result) { //>>includeStart('debug', pragmas.debug); Check.typeOf.object("matrix", matrix); Check.typeOf.object("scale", scale); Check.typeOf.object("result", result); //>>includeEnd('debug'); result[0] = matrix[0] * scale.x; result[1] = matrix[1] * scale.x; result[2] = matrix[2] * scale.x; result[3] = matrix[3] * scale.y; result[4] = matrix[4] * scale.y; result[5] = matrix[5] * scale.y; result[6] = matrix[6] * scale.z; result[7] = matrix[7] * scale.z; result[8] = matrix[8] * scale.z; return result; }; /** * Computes the product of a matrix times a uniform scale, as if the scale were a scale matrix. * * @param {Matrix3} matrix The matrix on the left-hand side. * @param {Number} scale The uniform scale on the right-hand side. * @param {Matrix3} result The object onto which to store the result. * @returns {Matrix3} The modified result parameter. * * @example * // Instead of Cesium.Matrix3.multiply(m, Cesium.Matrix3.fromUniformScale(scale), m); * Cesium.Matrix3.multiplyByUniformScale(m, scale, m); * * @see Matrix3.multiplyByScale * @see Matrix3.fromScale * @see Matrix3.fromUniformScale * @see Matrix3.setScale * @see Matrix3.setUniformScale * @see Matrix3.getScale */ Matrix3.multiplyByUniformScale = function (matrix, scale, result) { //>>includeStart('debug', pragmas.debug); Check.typeOf.object("matrix", matrix); Check.typeOf.number("scale", scale); Check.typeOf.object("result", result); //>>includeEnd('debug'); result[0] = matrix[0] * scale; result[1] = matrix[1] * scale; result[2] = matrix[2] * scale; result[3] = matrix[3] * scale; result[4] = matrix[4] * scale; result[5] = matrix[5] * scale; result[6] = matrix[6] * scale; result[7] = matrix[7] * scale; result[8] = matrix[8] * scale; return result; }; /** * Creates a negated copy of the provided matrix. * * @param {Matrix3} matrix The matrix to negate. * @param {Matrix3} result The object onto which to store the result. * @returns {Matrix3} The modified result parameter. */ Matrix3.negate = function (matrix, result) { //>>includeStart('debug', pragmas.debug); Check.typeOf.object("matrix", matrix); Check.typeOf.object("result", result); //>>includeEnd('debug'); result[0] = -matrix[0]; result[1] = -matrix[1]; result[2] = -matrix[2]; result[3] = -matrix[3]; result[4] = -matrix[4]; result[5] = -matrix[5]; result[6] = -matrix[6]; result[7] = -matrix[7]; result[8] = -matrix[8]; return result; }; /** * Computes the transpose of the provided matrix. * * @param {Matrix3} matrix The matrix to transpose. * @param {Matrix3} result The object onto which to store the result. * @returns {Matrix3} The modified result parameter. */ Matrix3.transpose = function (matrix, result) { //>>includeStart('debug', pragmas.debug); Check.typeOf.object("matrix", matrix); Check.typeOf.object("result", result); //>>includeEnd('debug'); const column0Row0 = matrix[0]; const column0Row1 = matrix[3]; const column0Row2 = matrix[6]; const column1Row0 = matrix[1]; const column1Row1 = matrix[4]; const column1Row2 = matrix[7]; const column2Row0 = matrix[2]; const column2Row1 = matrix[5]; const column2Row2 = matrix[8]; result[0] = column0Row0; result[1] = column0Row1; result[2] = column0Row2; result[3] = column1Row0; result[4] = column1Row1; result[5] = column1Row2; result[6] = column2Row0; result[7] = column2Row1; result[8] = column2Row2; return result; }; function computeFrobeniusNorm(matrix) { let norm = 0.0; for (let i = 0; i < 9; ++i) { const temp = matrix[i]; norm += temp * temp; } return Math.sqrt(norm); } const rowVal = [1, 0, 0]; const colVal = [2, 2, 1]; function offDiagonalFrobeniusNorm(matrix) { // Computes the "off-diagonal" Frobenius norm. // Assumes matrix is symmetric. let norm = 0.0; for (let i = 0; i < 3; ++i) { const temp = matrix[Matrix3.getElementIndex(colVal[i], rowVal[i])]; norm += 2.0 * temp * temp; } return Math.sqrt(norm); } function shurDecomposition(matrix, result) { // This routine was created based upon Matrix Computations, 3rd ed., by Golub and Van Loan, // section 8.4.2 The 2by2 Symmetric Schur Decomposition. // // The routine takes a matrix, which is assumed to be symmetric, and // finds the largest off-diagonal term, and then creates // a matrix (result) which can be used to help reduce it const tolerance = CesiumMath.EPSILON15; let maxDiagonal = 0.0; let rotAxis = 1; // find pivot (rotAxis) based on max diagonal of matrix for (let i = 0; i < 3; ++i) { const temp = Math.abs( matrix[Matrix3.getElementIndex(colVal[i], rowVal[i])] ); if (temp > maxDiagonal) { rotAxis = i; maxDiagonal = temp; } } let c = 1.0; let s = 0.0; const p = rowVal[rotAxis]; const q = colVal[rotAxis]; if (Math.abs(matrix[Matrix3.getElementIndex(q, p)]) > tolerance) { const qq = matrix[Matrix3.getElementIndex(q, q)]; const pp = matrix[Matrix3.getElementIndex(p, p)]; const qp = matrix[Matrix3.getElementIndex(q, p)]; const tau = (qq - pp) / 2.0 / qp; let t; if (tau < 0.0) { t = -1.0 / (-tau + Math.sqrt(1.0 + tau * tau)); } else { t = 1.0 / (tau + Math.sqrt(1.0 + tau * tau)); } c = 1.0 / Math.sqrt(1.0 + t * t); s = t * c; } result = Matrix3.clone(Matrix3.IDENTITY, result); result[Matrix3.getElementIndex(p, p)] = result[ Matrix3.getElementIndex(q, q) ] = c; result[Matrix3.getElementIndex(q, p)] = s; result[Matrix3.getElementIndex(p, q)] = -s; return result; } const jMatrix = new Matrix3(); const jMatrixTranspose = new Matrix3(); /** * Computes the eigenvectors and eigenvalues of a symmetric matrix. *

* Returns a diagonal matrix and unitary matrix such that: * matrix = unitary matrix * diagonal matrix * transpose(unitary matrix) *

*

* The values along the diagonal of the diagonal matrix are the eigenvalues. The columns * of the unitary matrix are the corresponding eigenvectors. *

* * @param {Matrix3} matrix The matrix to decompose into diagonal and unitary matrix. Expected to be symmetric. * @param {Object} [result] An object with unitary and diagonal properties which are matrices onto which to store the result. * @returns {Object} An object with unitary and diagonal properties which are the unitary and diagonal matrices, respectively. * * @example * const a = //... symetric matrix * const result = { * unitary : new Cesium.Matrix3(), * diagonal : new Cesium.Matrix3() * }; * Cesium.Matrix3.computeEigenDecomposition(a, result); * * const unitaryTranspose = Cesium.Matrix3.transpose(result.unitary, new Cesium.Matrix3()); * const b = Cesium.Matrix3.multiply(result.unitary, result.diagonal, new Cesium.Matrix3()); * Cesium.Matrix3.multiply(b, unitaryTranspose, b); // b is now equal to a * * const lambda = Cesium.Matrix3.getColumn(result.diagonal, 0, new Cesium.Cartesian3()).x; // first eigenvalue * const v = Cesium.Matrix3.getColumn(result.unitary, 0, new Cesium.Cartesian3()); // first eigenvector * const c = Cesium.Cartesian3.multiplyByScalar(v, lambda, new Cesium.Cartesian3()); // equal to Cesium.Matrix3.multiplyByVector(a, v) */ Matrix3.computeEigenDecomposition = function (matrix, result) { //>>includeStart('debug', pragmas.debug); Check.typeOf.object("matrix", matrix); //>>includeEnd('debug'); // This routine was created based upon Matrix Computations, 3rd ed., by Golub and Van Loan, // section 8.4.3 The Classical Jacobi Algorithm const tolerance = CesiumMath.EPSILON20; const maxSweeps = 10; let count = 0; let sweep = 0; if (!defined(result)) { result = {}; } const unitaryMatrix = (result.unitary = Matrix3.clone( Matrix3.IDENTITY, result.unitary )); const diagMatrix = (result.diagonal = Matrix3.clone(matrix, result.diagonal)); const epsilon = tolerance * computeFrobeniusNorm(diagMatrix); while (sweep < maxSweeps && offDiagonalFrobeniusNorm(diagMatrix) > epsilon) { shurDecomposition(diagMatrix, jMatrix); Matrix3.transpose(jMatrix, jMatrixTranspose); Matrix3.multiply(diagMatrix, jMatrix, diagMatrix); Matrix3.multiply(jMatrixTranspose, diagMatrix, diagMatrix); Matrix3.multiply(unitaryMatrix, jMatrix, unitaryMatrix); if (++count > 2) { ++sweep; count = 0; } } return result; }; /** * Computes a matrix, which contains the absolute (unsigned) values of the provided matrix's elements. * * @param {Matrix3} matrix The matrix with signed elements. * @param {Matrix3} result The object onto which to store the result. * @returns {Matrix3} The modified result parameter. */ Matrix3.abs = function (matrix, result) { //>>includeStart('debug', pragmas.debug); Check.typeOf.object("matrix", matrix); Check.typeOf.object("result", result); //>>includeEnd('debug'); result[0] = Math.abs(matrix[0]); result[1] = Math.abs(matrix[1]); result[2] = Math.abs(matrix[2]); result[3] = Math.abs(matrix[3]); result[4] = Math.abs(matrix[4]); result[5] = Math.abs(matrix[5]); result[6] = Math.abs(matrix[6]); result[7] = Math.abs(matrix[7]); result[8] = Math.abs(matrix[8]); return result; }; /** * Computes the determinant of the provided matrix. * * @param {Matrix3} matrix The matrix to use. * @returns {Number} The value of the determinant of the matrix. */ Matrix3.determinant = function (matrix) { //>>includeStart('debug', pragmas.debug); Check.typeOf.object("matrix", matrix); //>>includeEnd('debug'); const m11 = matrix[0]; const m21 = matrix[3]; const m31 = matrix[6]; const m12 = matrix[1]; const m22 = matrix[4]; const m32 = matrix[7]; const m13 = matrix[2]; const m23 = matrix[5]; const m33 = matrix[8]; return ( m11 * (m22 * m33 - m23 * m32) + m12 * (m23 * m31 - m21 * m33) + m13 * (m21 * m32 - m22 * m31) ); }; /** * Computes the inverse of the provided matrix. * * @param {Matrix3} matrix The matrix to invert. * @param {Matrix3} result The object onto which to store the result. * @returns {Matrix3} The modified result parameter. * * @exception {DeveloperError} matrix is not invertible. */ Matrix3.inverse = function (matrix, result) { //>>includeStart('debug', pragmas.debug); Check.typeOf.object("matrix", matrix); Check.typeOf.object("result", result); //>>includeEnd('debug'); const m11 = matrix[0]; const m21 = matrix[1]; const m31 = matrix[2]; const m12 = matrix[3]; const m22 = matrix[4]; const m32 = matrix[5]; const m13 = matrix[6]; const m23 = matrix[7]; const m33 = matrix[8]; const determinant = Matrix3.determinant(matrix); //>>includeStart('debug', pragmas.debug); if (Math.abs(determinant) <= CesiumMath.EPSILON15) { throw new DeveloperError("matrix is not invertible"); } //>>includeEnd('debug'); result[0] = m22 * m33 - m23 * m32; result[1] = m23 * m31 - m21 * m33; result[2] = m21 * m32 - m22 * m31; result[3] = m13 * m32 - m12 * m33; result[4] = m11 * m33 - m13 * m31; result[5] = m12 * m31 - m11 * m32; result[6] = m12 * m23 - m13 * m22; result[7] = m13 * m21 - m11 * m23; result[8] = m11 * m22 - m12 * m21; const scale = 1.0 / determinant; return Matrix3.multiplyByScalar(result, scale, result); }; const scratchTransposeMatrix = new Matrix3(); /** * Computes the inverse transpose of a matrix. * * @param {Matrix3} matrix The matrix to transpose and invert. * @param {Matrix3} result The object onto which to store the result. * @returns {Matrix3} The modified result parameter. */ Matrix3.inverseTranspose = function (matrix, result) { //>>includeStart('debug', pragmas.debug); Check.typeOf.object("matrix", matrix); Check.typeOf.object("result", result); //>>includeEnd('debug'); return Matrix3.inverse( Matrix3.transpose(matrix, scratchTransposeMatrix), result ); }; /** * Compares the provided matrices componentwise and returns * true if they are equal, false otherwise. * * @param {Matrix3} [left] The first matrix. * @param {Matrix3} [right] The second matrix. * @returns {Boolean} true if left and right are equal, false otherwise. */ Matrix3.equals = function (left, right) { return ( left === right || (defined(left) && defined(right) && left[0] === right[0] && left[1] === right[1] && left[2] === right[2] && left[3] === right[3] && left[4] === right[4] && left[5] === right[5] && left[6] === right[6] && left[7] === right[7] && left[8] === right[8]) ); }; /** * Compares the provided matrices componentwise and returns * true if they are within the provided epsilon, * false otherwise. * * @param {Matrix3} [left] The first matrix. * @param {Matrix3} [right] The second matrix. * @param {Number} [epsilon=0] The epsilon to use for equality testing. * @returns {Boolean} true if left and right are within the provided epsilon, false otherwise. */ Matrix3.equalsEpsilon = function (left, right, epsilon) { epsilon = defaultValue(epsilon, 0); return ( left === right || (defined(left) && defined(right) && Math.abs(left[0] - right[0]) <= epsilon && Math.abs(left[1] - right[1]) <= epsilon && Math.abs(left[2] - right[2]) <= epsilon && Math.abs(left[3] - right[3]) <= epsilon && Math.abs(left[4] - right[4]) <= epsilon && Math.abs(left[5] - right[5]) <= epsilon && Math.abs(left[6] - right[6]) <= epsilon && Math.abs(left[7] - right[7]) <= epsilon && Math.abs(left[8] - right[8]) <= epsilon) ); }; /** * An immutable Matrix3 instance initialized to the identity matrix. * * @type {Matrix3} * @constant */ Matrix3.IDENTITY = Object.freeze( new Matrix3(1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 1.0) ); /** * An immutable Matrix3 instance initialized to the zero matrix. * * @type {Matrix3} * @constant */ Matrix3.ZERO = Object.freeze( new Matrix3(0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0) ); /** * The index into Matrix3 for column 0, row 0. * * @type {Number} * @constant */ Matrix3.COLUMN0ROW0 = 0; /** * The index into Matrix3 for column 0, row 1. * * @type {Number} * @constant */ Matrix3.COLUMN0ROW1 = 1; /** * The index into Matrix3 for column 0, row 2. * * @type {Number} * @constant */ Matrix3.COLUMN0ROW2 = 2; /** * The index into Matrix3 for column 1, row 0. * * @type {Number} * @constant */ Matrix3.COLUMN1ROW0 = 3; /** * The index into Matrix3 for column 1, row 1. * * @type {Number} * @constant */ Matrix3.COLUMN1ROW1 = 4; /** * The index into Matrix3 for column 1, row 2. * * @type {Number} * @constant */ Matrix3.COLUMN1ROW2 = 5; /** * The index into Matrix3 for column 2, row 0. * * @type {Number} * @constant */ Matrix3.COLUMN2ROW0 = 6; /** * The index into Matrix3 for column 2, row 1. * * @type {Number} * @constant */ Matrix3.COLUMN2ROW1 = 7; /** * The index into Matrix3 for column 2, row 2. * * @type {Number} * @constant */ Matrix3.COLUMN2ROW2 = 8; Object.defineProperties(Matrix3.prototype, { /** * Gets the number of items in the collection. * @memberof Matrix3.prototype * * @type {Number} */ length: { get: function () { return Matrix3.packedLength; }, }, }); /** * Duplicates the provided Matrix3 instance. * * @param {Matrix3} [result] The object onto which to store the result. * @returns {Matrix3} The modified result parameter or a new Matrix3 instance if one was not provided. */ Matrix3.prototype.clone = function (result) { return Matrix3.clone(this, result); }; /** * Compares this matrix to the provided matrix componentwise and returns * true if they are equal, false otherwise. * * @param {Matrix3} [right] The right hand side matrix. * @returns {Boolean} true if they are equal, false otherwise. */ Matrix3.prototype.equals = function (right) { return Matrix3.equals(this, right); }; /** * @private */ Matrix3.equalsArray = function (matrix, array, offset) { return ( matrix[0] === array[offset] && matrix[1] === array[offset + 1] && matrix[2] === array[offset + 2] && matrix[3] === array[offset + 3] && matrix[4] === array[offset + 4] && matrix[5] === array[offset + 5] && matrix[6] === array[offset + 6] && matrix[7] === array[offset + 7] && matrix[8] === array[offset + 8] ); }; /** * Compares this matrix to the provided matrix componentwise and returns * true if they are within the provided epsilon, * false otherwise. * * @param {Matrix3} [right] The right hand side matrix. * @param {Number} [epsilon=0] The epsilon to use for equality testing. * @returns {Boolean} true if they are within the provided epsilon, false otherwise. */ Matrix3.prototype.equalsEpsilon = function (right, epsilon) { return Matrix3.equalsEpsilon(this, right, epsilon); }; /** * Creates a string representing this Matrix with each row being * on a separate line and in the format '(column0, column1, column2)'. * * @returns {String} A string representing the provided Matrix with each row being on a separate line and in the format '(column0, column1, column2)'. */ Matrix3.prototype.toString = function () { return ( `(${this[0]}, ${this[3]}, ${this[6]})\n` + `(${this[1]}, ${this[4]}, ${this[7]})\n` + `(${this[2]}, ${this[5]}, ${this[8]})` ); }; export default Matrix3;