import Cartesian3 from "./Cartesian3.js"; import Cartesian4 from "./Cartesian4.js"; import Check from "./Check.js"; import defined from "./defined.js"; import DeveloperError from "./DeveloperError.js"; import CesiumMath from "./Math.js"; import Matrix4 from "./Matrix4.js"; /** * A plane in Hessian Normal Form defined by *
 * ax + by + cz + d = 0
 * 
* where (a, b, c) is the plane's normal, d is the signed * distance to the plane, and (x, y, z) is any point on * the plane. * * @alias Plane * @constructor * * @param {Cartesian3} normal The plane's normal (normalized). * @param {Number} distance The shortest distance from the origin to the plane. The sign of * distance determines which side of the plane the origin * is on. If distance is positive, the origin is in the half-space * in the direction of the normal; if negative, the origin is in the half-space * opposite to the normal; if zero, the plane passes through the origin. * * @example * // The plane x=0 * const plane = new Cesium.Plane(Cesium.Cartesian3.UNIT_X, 0.0); * * @exception {DeveloperError} Normal must be normalized */ function Plane(normal, distance) { //>>includeStart('debug', pragmas.debug); Check.typeOf.object("normal", normal); if ( !CesiumMath.equalsEpsilon( Cartesian3.magnitude(normal), 1.0, CesiumMath.EPSILON6 ) ) { throw new DeveloperError("normal must be normalized."); } Check.typeOf.number("distance", distance); //>>includeEnd('debug'); /** * The plane's normal. * * @type {Cartesian3} */ this.normal = Cartesian3.clone(normal); /** * The shortest distance from the origin to the plane. The sign of * distance determines which side of the plane the origin * is on. If distance is positive, the origin is in the half-space * in the direction of the normal; if negative, the origin is in the half-space * opposite to the normal; if zero, the plane passes through the origin. * * @type {Number} */ this.distance = distance; } /** * Creates a plane from a normal and a point on the plane. * * @param {Cartesian3} point The point on the plane. * @param {Cartesian3} normal The plane's normal (normalized). * @param {Plane} [result] The object onto which to store the result. * @returns {Plane} A new plane instance or the modified result parameter. * * @example * const point = Cesium.Cartesian3.fromDegrees(-72.0, 40.0); * const normal = ellipsoid.geodeticSurfaceNormal(point); * const tangentPlane = Cesium.Plane.fromPointNormal(point, normal); * * @exception {DeveloperError} Normal must be normalized */ Plane.fromPointNormal = function (point, normal, result) { //>>includeStart('debug', pragmas.debug); Check.typeOf.object("point", point); Check.typeOf.object("normal", normal); if ( !CesiumMath.equalsEpsilon( Cartesian3.magnitude(normal), 1.0, CesiumMath.EPSILON6 ) ) { throw new DeveloperError("normal must be normalized."); } //>>includeEnd('debug'); const distance = -Cartesian3.dot(normal, point); if (!defined(result)) { return new Plane(normal, distance); } Cartesian3.clone(normal, result.normal); result.distance = distance; return result; }; const scratchNormal = new Cartesian3(); /** * Creates a plane from the general equation * * @param {Cartesian4} coefficients The plane's normal (normalized). * @param {Plane} [result] The object onto which to store the result. * @returns {Plane} A new plane instance or the modified result parameter. * * @exception {DeveloperError} Normal must be normalized */ Plane.fromCartesian4 = function (coefficients, result) { //>>includeStart('debug', pragmas.debug); Check.typeOf.object("coefficients", coefficients); //>>includeEnd('debug'); const normal = Cartesian3.fromCartesian4(coefficients, scratchNormal); const distance = coefficients.w; //>>includeStart('debug', pragmas.debug); if ( !CesiumMath.equalsEpsilon( Cartesian3.magnitude(normal), 1.0, CesiumMath.EPSILON6 ) ) { throw new DeveloperError("normal must be normalized."); } //>>includeEnd('debug'); if (!defined(result)) { return new Plane(normal, distance); } Cartesian3.clone(normal, result.normal); result.distance = distance; return result; }; /** * Computes the signed shortest distance of a point to a plane. * The sign of the distance determines which side of the plane the point * is on. If the distance is positive, the point is in the half-space * in the direction of the normal; if negative, the point is in the half-space * opposite to the normal; if zero, the plane passes through the point. * * @param {Plane} plane The plane. * @param {Cartesian3} point The point. * @returns {Number} The signed shortest distance of the point to the plane. */ Plane.getPointDistance = function (plane, point) { //>>includeStart('debug', pragmas.debug); Check.typeOf.object("plane", plane); Check.typeOf.object("point", point); //>>includeEnd('debug'); return Cartesian3.dot(plane.normal, point) + plane.distance; }; const scratchCartesian = new Cartesian3(); /** * Projects a point onto the plane. * @param {Plane} plane The plane to project the point onto * @param {Cartesian3} point The point to project onto the plane * @param {Cartesian3} [result] The result point. If undefined, a new Cartesian3 will be created. * @returns {Cartesian3} The modified result parameter or a new Cartesian3 instance if one was not provided. */ Plane.projectPointOntoPlane = function (plane, point, result) { //>>includeStart('debug', pragmas.debug); Check.typeOf.object("plane", plane); Check.typeOf.object("point", point); //>>includeEnd('debug'); if (!defined(result)) { result = new Cartesian3(); } // projectedPoint = point - (normal.point + scale) * normal const pointDistance = Plane.getPointDistance(plane, point); const scaledNormal = Cartesian3.multiplyByScalar( plane.normal, pointDistance, scratchCartesian ); return Cartesian3.subtract(point, scaledNormal, result); }; const scratchInverseTranspose = new Matrix4(); const scratchPlaneCartesian4 = new Cartesian4(); const scratchTransformNormal = new Cartesian3(); /** * Transforms the plane by the given transformation matrix. * * @param {Plane} plane The plane. * @param {Matrix4} transform The transformation matrix. * @param {Plane} [result] The object into which to store the result. * @returns {Plane} The plane transformed by the given transformation matrix. */ Plane.transform = function (plane, transform, result) { //>>includeStart('debug', pragmas.debug); Check.typeOf.object("plane", plane); Check.typeOf.object("transform", transform); //>>includeEnd('debug'); const normal = plane.normal; const distance = plane.distance; const inverseTranspose = Matrix4.inverseTranspose( transform, scratchInverseTranspose ); let planeAsCartesian4 = Cartesian4.fromElements( normal.x, normal.y, normal.z, distance, scratchPlaneCartesian4 ); planeAsCartesian4 = Matrix4.multiplyByVector( inverseTranspose, planeAsCartesian4, planeAsCartesian4 ); // Convert the transformed plane to Hessian Normal Form const transformedNormal = Cartesian3.fromCartesian4( planeAsCartesian4, scratchTransformNormal ); planeAsCartesian4 = Cartesian4.divideByScalar( planeAsCartesian4, Cartesian3.magnitude(transformedNormal), planeAsCartesian4 ); return Plane.fromCartesian4(planeAsCartesian4, result); }; /** * Duplicates a Plane instance. * * @param {Plane} plane The plane to duplicate. * @param {Plane} [result] The object onto which to store the result. * @returns {Plane} The modified result parameter or a new Plane instance if one was not provided. */ Plane.clone = function (plane, result) { //>>includeStart('debug', pragmas.debug); Check.typeOf.object("plane", plane); //>>includeEnd('debug'); if (!defined(result)) { return new Plane(plane.normal, plane.distance); } Cartesian3.clone(plane.normal, result.normal); result.distance = plane.distance; return result; }; /** * Compares the provided Planes by normal and distance and returns * true if they are equal, false otherwise. * * @param {Plane} left The first plane. * @param {Plane} right The second plane. * @returns {Boolean} true if left and right are equal, false otherwise. */ Plane.equals = function (left, right) { //>>includeStart('debug', pragmas.debug); Check.typeOf.object("left", left); Check.typeOf.object("right", right); //>>includeEnd('debug'); return ( left.distance === right.distance && Cartesian3.equals(left.normal, right.normal) ); }; /** * A constant initialized to the XY plane passing through the origin, with normal in positive Z. * * @type {Plane} * @constant */ Plane.ORIGIN_XY_PLANE = Object.freeze(new Plane(Cartesian3.UNIT_Z, 0.0)); /** * A constant initialized to the YZ plane passing through the origin, with normal in positive X. * * @type {Plane} * @constant */ Plane.ORIGIN_YZ_PLANE = Object.freeze(new Plane(Cartesian3.UNIT_X, 0.0)); /** * A constant initialized to the ZX plane passing through the origin, with normal in positive Y. * * @type {Plane} * @constant */ Plane.ORIGIN_ZX_PLANE = Object.freeze(new Plane(Cartesian3.UNIT_Y, 0.0)); export default Plane;