import Cartesian3 from "./Cartesian3.js"; import Cartesian4 from "./Cartesian4.js"; import Check from "./Check.js"; import defaultValue from "./defaultValue.js"; import defined from "./defined.js"; import DeveloperError from "./DeveloperError.js"; import CesiumMath from "./Math.js"; import Matrix3 from "./Matrix3.js"; import RuntimeError from "./RuntimeError.js"; /** * A 4x4 matrix, indexable as a column-major order array. * Constructor parameters are in row-major order for code readability. * @alias Matrix4 * @constructor * @implements {ArrayLike} * * @param {Number} [column0Row0=0.0] The value for column 0, row 0. * @param {Number} [column1Row0=0.0] The value for column 1, row 0. * @param {Number} [column2Row0=0.0] The value for column 2, row 0. * @param {Number} [column3Row0=0.0] The value for column 3, row 0. * @param {Number} [column0Row1=0.0] The value for column 0, row 1. * @param {Number} [column1Row1=0.0] The value for column 1, row 1. * @param {Number} [column2Row1=0.0] The value for column 2, row 1. * @param {Number} [column3Row1=0.0] The value for column 3, row 1. * @param {Number} [column0Row2=0.0] The value for column 0, row 2. * @param {Number} [column1Row2=0.0] The value for column 1, row 2. * @param {Number} [column2Row2=0.0] The value for column 2, row 2. * @param {Number} [column3Row2=0.0] The value for column 3, row 2. * @param {Number} [column0Row3=0.0] The value for column 0, row 3. * @param {Number} [column1Row3=0.0] The value for column 1, row 3. * @param {Number} [column2Row3=0.0] The value for column 2, row 3. * @param {Number} [column3Row3=0.0] The value for column 3, row 3. * * @see Matrix4.fromArray * @see Matrix4.fromColumnMajorArray * @see Matrix4.fromRowMajorArray * @see Matrix4.fromRotationTranslation * @see Matrix4.fromTranslationQuaternionRotationScale * @see Matrix4.fromTranslationRotationScale * @see Matrix4.fromTranslation * @see Matrix4.fromScale * @see Matrix4.fromUniformScale * @see Matrix4.fromRotation * @see Matrix4.fromCamera * @see Matrix4.computePerspectiveFieldOfView * @see Matrix4.computeOrthographicOffCenter * @see Matrix4.computePerspectiveOffCenter * @see Matrix4.computeInfinitePerspectiveOffCenter * @see Matrix4.computeViewportTransformation * @see Matrix4.computeView * @see Matrix2 * @see Matrix3 * @see Packable */ function Matrix4( column0Row0, column1Row0, column2Row0, column3Row0, column0Row1, column1Row1, column2Row1, column3Row1, column0Row2, column1Row2, column2Row2, column3Row2, column0Row3, column1Row3, column2Row3, column3Row3 ) { this[0] = defaultValue(column0Row0, 0.0); this[1] = defaultValue(column0Row1, 0.0); this[2] = defaultValue(column0Row2, 0.0); this[3] = defaultValue(column0Row3, 0.0); this[4] = defaultValue(column1Row0, 0.0); this[5] = defaultValue(column1Row1, 0.0); this[6] = defaultValue(column1Row2, 0.0); this[7] = defaultValue(column1Row3, 0.0); this[8] = defaultValue(column2Row0, 0.0); this[9] = defaultValue(column2Row1, 0.0); this[10] = defaultValue(column2Row2, 0.0); this[11] = defaultValue(column2Row3, 0.0); this[12] = defaultValue(column3Row0, 0.0); this[13] = defaultValue(column3Row1, 0.0); this[14] = defaultValue(column3Row2, 0.0); this[15] = defaultValue(column3Row3, 0.0); } /** * The number of elements used to pack the object into an array. * @type {Number} */ Matrix4.packedLength = 16; /** * Stores the provided instance into the provided array. * * @param {Matrix4} value The value to pack. * @param {Number[]} array The array to pack into. * @param {Number} [startingIndex=0] The index into the array at which to start packing the elements. * * @returns {Number[]} The array that was packed into */ Matrix4.pack = function (value, array, startingIndex) { //>>includeStart('debug', pragmas.debug); Check.typeOf.object("value", value); Check.defined("array", array); //>>includeEnd('debug'); startingIndex = defaultValue(startingIndex, 0); array[startingIndex++] = value[0]; array[startingIndex++] = value[1]; array[startingIndex++] = value[2]; array[startingIndex++] = value[3]; array[startingIndex++] = value[4]; array[startingIndex++] = value[5]; array[startingIndex++] = value[6]; array[startingIndex++] = value[7]; array[startingIndex++] = value[8]; array[startingIndex++] = value[9]; array[startingIndex++] = value[10]; array[startingIndex++] = value[11]; array[startingIndex++] = value[12]; array[startingIndex++] = value[13]; array[startingIndex++] = value[14]; array[startingIndex] = value[15]; return array; }; /** * Retrieves an instance from a packed array. * * @param {Number[]} array The packed array. * @param {Number} [startingIndex=0] The starting index of the element to be unpacked. * @param {Matrix4} [result] The object into which to store the result. * @returns {Matrix4} The modified result parameter or a new Matrix4 instance if one was not provided. */ Matrix4.unpack = function (array, startingIndex, result) { //>>includeStart('debug', pragmas.debug); Check.defined("array", array); //>>includeEnd('debug'); startingIndex = defaultValue(startingIndex, 0); if (!defined(result)) { result = new Matrix4(); } result[0] = array[startingIndex++]; result[1] = array[startingIndex++]; result[2] = array[startingIndex++]; result[3] = array[startingIndex++]; result[4] = array[startingIndex++]; result[5] = array[startingIndex++]; result[6] = array[startingIndex++]; result[7] = array[startingIndex++]; result[8] = array[startingIndex++]; result[9] = array[startingIndex++]; result[10] = array[startingIndex++]; result[11] = array[startingIndex++]; result[12] = array[startingIndex++]; result[13] = array[startingIndex++]; result[14] = array[startingIndex++]; result[15] = array[startingIndex]; return result; }; /** * Flattens an array of Matrix4s into an array of components. The components * are stored in column-major order. * * @param {Matrix4[]} array The array of matrices to pack. * @param {Number[]} [result] The array onto which to store the result. If this is a typed array, it must have array.length * 16 components, else a {@link DeveloperError} will be thrown. If it is a regular array, it will be resized to have (array.length * 16) elements. * @returns {Number[]} The packed array. */ Matrix4.packArray = function (array, result) { //>>includeStart('debug', pragmas.debug); Check.defined("array", array); //>>includeEnd('debug'); const length = array.length; const resultLength = length * 16; if (!defined(result)) { result = new Array(resultLength); } else if (!Array.isArray(result) && result.length !== resultLength) { //>>includeStart('debug', pragmas.debug); throw new DeveloperError( "If result is a typed array, it must have exactly array.length * 16 elements" ); //>>includeEnd('debug'); } else if (result.length !== resultLength) { result.length = resultLength; } for (let i = 0; i < length; ++i) { Matrix4.pack(array[i], result, i * 16); } return result; }; /** * Unpacks an array of column-major matrix components into an array of Matrix4s. * * @param {Number[]} array The array of components to unpack. * @param {Matrix4[]} [result] The array onto which to store the result. * @returns {Matrix4[]} The unpacked array. */ Matrix4.unpackArray = function (array, result) { //>>includeStart('debug', pragmas.debug); Check.defined("array", array); Check.typeOf.number.greaterThanOrEquals("array.length", array.length, 16); if (array.length % 16 !== 0) { throw new DeveloperError("array length must be a multiple of 16."); } //>>includeEnd('debug'); const length = array.length; if (!defined(result)) { result = new Array(length / 16); } else { result.length = length / 16; } for (let i = 0; i < length; i += 16) { const index = i / 16; result[index] = Matrix4.unpack(array, i, result[index]); } return result; }; /** * Duplicates a Matrix4 instance. * * @param {Matrix4} matrix The matrix to duplicate. * @param {Matrix4} [result] The object onto which to store the result. * @returns {Matrix4} The modified result parameter or a new Matrix4 instance if one was not provided. (Returns undefined if matrix is undefined) */ Matrix4.clone = function (matrix, result) { if (!defined(matrix)) { return undefined; } if (!defined(result)) { return new Matrix4( matrix[0], matrix[4], matrix[8], matrix[12], matrix[1], matrix[5], matrix[9], matrix[13], matrix[2], matrix[6], matrix[10], matrix[14], matrix[3], matrix[7], matrix[11], matrix[15] ); } result[0] = matrix[0]; result[1] = matrix[1]; result[2] = matrix[2]; result[3] = matrix[3]; result[4] = matrix[4]; result[5] = matrix[5]; result[6] = matrix[6]; result[7] = matrix[7]; result[8] = matrix[8]; result[9] = matrix[9]; result[10] = matrix[10]; result[11] = matrix[11]; result[12] = matrix[12]; result[13] = matrix[13]; result[14] = matrix[14]; result[15] = matrix[15]; return result; }; /** * Creates a Matrix4 from 16 consecutive elements in an array. * @function * * @param {Number[]} array The array whose 16 consecutive elements correspond to the positions of the matrix. Assumes column-major order. * @param {Number} [startingIndex=0] The offset into the array of the first element, which corresponds to first column first row position in the matrix. * @param {Matrix4} [result] The object onto which to store the result. * @returns {Matrix4} The modified result parameter or a new Matrix4 instance if one was not provided. * * @example * // Create the Matrix4: * // [1.0, 2.0, 3.0, 4.0] * // [1.0, 2.0, 3.0, 4.0] * // [1.0, 2.0, 3.0, 4.0] * // [1.0, 2.0, 3.0, 4.0] * * const v = [1.0, 1.0, 1.0, 1.0, 2.0, 2.0, 2.0, 2.0, 3.0, 3.0, 3.0, 3.0, 4.0, 4.0, 4.0, 4.0]; * const m = Cesium.Matrix4.fromArray(v); * * // Create same Matrix4 with using an offset into an array * const v2 = [0.0, 0.0, 1.0, 1.0, 1.0, 1.0, 2.0, 2.0, 2.0, 2.0, 3.0, 3.0, 3.0, 3.0, 4.0, 4.0, 4.0, 4.0]; * const m2 = Cesium.Matrix4.fromArray(v2, 2); */ Matrix4.fromArray = Matrix4.unpack; /** * Computes a Matrix4 instance from a column-major order array. * * @param {Number[]} values The column-major order array. * @param {Matrix4} [result] The object in which the result will be stored, if undefined a new instance will be created. * @returns {Matrix4} The modified result parameter, or a new Matrix4 instance if one was not provided. */ Matrix4.fromColumnMajorArray = function (values, result) { //>>includeStart('debug', pragmas.debug); Check.defined("values", values); //>>includeEnd('debug'); return Matrix4.clone(values, result); }; /** * Computes a Matrix4 instance from a row-major order array. * The resulting matrix will be in column-major order. * * @param {Number[]} values The row-major order array. * @param {Matrix4} [result] The object in which the result will be stored, if undefined a new instance will be created. * @returns {Matrix4} The modified result parameter, or a new Matrix4 instance if one was not provided. */ Matrix4.fromRowMajorArray = function (values, result) { //>>includeStart('debug', pragmas.debug); Check.defined("values", values); //>>includeEnd('debug'); if (!defined(result)) { return new Matrix4( values[0], values[1], values[2], values[3], values[4], values[5], values[6], values[7], values[8], values[9], values[10], values[11], values[12], values[13], values[14], values[15] ); } result[0] = values[0]; result[1] = values[4]; result[2] = values[8]; result[3] = values[12]; result[4] = values[1]; result[5] = values[5]; result[6] = values[9]; result[7] = values[13]; result[8] = values[2]; result[9] = values[6]; result[10] = values[10]; result[11] = values[14]; result[12] = values[3]; result[13] = values[7]; result[14] = values[11]; result[15] = values[15]; return result; }; /** * Computes a Matrix4 instance from a Matrix3 representing the rotation * and a Cartesian3 representing the translation. * * @param {Matrix3} rotation The upper left portion of the matrix representing the rotation. * @param {Cartesian3} [translation=Cartesian3.ZERO] The upper right portion of the matrix representing the translation. * @param {Matrix4} [result] The object in which the result will be stored, if undefined a new instance will be created. * @returns {Matrix4} The modified result parameter, or a new Matrix4 instance if one was not provided. */ Matrix4.fromRotationTranslation = function (rotation, translation, result) { //>>includeStart('debug', pragmas.debug); Check.typeOf.object("rotation", rotation); //>>includeEnd('debug'); translation = defaultValue(translation, Cartesian3.ZERO); if (!defined(result)) { return new Matrix4( rotation[0], rotation[3], rotation[6], translation.x, rotation[1], rotation[4], rotation[7], translation.y, rotation[2], rotation[5], rotation[8], translation.z, 0.0, 0.0, 0.0, 1.0 ); } result[0] = rotation[0]; result[1] = rotation[1]; result[2] = rotation[2]; result[3] = 0.0; result[4] = rotation[3]; result[5] = rotation[4]; result[6] = rotation[5]; result[7] = 0.0; result[8] = rotation[6]; result[9] = rotation[7]; result[10] = rotation[8]; result[11] = 0.0; result[12] = translation.x; result[13] = translation.y; result[14] = translation.z; result[15] = 1.0; return result; }; /** * Computes a Matrix4 instance from a translation, rotation, and scale (TRS) * representation with the rotation represented as a quaternion. * * @param {Cartesian3} translation The translation transformation. * @param {Quaternion} rotation The rotation transformation. * @param {Cartesian3} scale The non-uniform scale transformation. * @param {Matrix4} [result] The object in which the result will be stored, if undefined a new instance will be created. * @returns {Matrix4} The modified result parameter, or a new Matrix4 instance if one was not provided. * * @example * const result = Cesium.Matrix4.fromTranslationQuaternionRotationScale( * new Cesium.Cartesian3(1.0, 2.0, 3.0), // translation * Cesium.Quaternion.IDENTITY, // rotation * new Cesium.Cartesian3(7.0, 8.0, 9.0), // scale * result); */ Matrix4.fromTranslationQuaternionRotationScale = function ( translation, rotation, scale, result ) { //>>includeStart('debug', pragmas.debug); Check.typeOf.object("translation", translation); Check.typeOf.object("rotation", rotation); Check.typeOf.object("scale", scale); //>>includeEnd('debug'); if (!defined(result)) { result = new Matrix4(); } const scaleX = scale.x; const scaleY = scale.y; const scaleZ = scale.z; const x2 = rotation.x * rotation.x; const xy = rotation.x * rotation.y; const xz = rotation.x * rotation.z; const xw = rotation.x * rotation.w; const y2 = rotation.y * rotation.y; const yz = rotation.y * rotation.z; const yw = rotation.y * rotation.w; const z2 = rotation.z * rotation.z; const zw = rotation.z * rotation.w; const w2 = rotation.w * rotation.w; const m00 = x2 - y2 - z2 + w2; const m01 = 2.0 * (xy - zw); const m02 = 2.0 * (xz + yw); const m10 = 2.0 * (xy + zw); const m11 = -x2 + y2 - z2 + w2; const m12 = 2.0 * (yz - xw); const m20 = 2.0 * (xz - yw); const m21 = 2.0 * (yz + xw); const m22 = -x2 - y2 + z2 + w2; result[0] = m00 * scaleX; result[1] = m10 * scaleX; result[2] = m20 * scaleX; result[3] = 0.0; result[4] = m01 * scaleY; result[5] = m11 * scaleY; result[6] = m21 * scaleY; result[7] = 0.0; result[8] = m02 * scaleZ; result[9] = m12 * scaleZ; result[10] = m22 * scaleZ; result[11] = 0.0; result[12] = translation.x; result[13] = translation.y; result[14] = translation.z; result[15] = 1.0; return result; }; /** * Creates a Matrix4 instance from a {@link TranslationRotationScale} instance. * * @param {TranslationRotationScale} translationRotationScale The instance. * @param {Matrix4} [result] The object in which the result will be stored, if undefined a new instance will be created. * @returns {Matrix4} The modified result parameter, or a new Matrix4 instance if one was not provided. */ Matrix4.fromTranslationRotationScale = function ( translationRotationScale, result ) { //>>includeStart('debug', pragmas.debug); Check.typeOf.object("translationRotationScale", translationRotationScale); //>>includeEnd('debug'); return Matrix4.fromTranslationQuaternionRotationScale( translationRotationScale.translation, translationRotationScale.rotation, translationRotationScale.scale, result ); }; /** * Creates a Matrix4 instance from a Cartesian3 representing the translation. * * @param {Cartesian3} translation The upper right portion of the matrix representing the translation. * @param {Matrix4} [result] The object in which the result will be stored, if undefined a new instance will be created. * @returns {Matrix4} The modified result parameter, or a new Matrix4 instance if one was not provided. * * @see Matrix4.multiplyByTranslation */ Matrix4.fromTranslation = function (translation, result) { //>>includeStart('debug', pragmas.debug); Check.typeOf.object("translation", translation); //>>includeEnd('debug'); return Matrix4.fromRotationTranslation(Matrix3.IDENTITY, translation, result); }; /** * Computes a Matrix4 instance representing a non-uniform scale. * * @param {Cartesian3} scale The x, y, and z scale factors. * @param {Matrix4} [result] The object in which the result will be stored, if undefined a new instance will be created. * @returns {Matrix4} The modified result parameter, or a new Matrix4 instance if one was not provided. * * @example * // Creates * // [7.0, 0.0, 0.0, 0.0] * // [0.0, 8.0, 0.0, 0.0] * // [0.0, 0.0, 9.0, 0.0] * // [0.0, 0.0, 0.0, 1.0] * const m = Cesium.Matrix4.fromScale(new Cesium.Cartesian3(7.0, 8.0, 9.0)); */ Matrix4.fromScale = function (scale, result) { //>>includeStart('debug', pragmas.debug); Check.typeOf.object("scale", scale); //>>includeEnd('debug'); if (!defined(result)) { return new Matrix4( scale.x, 0.0, 0.0, 0.0, 0.0, scale.y, 0.0, 0.0, 0.0, 0.0, scale.z, 0.0, 0.0, 0.0, 0.0, 1.0 ); } result[0] = scale.x; result[1] = 0.0; result[2] = 0.0; result[3] = 0.0; result[4] = 0.0; result[5] = scale.y; result[6] = 0.0; result[7] = 0.0; result[8] = 0.0; result[9] = 0.0; result[10] = scale.z; result[11] = 0.0; result[12] = 0.0; result[13] = 0.0; result[14] = 0.0; result[15] = 1.0; return result; }; /** * Computes a Matrix4 instance representing a uniform scale. * * @param {Number} scale The uniform scale factor. * @param {Matrix4} [result] The object in which the result will be stored, if undefined a new instance will be created. * @returns {Matrix4} The modified result parameter, or a new Matrix4 instance if one was not provided. * * @example * // Creates * // [2.0, 0.0, 0.0, 0.0] * // [0.0, 2.0, 0.0, 0.0] * // [0.0, 0.0, 2.0, 0.0] * // [0.0, 0.0, 0.0, 1.0] * const m = Cesium.Matrix4.fromUniformScale(2.0); */ Matrix4.fromUniformScale = function (scale, result) { //>>includeStart('debug', pragmas.debug); Check.typeOf.number("scale", scale); //>>includeEnd('debug'); if (!defined(result)) { return new Matrix4( scale, 0.0, 0.0, 0.0, 0.0, scale, 0.0, 0.0, 0.0, 0.0, scale, 0.0, 0.0, 0.0, 0.0, 1.0 ); } result[0] = scale; result[1] = 0.0; result[2] = 0.0; result[3] = 0.0; result[4] = 0.0; result[5] = scale; result[6] = 0.0; result[7] = 0.0; result[8] = 0.0; result[9] = 0.0; result[10] = scale; result[11] = 0.0; result[12] = 0.0; result[13] = 0.0; result[14] = 0.0; result[15] = 1.0; return result; }; /** * Creates a rotation matrix. * * @param {Matrix3} rotation The rotation matrix. * @param {Matrix4} [result] The object in which the result will be stored, if undefined a new instance will be created. * @returns {Matrix4} The modified result parameter, or a new Matrix4 instance if one was not provided. */ Matrix4.fromRotation = function (rotation, result) { //>>includeStart('debug', pragmas.debug); Check.typeOf.object("rotation", rotation); //>>includeEnd('debug'); if (!defined(result)) { result = new Matrix4(); } result[0] = rotation[0]; result[1] = rotation[1]; result[2] = rotation[2]; result[3] = 0.0; result[4] = rotation[3]; result[5] = rotation[4]; result[6] = rotation[5]; result[7] = 0.0; result[8] = rotation[6]; result[9] = rotation[7]; result[10] = rotation[8]; result[11] = 0.0; result[12] = 0.0; result[13] = 0.0; result[14] = 0.0; result[15] = 1.0; return result; }; const fromCameraF = new Cartesian3(); const fromCameraR = new Cartesian3(); const fromCameraU = new Cartesian3(); /** * Computes a Matrix4 instance from a Camera. * * @param {Camera} camera The camera to use. * @param {Matrix4} [result] The object in which the result will be stored, if undefined a new instance will be created. * @returns {Matrix4} The modified result parameter, or a new Matrix4 instance if one was not provided. */ Matrix4.fromCamera = function (camera, result) { //>>includeStart('debug', pragmas.debug); Check.typeOf.object("camera", camera); //>>includeEnd('debug'); const position = camera.position; const direction = camera.direction; const up = camera.up; //>>includeStart('debug', pragmas.debug); Check.typeOf.object("camera.position", position); Check.typeOf.object("camera.direction", direction); Check.typeOf.object("camera.up", up); //>>includeEnd('debug'); Cartesian3.normalize(direction, fromCameraF); Cartesian3.normalize( Cartesian3.cross(fromCameraF, up, fromCameraR), fromCameraR ); Cartesian3.normalize( Cartesian3.cross(fromCameraR, fromCameraF, fromCameraU), fromCameraU ); const sX = fromCameraR.x; const sY = fromCameraR.y; const sZ = fromCameraR.z; const fX = fromCameraF.x; const fY = fromCameraF.y; const fZ = fromCameraF.z; const uX = fromCameraU.x; const uY = fromCameraU.y; const uZ = fromCameraU.z; const positionX = position.x; const positionY = position.y; const positionZ = position.z; const t0 = sX * -positionX + sY * -positionY + sZ * -positionZ; const t1 = uX * -positionX + uY * -positionY + uZ * -positionZ; const t2 = fX * positionX + fY * positionY + fZ * positionZ; // The code below this comment is an optimized // version of the commented lines. // Rather that create two matrices and then multiply, // we just bake in the multiplcation as part of creation. // const rotation = new Matrix4( // sX, sY, sZ, 0.0, // uX, uY, uZ, 0.0, // -fX, -fY, -fZ, 0.0, // 0.0, 0.0, 0.0, 1.0); // const translation = new Matrix4( // 1.0, 0.0, 0.0, -position.x, // 0.0, 1.0, 0.0, -position.y, // 0.0, 0.0, 1.0, -position.z, // 0.0, 0.0, 0.0, 1.0); // return rotation.multiply(translation); if (!defined(result)) { return new Matrix4( sX, sY, sZ, t0, uX, uY, uZ, t1, -fX, -fY, -fZ, t2, 0.0, 0.0, 0.0, 1.0 ); } result[0] = sX; result[1] = uX; result[2] = -fX; result[3] = 0.0; result[4] = sY; result[5] = uY; result[6] = -fY; result[7] = 0.0; result[8] = sZ; result[9] = uZ; result[10] = -fZ; result[11] = 0.0; result[12] = t0; result[13] = t1; result[14] = t2; result[15] = 1.0; return result; }; /** * Computes a Matrix4 instance representing a perspective transformation matrix. * * @param {Number} fovY The field of view along the Y axis in radians. * @param {Number} aspectRatio The aspect ratio. * @param {Number} near The distance to the near plane in meters. * @param {Number} far The distance to the far plane in meters. * @param {Matrix4} result The object in which the result will be stored. * @returns {Matrix4} The modified result parameter. * * @exception {DeveloperError} fovY must be in (0, PI]. * @exception {DeveloperError} aspectRatio must be greater than zero. * @exception {DeveloperError} near must be greater than zero. * @exception {DeveloperError} far must be greater than zero. */ Matrix4.computePerspectiveFieldOfView = function ( fovY, aspectRatio, near, far, result ) { //>>includeStart('debug', pragmas.debug); Check.typeOf.number.greaterThan("fovY", fovY, 0.0); Check.typeOf.number.lessThan("fovY", fovY, Math.PI); Check.typeOf.number.greaterThan("near", near, 0.0); Check.typeOf.number.greaterThan("far", far, 0.0); Check.typeOf.object("result", result); //>>includeEnd('debug'); const bottom = Math.tan(fovY * 0.5); const column1Row1 = 1.0 / bottom; const column0Row0 = column1Row1 / aspectRatio; const column2Row2 = (far + near) / (near - far); const column3Row2 = (2.0 * far * near) / (near - far); result[0] = column0Row0; result[1] = 0.0; result[2] = 0.0; result[3] = 0.0; result[4] = 0.0; result[5] = column1Row1; result[6] = 0.0; result[7] = 0.0; result[8] = 0.0; result[9] = 0.0; result[10] = column2Row2; result[11] = -1.0; result[12] = 0.0; result[13] = 0.0; result[14] = column3Row2; result[15] = 0.0; return result; }; /** * Computes a Matrix4 instance representing an orthographic transformation matrix. * * @param {Number} left The number of meters to the left of the camera that will be in view. * @param {Number} right The number of meters to the right of the camera that will be in view. * @param {Number} bottom The number of meters below of the camera that will be in view. * @param {Number} top The number of meters above of the camera that will be in view. * @param {Number} near The distance to the near plane in meters. * @param {Number} far The distance to the far plane in meters. * @param {Matrix4} result The object in which the result will be stored. * @returns {Matrix4} The modified result parameter. */ Matrix4.computeOrthographicOffCenter = function ( left, right, bottom, top, near, far, result ) { //>>includeStart('debug', pragmas.debug); Check.typeOf.number("left", left); Check.typeOf.number("right", right); Check.typeOf.number("bottom", bottom); Check.typeOf.number("top", top); Check.typeOf.number("near", near); Check.typeOf.number("far", far); Check.typeOf.object("result", result); //>>includeEnd('debug'); let a = 1.0 / (right - left); let b = 1.0 / (top - bottom); let c = 1.0 / (far - near); const tx = -(right + left) * a; const ty = -(top + bottom) * b; const tz = -(far + near) * c; a *= 2.0; b *= 2.0; c *= -2.0; result[0] = a; result[1] = 0.0; result[2] = 0.0; result[3] = 0.0; result[4] = 0.0; result[5] = b; result[6] = 0.0; result[7] = 0.0; result[8] = 0.0; result[9] = 0.0; result[10] = c; result[11] = 0.0; result[12] = tx; result[13] = ty; result[14] = tz; result[15] = 1.0; return result; }; /** * Computes a Matrix4 instance representing an off center perspective transformation. * * @param {Number} left The number of meters to the left of the camera that will be in view. * @param {Number} right The number of meters to the right of the camera that will be in view. * @param {Number} bottom The number of meters below of the camera that will be in view. * @param {Number} top The number of meters above of the camera that will be in view. * @param {Number} near The distance to the near plane in meters. * @param {Number} far The distance to the far plane in meters. * @param {Matrix4} result The object in which the result will be stored. * @returns {Matrix4} The modified result parameter. */ Matrix4.computePerspectiveOffCenter = function ( left, right, bottom, top, near, far, result ) { //>>includeStart('debug', pragmas.debug); Check.typeOf.number("left", left); Check.typeOf.number("right", right); Check.typeOf.number("bottom", bottom); Check.typeOf.number("top", top); Check.typeOf.number("near", near); Check.typeOf.number("far", far); Check.typeOf.object("result", result); //>>includeEnd('debug'); const column0Row0 = (2.0 * near) / (right - left); const column1Row1 = (2.0 * near) / (top - bottom); const column2Row0 = (right + left) / (right - left); const column2Row1 = (top + bottom) / (top - bottom); const column2Row2 = -(far + near) / (far - near); const column2Row3 = -1.0; const column3Row2 = (-2.0 * far * near) / (far - near); result[0] = column0Row0; result[1] = 0.0; result[2] = 0.0; result[3] = 0.0; result[4] = 0.0; result[5] = column1Row1; result[6] = 0.0; result[7] = 0.0; result[8] = column2Row0; result[9] = column2Row1; result[10] = column2Row2; result[11] = column2Row3; result[12] = 0.0; result[13] = 0.0; result[14] = column3Row2; result[15] = 0.0; return result; }; /** * Computes a Matrix4 instance representing an infinite off center perspective transformation. * * @param {Number} left The number of meters to the left of the camera that will be in view. * @param {Number} right The number of meters to the right of the camera that will be in view. * @param {Number} bottom The number of meters below of the camera that will be in view. * @param {Number} top The number of meters above of the camera that will be in view. * @param {Number} near The distance to the near plane in meters. * @param {Matrix4} result The object in which the result will be stored. * @returns {Matrix4} The modified result parameter. */ Matrix4.computeInfinitePerspectiveOffCenter = function ( left, right, bottom, top, near, result ) { //>>includeStart('debug', pragmas.debug); Check.typeOf.number("left", left); Check.typeOf.number("right", right); Check.typeOf.number("bottom", bottom); Check.typeOf.number("top", top); Check.typeOf.number("near", near); Check.typeOf.object("result", result); //>>includeEnd('debug'); const column0Row0 = (2.0 * near) / (right - left); const column1Row1 = (2.0 * near) / (top - bottom); const column2Row0 = (right + left) / (right - left); const column2Row1 = (top + bottom) / (top - bottom); const column2Row2 = -1.0; const column2Row3 = -1.0; const column3Row2 = -2.0 * near; result[0] = column0Row0; result[1] = 0.0; result[2] = 0.0; result[3] = 0.0; result[4] = 0.0; result[5] = column1Row1; result[6] = 0.0; result[7] = 0.0; result[8] = column2Row0; result[9] = column2Row1; result[10] = column2Row2; result[11] = column2Row3; result[12] = 0.0; result[13] = 0.0; result[14] = column3Row2; result[15] = 0.0; return result; }; /** * Computes a Matrix4 instance that transforms from normalized device coordinates to window coordinates. * * @param {Object} [viewport = { x : 0.0, y : 0.0, width : 0.0, height : 0.0 }] The viewport's corners as shown in Example 1. * @param {Number} [nearDepthRange=0.0] The near plane distance in window coordinates. * @param {Number} [farDepthRange=1.0] The far plane distance in window coordinates. * @param {Matrix4} [result] The object in which the result will be stored. * @returns {Matrix4} The modified result parameter. * * @example * // Create viewport transformation using an explicit viewport and depth range. * const m = Cesium.Matrix4.computeViewportTransformation({ * x : 0.0, * y : 0.0, * width : 1024.0, * height : 768.0 * }, 0.0, 1.0, new Cesium.Matrix4()); */ Matrix4.computeViewportTransformation = function ( viewport, nearDepthRange, farDepthRange, result ) { if (!defined(result)) { result = new Matrix4(); } viewport = defaultValue(viewport, defaultValue.EMPTY_OBJECT); const x = defaultValue(viewport.x, 0.0); const y = defaultValue(viewport.y, 0.0); const width = defaultValue(viewport.width, 0.0); const height = defaultValue(viewport.height, 0.0); nearDepthRange = defaultValue(nearDepthRange, 0.0); farDepthRange = defaultValue(farDepthRange, 1.0); const halfWidth = width * 0.5; const halfHeight = height * 0.5; const halfDepth = (farDepthRange - nearDepthRange) * 0.5; const column0Row0 = halfWidth; const column1Row1 = halfHeight; const column2Row2 = halfDepth; const column3Row0 = x + halfWidth; const column3Row1 = y + halfHeight; const column3Row2 = nearDepthRange + halfDepth; const column3Row3 = 1.0; result[0] = column0Row0; result[1] = 0.0; result[2] = 0.0; result[3] = 0.0; result[4] = 0.0; result[5] = column1Row1; result[6] = 0.0; result[7] = 0.0; result[8] = 0.0; result[9] = 0.0; result[10] = column2Row2; result[11] = 0.0; result[12] = column3Row0; result[13] = column3Row1; result[14] = column3Row2; result[15] = column3Row3; return result; }; /** * Computes a Matrix4 instance that transforms from world space to view space. * * @param {Cartesian3} position The position of the camera. * @param {Cartesian3} direction The forward direction. * @param {Cartesian3} up The up direction. * @param {Cartesian3} right The right direction. * @param {Matrix4} result The object in which the result will be stored. * @returns {Matrix4} The modified result parameter. */ Matrix4.computeView = function (position, direction, up, right, result) { //>>includeStart('debug', pragmas.debug); Check.typeOf.object("position", position); Check.typeOf.object("direction", direction); Check.typeOf.object("up", up); Check.typeOf.object("right", right); Check.typeOf.object("result", result); //>>includeEnd('debug'); result[0] = right.x; result[1] = up.x; result[2] = -direction.x; result[3] = 0.0; result[4] = right.y; result[5] = up.y; result[6] = -direction.y; result[7] = 0.0; result[8] = right.z; result[9] = up.z; result[10] = -direction.z; result[11] = 0.0; result[12] = -Cartesian3.dot(right, position); result[13] = -Cartesian3.dot(up, position); result[14] = Cartesian3.dot(direction, position); result[15] = 1.0; return result; }; /** * Computes an Array from the provided Matrix4 instance. * The array will be in column-major order. * * @param {Matrix4} matrix The matrix to use.. * @param {Number[]} [result] The Array onto which to store the result. * @returns {Number[]} The modified Array parameter or a new Array instance if one was not provided. * * @example * //create an array from an instance of Matrix4 * // m = [10.0, 14.0, 18.0, 22.0] * // [11.0, 15.0, 19.0, 23.0] * // [12.0, 16.0, 20.0, 24.0] * // [13.0, 17.0, 21.0, 25.0] * const a = Cesium.Matrix4.toArray(m); * * // m remains the same * //creates a = [10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0, 17.0, 18.0, 19.0, 20.0, 21.0, 22.0, 23.0, 24.0, 25.0] */ Matrix4.toArray = function (matrix, result) { //>>includeStart('debug', pragmas.debug); Check.typeOf.object("matrix", matrix); //>>includeEnd('debug'); if (!defined(result)) { return [ matrix[0], matrix[1], matrix[2], matrix[3], matrix[4], matrix[5], matrix[6], matrix[7], matrix[8], matrix[9], matrix[10], matrix[11], matrix[12], matrix[13], matrix[14], matrix[15], ]; } result[0] = matrix[0]; result[1] = matrix[1]; result[2] = matrix[2]; result[3] = matrix[3]; result[4] = matrix[4]; result[5] = matrix[5]; result[6] = matrix[6]; result[7] = matrix[7]; result[8] = matrix[8]; result[9] = matrix[9]; result[10] = matrix[10]; result[11] = matrix[11]; result[12] = matrix[12]; result[13] = matrix[13]; result[14] = matrix[14]; result[15] = matrix[15]; return result; }; /** * Computes the array index of the element at the provided row and column. * * @param {Number} row The zero-based index of the row. * @param {Number} column The zero-based index of the column. * @returns {Number} The index of the element at the provided row and column. * * @exception {DeveloperError} row must be 0, 1, 2, or 3. * @exception {DeveloperError} column must be 0, 1, 2, or 3. * * @example * const myMatrix = new Cesium.Matrix4(); * const column1Row0Index = Cesium.Matrix4.getElementIndex(1, 0); * const column1Row0 = myMatrix[column1Row0Index]; * myMatrix[column1Row0Index] = 10.0; */ Matrix4.getElementIndex = function (column, row) { //>>includeStart('debug', pragmas.debug); Check.typeOf.number.greaterThanOrEquals("row", row, 0); Check.typeOf.number.lessThanOrEquals("row", row, 3); Check.typeOf.number.greaterThanOrEquals("column", column, 0); Check.typeOf.number.lessThanOrEquals("column", column, 3); //>>includeEnd('debug'); return column * 4 + row; }; /** * Retrieves a copy of the matrix column at the provided index as a Cartesian4 instance. * * @param {Matrix4} matrix The matrix to use. * @param {Number} index The zero-based index of the column to retrieve. * @param {Cartesian4} result The object onto which to store the result. * @returns {Cartesian4} The modified result parameter. * * @exception {DeveloperError} index must be 0, 1, 2, or 3. * * @example * //returns a Cartesian4 instance with values from the specified column * // m = [10.0, 11.0, 12.0, 13.0] * // [14.0, 15.0, 16.0, 17.0] * // [18.0, 19.0, 20.0, 21.0] * // [22.0, 23.0, 24.0, 25.0] * * //Example 1: Creates an instance of Cartesian * const a = Cesium.Matrix4.getColumn(m, 2, new Cesium.Cartesian4()); * * @example * //Example 2: Sets values for Cartesian instance * const a = new Cesium.Cartesian4(); * Cesium.Matrix4.getColumn(m, 2, a); * * // a.x = 12.0; a.y = 16.0; a.z = 20.0; a.w = 24.0; */ Matrix4.getColumn = function (matrix, index, result) { //>>includeStart('debug', pragmas.debug); Check.typeOf.object("matrix", matrix); Check.typeOf.number.greaterThanOrEquals("index", index, 0); Check.typeOf.number.lessThanOrEquals("index", index, 3); Check.typeOf.object("result", result); //>>includeEnd('debug'); const startIndex = index * 4; const x = matrix[startIndex]; const y = matrix[startIndex + 1]; const z = matrix[startIndex + 2]; const w = matrix[startIndex + 3]; result.x = x; result.y = y; result.z = z; result.w = w; return result; }; /** * Computes a new matrix that replaces the specified column in the provided matrix with the provided Cartesian4 instance. * * @param {Matrix4} matrix The matrix to use. * @param {Number} index The zero-based index of the column to set. * @param {Cartesian4} cartesian The Cartesian whose values will be assigned to the specified column. * @param {Matrix4} result The object onto which to store the result. * @returns {Matrix4} The modified result parameter. * * @exception {DeveloperError} index must be 0, 1, 2, or 3. * * @example * //creates a new Matrix4 instance with new column values from the Cartesian4 instance * // m = [10.0, 11.0, 12.0, 13.0] * // [14.0, 15.0, 16.0, 17.0] * // [18.0, 19.0, 20.0, 21.0] * // [22.0, 23.0, 24.0, 25.0] * * const a = Cesium.Matrix4.setColumn(m, 2, new Cesium.Cartesian4(99.0, 98.0, 97.0, 96.0), new Cesium.Matrix4()); * * // m remains the same * // a = [10.0, 11.0, 99.0, 13.0] * // [14.0, 15.0, 98.0, 17.0] * // [18.0, 19.0, 97.0, 21.0] * // [22.0, 23.0, 96.0, 25.0] */ Matrix4.setColumn = function (matrix, index, cartesian, result) { //>>includeStart('debug', pragmas.debug); Check.typeOf.object("matrix", matrix); Check.typeOf.number.greaterThanOrEquals("index", index, 0); Check.typeOf.number.lessThanOrEquals("index", index, 3); Check.typeOf.object("cartesian", cartesian); Check.typeOf.object("result", result); //>>includeEnd('debug'); result = Matrix4.clone(matrix, result); const startIndex = index * 4; result[startIndex] = cartesian.x; result[startIndex + 1] = cartesian.y; result[startIndex + 2] = cartesian.z; result[startIndex + 3] = cartesian.w; return result; }; /** * Retrieves a copy of the matrix row at the provided index as a Cartesian4 instance. * * @param {Matrix4} matrix The matrix to use. * @param {Number} index The zero-based index of the row to retrieve. * @param {Cartesian4} result The object onto which to store the result. * @returns {Cartesian4} The modified result parameter. * * @exception {DeveloperError} index must be 0, 1, 2, or 3. * * @example * //returns a Cartesian4 instance with values from the specified column * // m = [10.0, 11.0, 12.0, 13.0] * // [14.0, 15.0, 16.0, 17.0] * // [18.0, 19.0, 20.0, 21.0] * // [22.0, 23.0, 24.0, 25.0] * * //Example 1: Returns an instance of Cartesian * const a = Cesium.Matrix4.getRow(m, 2, new Cesium.Cartesian4()); * * @example * //Example 2: Sets values for a Cartesian instance * const a = new Cesium.Cartesian4(); * Cesium.Matrix4.getRow(m, 2, a); * * // a.x = 18.0; a.y = 19.0; a.z = 20.0; a.w = 21.0; */ Matrix4.getRow = function (matrix, index, result) { //>>includeStart('debug', pragmas.debug); Check.typeOf.object("matrix", matrix); Check.typeOf.number.greaterThanOrEquals("index", index, 0); Check.typeOf.number.lessThanOrEquals("index", index, 3); Check.typeOf.object("result", result); //>>includeEnd('debug'); const x = matrix[index]; const y = matrix[index + 4]; const z = matrix[index + 8]; const w = matrix[index + 12]; result.x = x; result.y = y; result.z = z; result.w = w; return result; }; /** * Computes a new matrix that replaces the specified row in the provided matrix with the provided Cartesian4 instance. * * @param {Matrix4} matrix The matrix to use. * @param {Number} index The zero-based index of the row to set. * @param {Cartesian4} cartesian The Cartesian whose values will be assigned to the specified row. * @param {Matrix4} result The object onto which to store the result. * @returns {Matrix4} The modified result parameter. * * @exception {DeveloperError} index must be 0, 1, 2, or 3. * * @example * //create a new Matrix4 instance with new row values from the Cartesian4 instance * // m = [10.0, 11.0, 12.0, 13.0] * // [14.0, 15.0, 16.0, 17.0] * // [18.0, 19.0, 20.0, 21.0] * // [22.0, 23.0, 24.0, 25.0] * * const a = Cesium.Matrix4.setRow(m, 2, new Cesium.Cartesian4(99.0, 98.0, 97.0, 96.0), new Cesium.Matrix4()); * * // m remains the same * // a = [10.0, 11.0, 12.0, 13.0] * // [14.0, 15.0, 16.0, 17.0] * // [99.0, 98.0, 97.0, 96.0] * // [22.0, 23.0, 24.0, 25.0] */ Matrix4.setRow = function (matrix, index, cartesian, result) { //>>includeStart('debug', pragmas.debug); Check.typeOf.object("matrix", matrix); Check.typeOf.number.greaterThanOrEquals("index", index, 0); Check.typeOf.number.lessThanOrEquals("index", index, 3); Check.typeOf.object("cartesian", cartesian); Check.typeOf.object("result", result); //>>includeEnd('debug'); result = Matrix4.clone(matrix, result); result[index] = cartesian.x; result[index + 4] = cartesian.y; result[index + 8] = cartesian.z; result[index + 12] = cartesian.w; return result; }; /** * Computes a new matrix that replaces the translation in the rightmost column of the provided * matrix with the provided translation. This assumes the matrix is an affine transformation. * * @param {Matrix4} matrix The matrix to use. * @param {Cartesian3} translation The translation that replaces the translation of the provided matrix. * @param {Matrix4} result The object onto which to store the result. * @returns {Matrix4} The modified result parameter. */ Matrix4.setTranslation = function (matrix, translation, result) { //>>includeStart('debug', pragmas.debug); Check.typeOf.object("matrix", matrix); Check.typeOf.object("translation", translation); Check.typeOf.object("result", result); //>>includeEnd('debug'); result[0] = matrix[0]; result[1] = matrix[1]; result[2] = matrix[2]; result[3] = matrix[3]; result[4] = matrix[4]; result[5] = matrix[5]; result[6] = matrix[6]; result[7] = matrix[7]; result[8] = matrix[8]; result[9] = matrix[9]; result[10] = matrix[10]; result[11] = matrix[11]; result[12] = translation.x; result[13] = translation.y; result[14] = translation.z; result[15] = matrix[15]; return result; }; const scaleScratch1 = new Cartesian3(); /** * Computes a new matrix that replaces the scale with the provided scale. * This assumes the matrix is an affine transformation. * * @param {Matrix4} matrix The matrix to use. * @param {Cartesian3} scale The scale that replaces the scale of the provided matrix. * @param {Matrix4} result The object onto which to store the result. * @returns {Matrix4} The modified result parameter. * * @see Matrix4.setUniformScale * @see Matrix4.fromScale * @see Matrix4.fromUniformScale * @see Matrix4.multiplyByScale * @see Matrix4.multiplyByUniformScale * @see Matrix4.getScale */ Matrix4.setScale = function (matrix, scale, result) { //>>includeStart('debug', pragmas.debug); Check.typeOf.object("matrix", matrix); Check.typeOf.object("scale", scale); Check.typeOf.object("result", result); //>>includeEnd('debug'); const existingScale = Matrix4.getScale(matrix, scaleScratch1); const scaleRatioX = scale.x / existingScale.x; const scaleRatioY = scale.y / existingScale.y; const scaleRatioZ = scale.z / existingScale.z; result[0] = matrix[0] * scaleRatioX; result[1] = matrix[1] * scaleRatioX; result[2] = matrix[2] * scaleRatioX; result[3] = matrix[3]; result[4] = matrix[4] * scaleRatioY; result[5] = matrix[5] * scaleRatioY; result[6] = matrix[6] * scaleRatioY; result[7] = matrix[7]; result[8] = matrix[8] * scaleRatioZ; result[9] = matrix[9] * scaleRatioZ; result[10] = matrix[10] * scaleRatioZ; result[11] = matrix[11]; result[12] = matrix[12]; result[13] = matrix[13]; result[14] = matrix[14]; result[15] = matrix[15]; return result; }; const scaleScratch2 = new Cartesian3(); /** * Computes a new matrix that replaces the scale with the provided uniform scale. * This assumes the matrix is an affine transformation. * * @param {Matrix4} matrix The matrix to use. * @param {Number} scale The uniform scale that replaces the scale of the provided matrix. * @param {Matrix4} result The object onto which to store the result. * @returns {Matrix4} The modified result parameter. * * @see Matrix4.setScale * @see Matrix4.fromScale * @see Matrix4.fromUniformScale * @see Matrix4.multiplyByScale * @see Matrix4.multiplyByUniformScale * @see Matrix4.getScale */ Matrix4.setUniformScale = function (matrix, scale, result) { //>>includeStart('debug', pragmas.debug); Check.typeOf.object("matrix", matrix); Check.typeOf.number("scale", scale); Check.typeOf.object("result", result); //>>includeEnd('debug'); const existingScale = Matrix4.getScale(matrix, scaleScratch2); const scaleRatioX = scale / existingScale.x; const scaleRatioY = scale / existingScale.y; const scaleRatioZ = scale / existingScale.z; result[0] = matrix[0] * scaleRatioX; result[1] = matrix[1] * scaleRatioX; result[2] = matrix[2] * scaleRatioX; result[3] = matrix[3]; result[4] = matrix[4] * scaleRatioY; result[5] = matrix[5] * scaleRatioY; result[6] = matrix[6] * scaleRatioY; result[7] = matrix[7]; result[8] = matrix[8] * scaleRatioZ; result[9] = matrix[9] * scaleRatioZ; result[10] = matrix[10] * scaleRatioZ; result[11] = matrix[11]; result[12] = matrix[12]; result[13] = matrix[13]; result[14] = matrix[14]; result[15] = matrix[15]; return result; }; const scratchColumn = new Cartesian3(); /** * Extracts the non-uniform scale assuming the matrix is an affine transformation. * * @param {Matrix4} matrix The matrix. * @param {Cartesian3} result The object onto which to store the result. * @returns {Cartesian3} The modified result parameter * * @see Matrix4.multiplyByScale * @see Matrix4.multiplyByUniformScale * @see Matrix4.fromScale * @see Matrix4.fromUniformScale * @see Matrix4.setScale * @see Matrix4.setUniformScale */ Matrix4.getScale = function (matrix, result) { //>>includeStart('debug', pragmas.debug); Check.typeOf.object("matrix", matrix); Check.typeOf.object("result", result); //>>includeEnd('debug'); result.x = Cartesian3.magnitude( Cartesian3.fromElements(matrix[0], matrix[1], matrix[2], scratchColumn) ); result.y = Cartesian3.magnitude( Cartesian3.fromElements(matrix[4], matrix[5], matrix[6], scratchColumn) ); result.z = Cartesian3.magnitude( Cartesian3.fromElements(matrix[8], matrix[9], matrix[10], scratchColumn) ); return result; }; const scaleScratch3 = new Cartesian3(); /** * Computes the maximum scale assuming the matrix is an affine transformation. * The maximum scale is the maximum length of the column vectors in the upper-left * 3x3 matrix. * * @param {Matrix4} matrix The matrix. * @returns {Number} The maximum scale. */ Matrix4.getMaximumScale = function (matrix) { Matrix4.getScale(matrix, scaleScratch3); return Cartesian3.maximumComponent(scaleScratch3); }; const scaleScratch4 = new Cartesian3(); /** * Sets the rotation assuming the matrix is an affine transformation. * * @param {Matrix4} matrix The matrix. * @param {Matrix4} rotation The rotation matrix. * @returns {Matrix4} The modified result parameter. * * @see Matrix4.fromRotation * @see Matrix4.getRotation */ Matrix4.setRotation = function (matrix, rotation, result) { //>>includeStart('debug', pragmas.debug); Check.typeOf.object("matrix", matrix); Check.typeOf.object("result", result); //>>includeEnd('debug'); const scale = Matrix4.getScale(matrix, scaleScratch4); result[0] = rotation[0] * scale.x; result[1] = rotation[1] * scale.x; result[2] = rotation[2] * scale.x; result[3] = matrix[3]; result[4] = rotation[3] * scale.y; result[5] = rotation[4] * scale.y; result[6] = rotation[5] * scale.y; result[7] = matrix[7]; result[8] = rotation[6] * scale.z; result[9] = rotation[7] * scale.z; result[10] = rotation[8] * scale.z; result[11] = matrix[11]; result[12] = matrix[12]; result[13] = matrix[13]; result[14] = matrix[14]; result[15] = matrix[15]; return result; }; const scaleScratch5 = new Cartesian3(); /** * Extracts the rotation matrix assuming the matrix is an affine transformation. * * @param {Matrix4} matrix The matrix. * @param {Matrix4} result The object onto which to store the result. * @returns {Matrix4} The modified result parameter. * * @see Matrix4.setRotation * @see Matrix4.fromRotation */ Matrix4.getRotation = function (matrix, result) { //>>includeStart('debug', pragmas.debug); Check.typeOf.object("matrix", matrix); Check.typeOf.object("result", result); //>>includeEnd('debug'); const scale = Matrix4.getScale(matrix, scaleScratch5); result[0] = matrix[0] / scale.x; result[1] = matrix[1] / scale.x; result[2] = matrix[2] / scale.x; result[3] = matrix[4] / scale.y; result[4] = matrix[5] / scale.y; result[5] = matrix[6] / scale.y; result[6] = matrix[8] / scale.z; result[7] = matrix[9] / scale.z; result[8] = matrix[10] / scale.z; return result; }; /** * Computes the product of two matrices. * * @param {Matrix4} left The first matrix. * @param {Matrix4} right The second matrix. * @param {Matrix4} result The object onto which to store the result. * @returns {Matrix4} The modified result parameter. */ Matrix4.multiply = function (left, right, result) { //>>includeStart('debug', pragmas.debug); Check.typeOf.object("left", left); Check.typeOf.object("right", right); Check.typeOf.object("result", result); //>>includeEnd('debug'); const left0 = left[0]; const left1 = left[1]; const left2 = left[2]; const left3 = left[3]; const left4 = left[4]; const left5 = left[5]; const left6 = left[6]; const left7 = left[7]; const left8 = left[8]; const left9 = left[9]; const left10 = left[10]; const left11 = left[11]; const left12 = left[12]; const left13 = left[13]; const left14 = left[14]; const left15 = left[15]; const right0 = right[0]; const right1 = right[1]; const right2 = right[2]; const right3 = right[3]; const right4 = right[4]; const right5 = right[5]; const right6 = right[6]; const right7 = right[7]; const right8 = right[8]; const right9 = right[9]; const right10 = right[10]; const right11 = right[11]; const right12 = right[12]; const right13 = right[13]; const right14 = right[14]; const right15 = right[15]; const column0Row0 = left0 * right0 + left4 * right1 + left8 * right2 + left12 * right3; const column0Row1 = left1 * right0 + left5 * right1 + left9 * right2 + left13 * right3; const column0Row2 = left2 * right0 + left6 * right1 + left10 * right2 + left14 * right3; const column0Row3 = left3 * right0 + left7 * right1 + left11 * right2 + left15 * right3; const column1Row0 = left0 * right4 + left4 * right5 + left8 * right6 + left12 * right7; const column1Row1 = left1 * right4 + left5 * right5 + left9 * right6 + left13 * right7; const column1Row2 = left2 * right4 + left6 * right5 + left10 * right6 + left14 * right7; const column1Row3 = left3 * right4 + left7 * right5 + left11 * right6 + left15 * right7; const column2Row0 = left0 * right8 + left4 * right9 + left8 * right10 + left12 * right11; const column2Row1 = left1 * right8 + left5 * right9 + left9 * right10 + left13 * right11; const column2Row2 = left2 * right8 + left6 * right9 + left10 * right10 + left14 * right11; const column2Row3 = left3 * right8 + left7 * right9 + left11 * right10 + left15 * right11; const column3Row0 = left0 * right12 + left4 * right13 + left8 * right14 + left12 * right15; const column3Row1 = left1 * right12 + left5 * right13 + left9 * right14 + left13 * right15; const column3Row2 = left2 * right12 + left6 * right13 + left10 * right14 + left14 * right15; const column3Row3 = left3 * right12 + left7 * right13 + left11 * right14 + left15 * right15; result[0] = column0Row0; result[1] = column0Row1; result[2] = column0Row2; result[3] = column0Row3; result[4] = column1Row0; result[5] = column1Row1; result[6] = column1Row2; result[7] = column1Row3; result[8] = column2Row0; result[9] = column2Row1; result[10] = column2Row2; result[11] = column2Row3; result[12] = column3Row0; result[13] = column3Row1; result[14] = column3Row2; result[15] = column3Row3; return result; }; /** * Computes the sum of two matrices. * * @param {Matrix4} left The first matrix. * @param {Matrix4} right The second matrix. * @param {Matrix4} result The object onto which to store the result. * @returns {Matrix4} The modified result parameter. */ Matrix4.add = function (left, right, result) { //>>includeStart('debug', pragmas.debug); Check.typeOf.object("left", left); Check.typeOf.object("right", right); Check.typeOf.object("result", result); //>>includeEnd('debug'); result[0] = left[0] + right[0]; result[1] = left[1] + right[1]; result[2] = left[2] + right[2]; result[3] = left[3] + right[3]; result[4] = left[4] + right[4]; result[5] = left[5] + right[5]; result[6] = left[6] + right[6]; result[7] = left[7] + right[7]; result[8] = left[8] + right[8]; result[9] = left[9] + right[9]; result[10] = left[10] + right[10]; result[11] = left[11] + right[11]; result[12] = left[12] + right[12]; result[13] = left[13] + right[13]; result[14] = left[14] + right[14]; result[15] = left[15] + right[15]; return result; }; /** * Computes the difference of two matrices. * * @param {Matrix4} left The first matrix. * @param {Matrix4} right The second matrix. * @param {Matrix4} result The object onto which to store the result. * @returns {Matrix4} The modified result parameter. */ Matrix4.subtract = function (left, right, result) { //>>includeStart('debug', pragmas.debug); Check.typeOf.object("left", left); Check.typeOf.object("right", right); Check.typeOf.object("result", result); //>>includeEnd('debug'); result[0] = left[0] - right[0]; result[1] = left[1] - right[1]; result[2] = left[2] - right[2]; result[3] = left[3] - right[3]; result[4] = left[4] - right[4]; result[5] = left[5] - right[5]; result[6] = left[6] - right[6]; result[7] = left[7] - right[7]; result[8] = left[8] - right[8]; result[9] = left[9] - right[9]; result[10] = left[10] - right[10]; result[11] = left[11] - right[11]; result[12] = left[12] - right[12]; result[13] = left[13] - right[13]; result[14] = left[14] - right[14]; result[15] = left[15] - right[15]; return result; }; /** * Computes the product of two matrices assuming the matrices are affine transformation matrices, * where the upper left 3x3 elements are any matrix, and * the upper three elements in the fourth column are the translation. * The bottom row is assumed to be [0, 0, 0, 1]. * The matrix is not verified to be in the proper form. * This method is faster than computing the product for general 4x4 * matrices using {@link Matrix4.multiply}. * * @param {Matrix4} left The first matrix. * @param {Matrix4} right The second matrix. * @param {Matrix4} result The object onto which to store the result. * @returns {Matrix4} The modified result parameter. * * @example * const m1 = new Cesium.Matrix4(1.0, 6.0, 7.0, 0.0, 2.0, 5.0, 8.0, 0.0, 3.0, 4.0, 9.0, 0.0, 0.0, 0.0, 0.0, 1.0); * const m2 = Cesium.Transforms.eastNorthUpToFixedFrame(new Cesium.Cartesian3(1.0, 1.0, 1.0)); * const m3 = Cesium.Matrix4.multiplyTransformation(m1, m2, new Cesium.Matrix4()); */ Matrix4.multiplyTransformation = function (left, right, result) { //>>includeStart('debug', pragmas.debug); Check.typeOf.object("left", left); Check.typeOf.object("right", right); Check.typeOf.object("result", result); //>>includeEnd('debug'); const left0 = left[0]; const left1 = left[1]; const left2 = left[2]; const left4 = left[4]; const left5 = left[5]; const left6 = left[6]; const left8 = left[8]; const left9 = left[9]; const left10 = left[10]; const left12 = left[12]; const left13 = left[13]; const left14 = left[14]; const right0 = right[0]; const right1 = right[1]; const right2 = right[2]; const right4 = right[4]; const right5 = right[5]; const right6 = right[6]; const right8 = right[8]; const right9 = right[9]; const right10 = right[10]; const right12 = right[12]; const right13 = right[13]; const right14 = right[14]; const column0Row0 = left0 * right0 + left4 * right1 + left8 * right2; const column0Row1 = left1 * right0 + left5 * right1 + left9 * right2; const column0Row2 = left2 * right0 + left6 * right1 + left10 * right2; const column1Row0 = left0 * right4 + left4 * right5 + left8 * right6; const column1Row1 = left1 * right4 + left5 * right5 + left9 * right6; const column1Row2 = left2 * right4 + left6 * right5 + left10 * right6; const column2Row0 = left0 * right8 + left4 * right9 + left8 * right10; const column2Row1 = left1 * right8 + left5 * right9 + left9 * right10; const column2Row2 = left2 * right8 + left6 * right9 + left10 * right10; const column3Row0 = left0 * right12 + left4 * right13 + left8 * right14 + left12; const column3Row1 = left1 * right12 + left5 * right13 + left9 * right14 + left13; const column3Row2 = left2 * right12 + left6 * right13 + left10 * right14 + left14; result[0] = column0Row0; result[1] = column0Row1; result[2] = column0Row2; result[3] = 0.0; result[4] = column1Row0; result[5] = column1Row1; result[6] = column1Row2; result[7] = 0.0; result[8] = column2Row0; result[9] = column2Row1; result[10] = column2Row2; result[11] = 0.0; result[12] = column3Row0; result[13] = column3Row1; result[14] = column3Row2; result[15] = 1.0; return result; }; /** * Multiplies a transformation matrix (with a bottom row of [0.0, 0.0, 0.0, 1.0]) * by a 3x3 rotation matrix. This is an optimization * for Matrix4.multiply(m, Matrix4.fromRotationTranslation(rotation), m); with less allocations and arithmetic operations. * * @param {Matrix4} matrix The matrix on the left-hand side. * @param {Matrix3} rotation The 3x3 rotation matrix on the right-hand side. * @param {Matrix4} result The object onto which to store the result. * @returns {Matrix4} The modified result parameter. * * @example * // Instead of Cesium.Matrix4.multiply(m, Cesium.Matrix4.fromRotationTranslation(rotation), m); * Cesium.Matrix4.multiplyByMatrix3(m, rotation, m); */ Matrix4.multiplyByMatrix3 = function (matrix, rotation, result) { //>>includeStart('debug', pragmas.debug); Check.typeOf.object("matrix", matrix); Check.typeOf.object("rotation", rotation); Check.typeOf.object("result", result); //>>includeEnd('debug'); const left0 = matrix[0]; const left1 = matrix[1]; const left2 = matrix[2]; const left4 = matrix[4]; const left5 = matrix[5]; const left6 = matrix[6]; const left8 = matrix[8]; const left9 = matrix[9]; const left10 = matrix[10]; const right0 = rotation[0]; const right1 = rotation[1]; const right2 = rotation[2]; const right4 = rotation[3]; const right5 = rotation[4]; const right6 = rotation[5]; const right8 = rotation[6]; const right9 = rotation[7]; const right10 = rotation[8]; const column0Row0 = left0 * right0 + left4 * right1 + left8 * right2; const column0Row1 = left1 * right0 + left5 * right1 + left9 * right2; const column0Row2 = left2 * right0 + left6 * right1 + left10 * right2; const column1Row0 = left0 * right4 + left4 * right5 + left8 * right6; const column1Row1 = left1 * right4 + left5 * right5 + left9 * right6; const column1Row2 = left2 * right4 + left6 * right5 + left10 * right6; const column2Row0 = left0 * right8 + left4 * right9 + left8 * right10; const column2Row1 = left1 * right8 + left5 * right9 + left9 * right10; const column2Row2 = left2 * right8 + left6 * right9 + left10 * right10; result[0] = column0Row0; result[1] = column0Row1; result[2] = column0Row2; result[3] = 0.0; result[4] = column1Row0; result[5] = column1Row1; result[6] = column1Row2; result[7] = 0.0; result[8] = column2Row0; result[9] = column2Row1; result[10] = column2Row2; result[11] = 0.0; result[12] = matrix[12]; result[13] = matrix[13]; result[14] = matrix[14]; result[15] = matrix[15]; return result; }; /** * Multiplies a transformation matrix (with a bottom row of [0.0, 0.0, 0.0, 1.0]) * by an implicit translation matrix defined by a {@link Cartesian3}. This is an optimization * for Matrix4.multiply(m, Matrix4.fromTranslation(position), m); with less allocations and arithmetic operations. * * @param {Matrix4} matrix The matrix on the left-hand side. * @param {Cartesian3} translation The translation on the right-hand side. * @param {Matrix4} result The object onto which to store the result. * @returns {Matrix4} The modified result parameter. * * @example * // Instead of Cesium.Matrix4.multiply(m, Cesium.Matrix4.fromTranslation(position), m); * Cesium.Matrix4.multiplyByTranslation(m, position, m); */ Matrix4.multiplyByTranslation = function (matrix, translation, result) { //>>includeStart('debug', pragmas.debug); Check.typeOf.object("matrix", matrix); Check.typeOf.object("translation", translation); Check.typeOf.object("result", result); //>>includeEnd('debug'); const x = translation.x; const y = translation.y; const z = translation.z; const tx = x * matrix[0] + y * matrix[4] + z * matrix[8] + matrix[12]; const ty = x * matrix[1] + y * matrix[5] + z * matrix[9] + matrix[13]; const tz = x * matrix[2] + y * matrix[6] + z * matrix[10] + matrix[14]; result[0] = matrix[0]; result[1] = matrix[1]; result[2] = matrix[2]; result[3] = matrix[3]; result[4] = matrix[4]; result[5] = matrix[5]; result[6] = matrix[6]; result[7] = matrix[7]; result[8] = matrix[8]; result[9] = matrix[9]; result[10] = matrix[10]; result[11] = matrix[11]; result[12] = tx; result[13] = ty; result[14] = tz; result[15] = matrix[15]; return result; }; /** * Multiplies an affine transformation matrix (with a bottom row of [0.0, 0.0, 0.0, 1.0]) * by an implicit non-uniform scale matrix. This is an optimization * for Matrix4.multiply(m, Matrix4.fromUniformScale(scale), m);, where * m must be an affine matrix. * This function performs fewer allocations and arithmetic operations. * * @param {Matrix4} matrix The affine matrix on the left-hand side. * @param {Cartesian3} scale The non-uniform scale on the right-hand side. * @param {Matrix4} result The object onto which to store the result. * @returns {Matrix4} The modified result parameter. * * * @example * // Instead of Cesium.Matrix4.multiply(m, Cesium.Matrix4.fromScale(scale), m); * Cesium.Matrix4.multiplyByScale(m, scale, m); * * @see Matrix4.multiplyByUniformScale * @see Matrix4.fromScale * @see Matrix4.fromUniformScale * @see Matrix4.setScale * @see Matrix4.setUniformScale * @see Matrix4.getScale */ Matrix4.multiplyByScale = function (matrix, scale, result) { //>>includeStart('debug', pragmas.debug); Check.typeOf.object("matrix", matrix); Check.typeOf.object("scale", scale); Check.typeOf.object("result", result); //>>includeEnd('debug'); const scaleX = scale.x; const scaleY = scale.y; const scaleZ = scale.z; // Faster than Cartesian3.equals if (scaleX === 1.0 && scaleY === 1.0 && scaleZ === 1.0) { return Matrix4.clone(matrix, result); } result[0] = scaleX * matrix[0]; result[1] = scaleX * matrix[1]; result[2] = scaleX * matrix[2]; result[3] = matrix[3]; result[4] = scaleY * matrix[4]; result[5] = scaleY * matrix[5]; result[6] = scaleY * matrix[6]; result[7] = matrix[7]; result[8] = scaleZ * matrix[8]; result[9] = scaleZ * matrix[9]; result[10] = scaleZ * matrix[10]; result[11] = matrix[11]; result[12] = matrix[12]; result[13] = matrix[13]; result[14] = matrix[14]; result[15] = matrix[15]; return result; }; /** * Computes the product of a matrix times a uniform scale, as if the scale were a scale matrix. * * @param {Matrix4} matrix The matrix on the left-hand side. * @param {Number} scale The uniform scale on the right-hand side. * @param {Matrix4} result The object onto which to store the result. * @returns {Matrix4} The modified result parameter. * * @example * // Instead of Cesium.Matrix4.multiply(m, Cesium.Matrix4.fromUniformScale(scale), m); * Cesium.Matrix4.multiplyByUniformScale(m, scale, m); * * @see Matrix4.multiplyByScale * @see Matrix4.fromScale * @see Matrix4.fromUniformScale * @see Matrix4.setScale * @see Matrix4.setUniformScale * @see Matrix4.getScale */ Matrix4.multiplyByUniformScale = function (matrix, scale, result) { //>>includeStart('debug', pragmas.debug); Check.typeOf.object("matrix", matrix); Check.typeOf.number("scale", scale); Check.typeOf.object("result", result); //>>includeEnd('debug'); result[0] = matrix[0] * scale; result[1] = matrix[1] * scale; result[2] = matrix[2] * scale; result[3] = matrix[3]; result[4] = matrix[4] * scale; result[5] = matrix[5] * scale; result[6] = matrix[6] * scale; result[7] = matrix[7]; result[8] = matrix[8] * scale; result[9] = matrix[9] * scale; result[10] = matrix[10] * scale; result[11] = matrix[11]; result[12] = matrix[12]; result[13] = matrix[13]; result[14] = matrix[14]; result[15] = matrix[15]; return result; }; /** * Computes the product of a matrix and a column vector. * * @param {Matrix4} matrix The matrix. * @param {Cartesian4} cartesian The vector. * @param {Cartesian4} result The object onto which to store the result. * @returns {Cartesian4} The modified result parameter. */ Matrix4.multiplyByVector = function (matrix, cartesian, result) { //>>includeStart('debug', pragmas.debug); Check.typeOf.object("matrix", matrix); Check.typeOf.object("cartesian", cartesian); Check.typeOf.object("result", result); //>>includeEnd('debug'); const vX = cartesian.x; const vY = cartesian.y; const vZ = cartesian.z; const vW = cartesian.w; const x = matrix[0] * vX + matrix[4] * vY + matrix[8] * vZ + matrix[12] * vW; const y = matrix[1] * vX + matrix[5] * vY + matrix[9] * vZ + matrix[13] * vW; const z = matrix[2] * vX + matrix[6] * vY + matrix[10] * vZ + matrix[14] * vW; const w = matrix[3] * vX + matrix[7] * vY + matrix[11] * vZ + matrix[15] * vW; result.x = x; result.y = y; result.z = z; result.w = w; return result; }; /** * Computes the product of a matrix and a {@link Cartesian3}. This is equivalent to calling {@link Matrix4.multiplyByVector} * with a {@link Cartesian4} with a w component of zero. * * @param {Matrix4} matrix The matrix. * @param {Cartesian3} cartesian The point. * @param {Cartesian3} result The object onto which to store the result. * @returns {Cartesian3} The modified result parameter. * * @example * const p = new Cesium.Cartesian3(1.0, 2.0, 3.0); * const result = Cesium.Matrix4.multiplyByPointAsVector(matrix, p, new Cesium.Cartesian3()); * // A shortcut for * // Cartesian3 p = ... * // Cesium.Matrix4.multiplyByVector(matrix, new Cesium.Cartesian4(p.x, p.y, p.z, 0.0), result); */ Matrix4.multiplyByPointAsVector = function (matrix, cartesian, result) { //>>includeStart('debug', pragmas.debug); Check.typeOf.object("matrix", matrix); Check.typeOf.object("cartesian", cartesian); Check.typeOf.object("result", result); //>>includeEnd('debug'); const vX = cartesian.x; const vY = cartesian.y; const vZ = cartesian.z; const x = matrix[0] * vX + matrix[4] * vY + matrix[8] * vZ; const y = matrix[1] * vX + matrix[5] * vY + matrix[9] * vZ; const z = matrix[2] * vX + matrix[6] * vY + matrix[10] * vZ; result.x = x; result.y = y; result.z = z; return result; }; /** * Computes the product of a matrix and a {@link Cartesian3}. This is equivalent to calling {@link Matrix4.multiplyByVector} * with a {@link Cartesian4} with a w component of 1, but returns a {@link Cartesian3} instead of a {@link Cartesian4}. * * @param {Matrix4} matrix The matrix. * @param {Cartesian3} cartesian The point. * @param {Cartesian3} result The object onto which to store the result. * @returns {Cartesian3} The modified result parameter. * * @example * const p = new Cesium.Cartesian3(1.0, 2.0, 3.0); * const result = Cesium.Matrix4.multiplyByPoint(matrix, p, new Cesium.Cartesian3()); */ Matrix4.multiplyByPoint = function (matrix, cartesian, result) { //>>includeStart('debug', pragmas.debug); Check.typeOf.object("matrix", matrix); Check.typeOf.object("cartesian", cartesian); Check.typeOf.object("result", result); //>>includeEnd('debug'); const vX = cartesian.x; const vY = cartesian.y; const vZ = cartesian.z; const x = matrix[0] * vX + matrix[4] * vY + matrix[8] * vZ + matrix[12]; const y = matrix[1] * vX + matrix[5] * vY + matrix[9] * vZ + matrix[13]; const z = matrix[2] * vX + matrix[6] * vY + matrix[10] * vZ + matrix[14]; result.x = x; result.y = y; result.z = z; return result; }; /** * Computes the product of a matrix and a scalar. * * @param {Matrix4} matrix The matrix. * @param {Number} scalar The number to multiply by. * @param {Matrix4} result The object onto which to store the result. * @returns {Matrix4} The modified result parameter. * * @example * //create a Matrix4 instance which is a scaled version of the supplied Matrix4 * // m = [10.0, 11.0, 12.0, 13.0] * // [14.0, 15.0, 16.0, 17.0] * // [18.0, 19.0, 20.0, 21.0] * // [22.0, 23.0, 24.0, 25.0] * * const a = Cesium.Matrix4.multiplyByScalar(m, -2, new Cesium.Matrix4()); * * // m remains the same * // a = [-20.0, -22.0, -24.0, -26.0] * // [-28.0, -30.0, -32.0, -34.0] * // [-36.0, -38.0, -40.0, -42.0] * // [-44.0, -46.0, -48.0, -50.0] */ Matrix4.multiplyByScalar = function (matrix, scalar, result) { //>>includeStart('debug', pragmas.debug); Check.typeOf.object("matrix", matrix); Check.typeOf.number("scalar", scalar); Check.typeOf.object("result", result); //>>includeEnd('debug'); result[0] = matrix[0] * scalar; result[1] = matrix[1] * scalar; result[2] = matrix[2] * scalar; result[3] = matrix[3] * scalar; result[4] = matrix[4] * scalar; result[5] = matrix[5] * scalar; result[6] = matrix[6] * scalar; result[7] = matrix[7] * scalar; result[8] = matrix[8] * scalar; result[9] = matrix[9] * scalar; result[10] = matrix[10] * scalar; result[11] = matrix[11] * scalar; result[12] = matrix[12] * scalar; result[13] = matrix[13] * scalar; result[14] = matrix[14] * scalar; result[15] = matrix[15] * scalar; return result; }; /** * Computes a negated copy of the provided matrix. * * @param {Matrix4} matrix The matrix to negate. * @param {Matrix4} result The object onto which to store the result. * @returns {Matrix4} The modified result parameter. * * @example * //create a new Matrix4 instance which is a negation of a Matrix4 * // m = [10.0, 11.0, 12.0, 13.0] * // [14.0, 15.0, 16.0, 17.0] * // [18.0, 19.0, 20.0, 21.0] * // [22.0, 23.0, 24.0, 25.0] * * const a = Cesium.Matrix4.negate(m, new Cesium.Matrix4()); * * // m remains the same * // a = [-10.0, -11.0, -12.0, -13.0] * // [-14.0, -15.0, -16.0, -17.0] * // [-18.0, -19.0, -20.0, -21.0] * // [-22.0, -23.0, -24.0, -25.0] */ Matrix4.negate = function (matrix, result) { //>>includeStart('debug', pragmas.debug); Check.typeOf.object("matrix", matrix); Check.typeOf.object("result", result); //>>includeEnd('debug'); result[0] = -matrix[0]; result[1] = -matrix[1]; result[2] = -matrix[2]; result[3] = -matrix[3]; result[4] = -matrix[4]; result[5] = -matrix[5]; result[6] = -matrix[6]; result[7] = -matrix[7]; result[8] = -matrix[8]; result[9] = -matrix[9]; result[10] = -matrix[10]; result[11] = -matrix[11]; result[12] = -matrix[12]; result[13] = -matrix[13]; result[14] = -matrix[14]; result[15] = -matrix[15]; return result; }; /** * Computes the transpose of the provided matrix. * * @param {Matrix4} matrix The matrix to transpose. * @param {Matrix4} result The object onto which to store the result. * @returns {Matrix4} The modified result parameter. * * @example * //returns transpose of a Matrix4 * // m = [10.0, 11.0, 12.0, 13.0] * // [14.0, 15.0, 16.0, 17.0] * // [18.0, 19.0, 20.0, 21.0] * // [22.0, 23.0, 24.0, 25.0] * * const a = Cesium.Matrix4.transpose(m, new Cesium.Matrix4()); * * // m remains the same * // a = [10.0, 14.0, 18.0, 22.0] * // [11.0, 15.0, 19.0, 23.0] * // [12.0, 16.0, 20.0, 24.0] * // [13.0, 17.0, 21.0, 25.0] */ Matrix4.transpose = function (matrix, result) { //>>includeStart('debug', pragmas.debug); Check.typeOf.object("matrix", matrix); Check.typeOf.object("result", result); //>>includeEnd('debug'); const matrix1 = matrix[1]; const matrix2 = matrix[2]; const matrix3 = matrix[3]; const matrix6 = matrix[6]; const matrix7 = matrix[7]; const matrix11 = matrix[11]; result[0] = matrix[0]; result[1] = matrix[4]; result[2] = matrix[8]; result[3] = matrix[12]; result[4] = matrix1; result[5] = matrix[5]; result[6] = matrix[9]; result[7] = matrix[13]; result[8] = matrix2; result[9] = matrix6; result[10] = matrix[10]; result[11] = matrix[14]; result[12] = matrix3; result[13] = matrix7; result[14] = matrix11; result[15] = matrix[15]; return result; }; /** * Computes a matrix, which contains the absolute (unsigned) values of the provided matrix's elements. * * @param {Matrix4} matrix The matrix with signed elements. * @param {Matrix4} result The object onto which to store the result. * @returns {Matrix4} The modified result parameter. */ Matrix4.abs = function (matrix, result) { //>>includeStart('debug', pragmas.debug); Check.typeOf.object("matrix", matrix); Check.typeOf.object("result", result); //>>includeEnd('debug'); result[0] = Math.abs(matrix[0]); result[1] = Math.abs(matrix[1]); result[2] = Math.abs(matrix[2]); result[3] = Math.abs(matrix[3]); result[4] = Math.abs(matrix[4]); result[5] = Math.abs(matrix[5]); result[6] = Math.abs(matrix[6]); result[7] = Math.abs(matrix[7]); result[8] = Math.abs(matrix[8]); result[9] = Math.abs(matrix[9]); result[10] = Math.abs(matrix[10]); result[11] = Math.abs(matrix[11]); result[12] = Math.abs(matrix[12]); result[13] = Math.abs(matrix[13]); result[14] = Math.abs(matrix[14]); result[15] = Math.abs(matrix[15]); return result; }; /** * Compares the provided matrices componentwise and returns * true if they are equal, false otherwise. * * @param {Matrix4} [left] The first matrix. * @param {Matrix4} [right] The second matrix. * @returns {Boolean} true if left and right are equal, false otherwise. * * @example * //compares two Matrix4 instances * * // a = [10.0, 14.0, 18.0, 22.0] * // [11.0, 15.0, 19.0, 23.0] * // [12.0, 16.0, 20.0, 24.0] * // [13.0, 17.0, 21.0, 25.0] * * // b = [10.0, 14.0, 18.0, 22.0] * // [11.0, 15.0, 19.0, 23.0] * // [12.0, 16.0, 20.0, 24.0] * // [13.0, 17.0, 21.0, 25.0] * * if(Cesium.Matrix4.equals(a,b)) { * console.log("Both matrices are equal"); * } else { * console.log("They are not equal"); * } * * //Prints "Both matrices are equal" on the console */ Matrix4.equals = function (left, right) { // Given that most matrices will be transformation matrices, the elements // are tested in order such that the test is likely to fail as early // as possible. I _think_ this is just as friendly to the L1 cache // as testing in index order. It is certainty faster in practice. return ( left === right || (defined(left) && defined(right) && // Translation left[12] === right[12] && left[13] === right[13] && left[14] === right[14] && // Rotation/scale left[0] === right[0] && left[1] === right[1] && left[2] === right[2] && left[4] === right[4] && left[5] === right[5] && left[6] === right[6] && left[8] === right[8] && left[9] === right[9] && left[10] === right[10] && // Bottom row left[3] === right[3] && left[7] === right[7] && left[11] === right[11] && left[15] === right[15]) ); }; /** * Compares the provided matrices componentwise and returns * true if they are within the provided epsilon, * false otherwise. * * @param {Matrix4} [left] The first matrix. * @param {Matrix4} [right] The second matrix. * @param {Number} [epsilon=0] The epsilon to use for equality testing. * @returns {Boolean} true if left and right are within the provided epsilon, false otherwise. * * @example * //compares two Matrix4 instances * * // a = [10.5, 14.5, 18.5, 22.5] * // [11.5, 15.5, 19.5, 23.5] * // [12.5, 16.5, 20.5, 24.5] * // [13.5, 17.5, 21.5, 25.5] * * // b = [10.0, 14.0, 18.0, 22.0] * // [11.0, 15.0, 19.0, 23.0] * // [12.0, 16.0, 20.0, 24.0] * // [13.0, 17.0, 21.0, 25.0] * * if(Cesium.Matrix4.equalsEpsilon(a,b,0.1)){ * console.log("Difference between both the matrices is less than 0.1"); * } else { * console.log("Difference between both the matrices is not less than 0.1"); * } * * //Prints "Difference between both the matrices is not less than 0.1" on the console */ Matrix4.equalsEpsilon = function (left, right, epsilon) { epsilon = defaultValue(epsilon, 0); return ( left === right || (defined(left) && defined(right) && Math.abs(left[0] - right[0]) <= epsilon && Math.abs(left[1] - right[1]) <= epsilon && Math.abs(left[2] - right[2]) <= epsilon && Math.abs(left[3] - right[3]) <= epsilon && Math.abs(left[4] - right[4]) <= epsilon && Math.abs(left[5] - right[5]) <= epsilon && Math.abs(left[6] - right[6]) <= epsilon && Math.abs(left[7] - right[7]) <= epsilon && Math.abs(left[8] - right[8]) <= epsilon && Math.abs(left[9] - right[9]) <= epsilon && Math.abs(left[10] - right[10]) <= epsilon && Math.abs(left[11] - right[11]) <= epsilon && Math.abs(left[12] - right[12]) <= epsilon && Math.abs(left[13] - right[13]) <= epsilon && Math.abs(left[14] - right[14]) <= epsilon && Math.abs(left[15] - right[15]) <= epsilon) ); }; /** * Gets the translation portion of the provided matrix, assuming the matrix is an affine transformation matrix. * * @param {Matrix4} matrix The matrix to use. * @param {Cartesian3} result The object onto which to store the result. * @returns {Cartesian3} The modified result parameter. */ Matrix4.getTranslation = function (matrix, result) { //>>includeStart('debug', pragmas.debug); Check.typeOf.object("matrix", matrix); Check.typeOf.object("result", result); //>>includeEnd('debug'); result.x = matrix[12]; result.y = matrix[13]; result.z = matrix[14]; return result; }; /** * Gets the upper left 3x3 matrix of the provided matrix. * * @param {Matrix4} matrix The matrix to use. * @param {Matrix3} result The object onto which to store the result. * @returns {Matrix3} The modified result parameter. * * @example * // returns a Matrix3 instance from a Matrix4 instance * * // m = [10.0, 14.0, 18.0, 22.0] * // [11.0, 15.0, 19.0, 23.0] * // [12.0, 16.0, 20.0, 24.0] * // [13.0, 17.0, 21.0, 25.0] * * const b = new Cesium.Matrix3(); * Cesium.Matrix4.getMatrix3(m,b); * * // b = [10.0, 14.0, 18.0] * // [11.0, 15.0, 19.0] * // [12.0, 16.0, 20.0] */ Matrix4.getMatrix3 = function (matrix, result) { //>>includeStart('debug', pragmas.debug); Check.typeOf.object("matrix", matrix); Check.typeOf.object("result", result); //>>includeEnd('debug'); result[0] = matrix[0]; result[1] = matrix[1]; result[2] = matrix[2]; result[3] = matrix[4]; result[4] = matrix[5]; result[5] = matrix[6]; result[6] = matrix[8]; result[7] = matrix[9]; result[8] = matrix[10]; return result; }; const scratchInverseRotation = new Matrix3(); const scratchMatrix3Zero = new Matrix3(); const scratchBottomRow = new Cartesian4(); const scratchExpectedBottomRow = new Cartesian4(0.0, 0.0, 0.0, 1.0); /** * Computes the inverse of the provided matrix using Cramers Rule. * If the determinant is zero, the matrix can not be inverted, and an exception is thrown. * If the matrix is a proper rigid transformation, it is more efficient * to invert it with {@link Matrix4.inverseTransformation}. * * @param {Matrix4} matrix The matrix to invert. * @param {Matrix4} result The object onto which to store the result. * @returns {Matrix4} The modified result parameter. * * @exception {RuntimeError} matrix is not invertible because its determinate is zero. */ Matrix4.inverse = function (matrix, result) { //>>includeStart('debug', pragmas.debug); Check.typeOf.object("matrix", matrix); Check.typeOf.object("result", result); //>>includeEnd('debug'); // // Ported from: // ftp://download.intel.com/design/PentiumIII/sml/24504301.pdf // const src0 = matrix[0]; const src1 = matrix[4]; const src2 = matrix[8]; const src3 = matrix[12]; const src4 = matrix[1]; const src5 = matrix[5]; const src6 = matrix[9]; const src7 = matrix[13]; const src8 = matrix[2]; const src9 = matrix[6]; const src10 = matrix[10]; const src11 = matrix[14]; const src12 = matrix[3]; const src13 = matrix[7]; const src14 = matrix[11]; const src15 = matrix[15]; // calculate pairs for first 8 elements (cofactors) let tmp0 = src10 * src15; let tmp1 = src11 * src14; let tmp2 = src9 * src15; let tmp3 = src11 * src13; let tmp4 = src9 * src14; let tmp5 = src10 * src13; let tmp6 = src8 * src15; let tmp7 = src11 * src12; let tmp8 = src8 * src14; let tmp9 = src10 * src12; let tmp10 = src8 * src13; let tmp11 = src9 * src12; // calculate first 8 elements (cofactors) const dst0 = tmp0 * src5 + tmp3 * src6 + tmp4 * src7 - (tmp1 * src5 + tmp2 * src6 + tmp5 * src7); const dst1 = tmp1 * src4 + tmp6 * src6 + tmp9 * src7 - (tmp0 * src4 + tmp7 * src6 + tmp8 * src7); const dst2 = tmp2 * src4 + tmp7 * src5 + tmp10 * src7 - (tmp3 * src4 + tmp6 * src5 + tmp11 * src7); const dst3 = tmp5 * src4 + tmp8 * src5 + tmp11 * src6 - (tmp4 * src4 + tmp9 * src5 + tmp10 * src6); const dst4 = tmp1 * src1 + tmp2 * src2 + tmp5 * src3 - (tmp0 * src1 + tmp3 * src2 + tmp4 * src3); const dst5 = tmp0 * src0 + tmp7 * src2 + tmp8 * src3 - (tmp1 * src0 + tmp6 * src2 + tmp9 * src3); const dst6 = tmp3 * src0 + tmp6 * src1 + tmp11 * src3 - (tmp2 * src0 + tmp7 * src1 + tmp10 * src3); const dst7 = tmp4 * src0 + tmp9 * src1 + tmp10 * src2 - (tmp5 * src0 + tmp8 * src1 + tmp11 * src2); // calculate pairs for second 8 elements (cofactors) tmp0 = src2 * src7; tmp1 = src3 * src6; tmp2 = src1 * src7; tmp3 = src3 * src5; tmp4 = src1 * src6; tmp5 = src2 * src5; tmp6 = src0 * src7; tmp7 = src3 * src4; tmp8 = src0 * src6; tmp9 = src2 * src4; tmp10 = src0 * src5; tmp11 = src1 * src4; // calculate second 8 elements (cofactors) const dst8 = tmp0 * src13 + tmp3 * src14 + tmp4 * src15 - (tmp1 * src13 + tmp2 * src14 + tmp5 * src15); const dst9 = tmp1 * src12 + tmp6 * src14 + tmp9 * src15 - (tmp0 * src12 + tmp7 * src14 + tmp8 * src15); const dst10 = tmp2 * src12 + tmp7 * src13 + tmp10 * src15 - (tmp3 * src12 + tmp6 * src13 + tmp11 * src15); const dst11 = tmp5 * src12 + tmp8 * src13 + tmp11 * src14 - (tmp4 * src12 + tmp9 * src13 + tmp10 * src14); const dst12 = tmp2 * src10 + tmp5 * src11 + tmp1 * src9 - (tmp4 * src11 + tmp0 * src9 + tmp3 * src10); const dst13 = tmp8 * src11 + tmp0 * src8 + tmp7 * src10 - (tmp6 * src10 + tmp9 * src11 + tmp1 * src8); const dst14 = tmp6 * src9 + tmp11 * src11 + tmp3 * src8 - (tmp10 * src11 + tmp2 * src8 + tmp7 * src9); const dst15 = tmp10 * src10 + tmp4 * src8 + tmp9 * src9 - (tmp8 * src9 + tmp11 * src10 + tmp5 * src8); // calculate determinant let det = src0 * dst0 + src1 * dst1 + src2 * dst2 + src3 * dst3; if (Math.abs(det) < CesiumMath.EPSILON21) { // Special case for a zero scale matrix that can occur, for example, // when a model's node has a [0, 0, 0] scale. if ( Matrix3.equalsEpsilon( Matrix4.getMatrix3(matrix, scratchInverseRotation), scratchMatrix3Zero, CesiumMath.EPSILON7 ) && Cartesian4.equals( Matrix4.getRow(matrix, 3, scratchBottomRow), scratchExpectedBottomRow ) ) { result[0] = 0.0; result[1] = 0.0; result[2] = 0.0; result[3] = 0.0; result[4] = 0.0; result[5] = 0.0; result[6] = 0.0; result[7] = 0.0; result[8] = 0.0; result[9] = 0.0; result[10] = 0.0; result[11] = 0.0; result[12] = -matrix[12]; result[13] = -matrix[13]; result[14] = -matrix[14]; result[15] = 1.0; return result; } throw new RuntimeError( "matrix is not invertible because its determinate is zero." ); } // calculate matrix inverse det = 1.0 / det; result[0] = dst0 * det; result[1] = dst1 * det; result[2] = dst2 * det; result[3] = dst3 * det; result[4] = dst4 * det; result[5] = dst5 * det; result[6] = dst6 * det; result[7] = dst7 * det; result[8] = dst8 * det; result[9] = dst9 * det; result[10] = dst10 * det; result[11] = dst11 * det; result[12] = dst12 * det; result[13] = dst13 * det; result[14] = dst14 * det; result[15] = dst15 * det; return result; }; /** * Computes the inverse of the provided matrix assuming it is a proper rigid matrix, * where the upper left 3x3 elements are a rotation matrix, * and the upper three elements in the fourth column are the translation. * The bottom row is assumed to be [0, 0, 0, 1]. * The matrix is not verified to be in the proper form. * This method is faster than computing the inverse for a general 4x4 * matrix using {@link Matrix4.inverse}. * * @param {Matrix4} matrix The matrix to invert. * @param {Matrix4} result The object onto which to store the result. * @returns {Matrix4} The modified result parameter. */ Matrix4.inverseTransformation = function (matrix, result) { //>>includeStart('debug', pragmas.debug); Check.typeOf.object("matrix", matrix); Check.typeOf.object("result", result); //>>includeEnd('debug'); //This function is an optimized version of the below 4 lines. //const rT = Matrix3.transpose(Matrix4.getMatrix3(matrix)); //const rTN = Matrix3.negate(rT); //const rTT = Matrix3.multiplyByVector(rTN, Matrix4.getTranslation(matrix)); //return Matrix4.fromRotationTranslation(rT, rTT, result); const matrix0 = matrix[0]; const matrix1 = matrix[1]; const matrix2 = matrix[2]; const matrix4 = matrix[4]; const matrix5 = matrix[5]; const matrix6 = matrix[6]; const matrix8 = matrix[8]; const matrix9 = matrix[9]; const matrix10 = matrix[10]; const vX = matrix[12]; const vY = matrix[13]; const vZ = matrix[14]; const x = -matrix0 * vX - matrix1 * vY - matrix2 * vZ; const y = -matrix4 * vX - matrix5 * vY - matrix6 * vZ; const z = -matrix8 * vX - matrix9 * vY - matrix10 * vZ; result[0] = matrix0; result[1] = matrix4; result[2] = matrix8; result[3] = 0.0; result[4] = matrix1; result[5] = matrix5; result[6] = matrix9; result[7] = 0.0; result[8] = matrix2; result[9] = matrix6; result[10] = matrix10; result[11] = 0.0; result[12] = x; result[13] = y; result[14] = z; result[15] = 1.0; return result; }; const scratchTransposeMatrix = new Matrix4(); /** * Computes the inverse transpose of a matrix. * * @param {Matrix4} matrix The matrix to transpose and invert. * @param {Matrix4} result The object onto which to store the result. * @returns {Matrix4} The modified result parameter. */ Matrix4.inverseTranspose = function (matrix, result) { //>>includeStart('debug', pragmas.debug); Check.typeOf.object("matrix", matrix); Check.typeOf.object("result", result); //>>includeEnd('debug'); return Matrix4.inverse( Matrix4.transpose(matrix, scratchTransposeMatrix), result ); }; /** * An immutable Matrix4 instance initialized to the identity matrix. * * @type {Matrix4} * @constant */ Matrix4.IDENTITY = Object.freeze( new Matrix4( 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0 ) ); /** * An immutable Matrix4 instance initialized to the zero matrix. * * @type {Matrix4} * @constant */ Matrix4.ZERO = Object.freeze( new Matrix4( 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 ) ); /** * The index into Matrix4 for column 0, row 0. * * @type {Number} * @constant */ Matrix4.COLUMN0ROW0 = 0; /** * The index into Matrix4 for column 0, row 1. * * @type {Number} * @constant */ Matrix4.COLUMN0ROW1 = 1; /** * The index into Matrix4 for column 0, row 2. * * @type {Number} * @constant */ Matrix4.COLUMN0ROW2 = 2; /** * The index into Matrix4 for column 0, row 3. * * @type {Number} * @constant */ Matrix4.COLUMN0ROW3 = 3; /** * The index into Matrix4 for column 1, row 0. * * @type {Number} * @constant */ Matrix4.COLUMN1ROW0 = 4; /** * The index into Matrix4 for column 1, row 1. * * @type {Number} * @constant */ Matrix4.COLUMN1ROW1 = 5; /** * The index into Matrix4 for column 1, row 2. * * @type {Number} * @constant */ Matrix4.COLUMN1ROW2 = 6; /** * The index into Matrix4 for column 1, row 3. * * @type {Number} * @constant */ Matrix4.COLUMN1ROW3 = 7; /** * The index into Matrix4 for column 2, row 0. * * @type {Number} * @constant */ Matrix4.COLUMN2ROW0 = 8; /** * The index into Matrix4 for column 2, row 1. * * @type {Number} * @constant */ Matrix4.COLUMN2ROW1 = 9; /** * The index into Matrix4 for column 2, row 2. * * @type {Number} * @constant */ Matrix4.COLUMN2ROW2 = 10; /** * The index into Matrix4 for column 2, row 3. * * @type {Number} * @constant */ Matrix4.COLUMN2ROW3 = 11; /** * The index into Matrix4 for column 3, row 0. * * @type {Number} * @constant */ Matrix4.COLUMN3ROW0 = 12; /** * The index into Matrix4 for column 3, row 1. * * @type {Number} * @constant */ Matrix4.COLUMN3ROW1 = 13; /** * The index into Matrix4 for column 3, row 2. * * @type {Number} * @constant */ Matrix4.COLUMN3ROW2 = 14; /** * The index into Matrix4 for column 3, row 3. * * @type {Number} * @constant */ Matrix4.COLUMN3ROW3 = 15; Object.defineProperties(Matrix4.prototype, { /** * Gets the number of items in the collection. * @memberof Matrix4.prototype * * @type {Number} */ length: { get: function () { return Matrix4.packedLength; }, }, }); /** * Duplicates the provided Matrix4 instance. * * @param {Matrix4} [result] The object onto which to store the result. * @returns {Matrix4} The modified result parameter or a new Matrix4 instance if one was not provided. */ Matrix4.prototype.clone = function (result) { return Matrix4.clone(this, result); }; /** * Compares this matrix to the provided matrix componentwise and returns * true if they are equal, false otherwise. * * @param {Matrix4} [right] The right hand side matrix. * @returns {Boolean} true if they are equal, false otherwise. */ Matrix4.prototype.equals = function (right) { return Matrix4.equals(this, right); }; /** * @private */ Matrix4.equalsArray = function (matrix, array, offset) { return ( matrix[0] === array[offset] && matrix[1] === array[offset + 1] && matrix[2] === array[offset + 2] && matrix[3] === array[offset + 3] && matrix[4] === array[offset + 4] && matrix[5] === array[offset + 5] && matrix[6] === array[offset + 6] && matrix[7] === array[offset + 7] && matrix[8] === array[offset + 8] && matrix[9] === array[offset + 9] && matrix[10] === array[offset + 10] && matrix[11] === array[offset + 11] && matrix[12] === array[offset + 12] && matrix[13] === array[offset + 13] && matrix[14] === array[offset + 14] && matrix[15] === array[offset + 15] ); }; /** * Compares this matrix to the provided matrix componentwise and returns * true if they are within the provided epsilon, * false otherwise. * * @param {Matrix4} [right] The right hand side matrix. * @param {Number} [epsilon=0] The epsilon to use for equality testing. * @returns {Boolean} true if they are within the provided epsilon, false otherwise. */ Matrix4.prototype.equalsEpsilon = function (right, epsilon) { return Matrix4.equalsEpsilon(this, right, epsilon); }; /** * Computes a string representing this Matrix with each row being * on a separate line and in the format '(column0, column1, column2, column3)'. * * @returns {String} A string representing the provided Matrix with each row being on a separate line and in the format '(column0, column1, column2, column3)'. */ Matrix4.prototype.toString = function () { return ( `(${this[0]}, ${this[4]}, ${this[8]}, ${this[12]})\n` + `(${this[1]}, ${this[5]}, ${this[9]}, ${this[13]})\n` + `(${this[2]}, ${this[6]}, ${this[10]}, ${this[14]})\n` + `(${this[3]}, ${this[7]}, ${this[11]}, ${this[15]})` ); }; export default Matrix4;