import ArcType from "./ArcType.js"; import arrayRemoveDuplicates from "./arrayRemoveDuplicates.js"; import BoundingSphere from "./BoundingSphere.js"; import Cartesian3 from "./Cartesian3.js"; import Color from "./Color.js"; import ComponentDatatype from "./ComponentDatatype.js"; import defaultValue from "./defaultValue.js"; import defined from "./defined.js"; import DeveloperError from "./DeveloperError.js"; import Ellipsoid from "./Ellipsoid.js"; import Geometry from "./Geometry.js"; import GeometryAttribute from "./GeometryAttribute.js"; import GeometryAttributes from "./GeometryAttributes.js"; import GeometryType from "./GeometryType.js"; import IndexDatatype from "./IndexDatatype.js"; import CesiumMath from "./Math.js"; import PolylinePipeline from "./PolylinePipeline.js"; import PrimitiveType from "./PrimitiveType.js"; import VertexFormat from "./VertexFormat.js"; const scratchInterpolateColorsArray = []; function interpolateColors(p0, p1, color0, color1, numPoints) { const colors = scratchInterpolateColorsArray; colors.length = numPoints; let i; const r0 = color0.red; const g0 = color0.green; const b0 = color0.blue; const a0 = color0.alpha; const r1 = color1.red; const g1 = color1.green; const b1 = color1.blue; const a1 = color1.alpha; if (Color.equals(color0, color1)) { for (i = 0; i < numPoints; i++) { colors[i] = Color.clone(color0); } return colors; } const redPerVertex = (r1 - r0) / numPoints; const greenPerVertex = (g1 - g0) / numPoints; const bluePerVertex = (b1 - b0) / numPoints; const alphaPerVertex = (a1 - a0) / numPoints; for (i = 0; i < numPoints; i++) { colors[i] = new Color( r0 + i * redPerVertex, g0 + i * greenPerVertex, b0 + i * bluePerVertex, a0 + i * alphaPerVertex ); } return colors; } /** * A description of a polyline modeled as a line strip; the first two positions define a line segment, * and each additional position defines a line segment from the previous position. The polyline is capable of * displaying with a material. * * @alias PolylineGeometry * @constructor * * @param {Object} options Object with the following properties: * @param {Cartesian3[]} options.positions An array of {@link Cartesian3} defining the positions in the polyline as a line strip. * @param {Number} [options.width=1.0] The width in pixels. * @param {Color[]} [options.colors] An Array of {@link Color} defining the per vertex or per segment colors. * @param {Boolean} [options.colorsPerVertex=false] A boolean that determines whether the colors will be flat across each segment of the line or interpolated across the vertices. * @param {ArcType} [options.arcType=ArcType.GEODESIC] The type of line the polyline segments must follow. * @param {Number} [options.granularity=CesiumMath.RADIANS_PER_DEGREE] The distance, in radians, between each latitude and longitude if options.arcType is not ArcType.NONE. Determines the number of positions in the buffer. * @param {VertexFormat} [options.vertexFormat=VertexFormat.DEFAULT] The vertex attributes to be computed. * @param {Ellipsoid} [options.ellipsoid=Ellipsoid.WGS84] The ellipsoid to be used as a reference. * * @exception {DeveloperError} At least two positions are required. * @exception {DeveloperError} width must be greater than or equal to one. * @exception {DeveloperError} colors has an invalid length. * * @see PolylineGeometry#createGeometry * * @demo {@link https://sandcastle.cesium.com/index.html?src=Polyline.html|Cesium Sandcastle Polyline Demo} * * @example * // A polyline with two connected line segments * const polyline = new Cesium.PolylineGeometry({ * positions : Cesium.Cartesian3.fromDegreesArray([ * 0.0, 0.0, * 5.0, 0.0, * 5.0, 5.0 * ]), * width : 10.0 * }); * const geometry = Cesium.PolylineGeometry.createGeometry(polyline); */ function PolylineGeometry(options) { options = defaultValue(options, defaultValue.EMPTY_OBJECT); const positions = options.positions; const colors = options.colors; const width = defaultValue(options.width, 1.0); const colorsPerVertex = defaultValue(options.colorsPerVertex, false); //>>includeStart('debug', pragmas.debug); if (!defined(positions) || positions.length < 2) { throw new DeveloperError("At least two positions are required."); } if (typeof width !== "number") { throw new DeveloperError("width must be a number"); } if ( defined(colors) && ((colorsPerVertex && colors.length < positions.length) || (!colorsPerVertex && colors.length < positions.length - 1)) ) { throw new DeveloperError("colors has an invalid length."); } //>>includeEnd('debug'); this._positions = positions; this._colors = colors; this._width = width; this._colorsPerVertex = colorsPerVertex; this._vertexFormat = VertexFormat.clone( defaultValue(options.vertexFormat, VertexFormat.DEFAULT) ); this._arcType = defaultValue(options.arcType, ArcType.GEODESIC); this._granularity = defaultValue( options.granularity, CesiumMath.RADIANS_PER_DEGREE ); this._ellipsoid = Ellipsoid.clone( defaultValue(options.ellipsoid, Ellipsoid.WGS84) ); this._workerName = "createPolylineGeometry"; let numComponents = 1 + positions.length * Cartesian3.packedLength; numComponents += defined(colors) ? 1 + colors.length * Color.packedLength : 1; /** * The number of elements used to pack the object into an array. * @type {Number} */ this.packedLength = numComponents + Ellipsoid.packedLength + VertexFormat.packedLength + 4; } /** * Stores the provided instance into the provided array. * * @param {PolylineGeometry} value The value to pack. * @param {Number[]} array The array to pack into. * @param {Number} [startingIndex=0] The index into the array at which to start packing the elements. * * @returns {Number[]} The array that was packed into */ PolylineGeometry.pack = function (value, array, startingIndex) { //>>includeStart('debug', pragmas.debug); if (!defined(value)) { throw new DeveloperError("value is required"); } if (!defined(array)) { throw new DeveloperError("array is required"); } //>>includeEnd('debug'); startingIndex = defaultValue(startingIndex, 0); let i; const positions = value._positions; let length = positions.length; array[startingIndex++] = length; for (i = 0; i < length; ++i, startingIndex += Cartesian3.packedLength) { Cartesian3.pack(positions[i], array, startingIndex); } const colors = value._colors; length = defined(colors) ? colors.length : 0.0; array[startingIndex++] = length; for (i = 0; i < length; ++i, startingIndex += Color.packedLength) { Color.pack(colors[i], array, startingIndex); } Ellipsoid.pack(value._ellipsoid, array, startingIndex); startingIndex += Ellipsoid.packedLength; VertexFormat.pack(value._vertexFormat, array, startingIndex); startingIndex += VertexFormat.packedLength; array[startingIndex++] = value._width; array[startingIndex++] = value._colorsPerVertex ? 1.0 : 0.0; array[startingIndex++] = value._arcType; array[startingIndex] = value._granularity; return array; }; const scratchEllipsoid = Ellipsoid.clone(Ellipsoid.UNIT_SPHERE); const scratchVertexFormat = new VertexFormat(); const scratchOptions = { positions: undefined, colors: undefined, ellipsoid: scratchEllipsoid, vertexFormat: scratchVertexFormat, width: undefined, colorsPerVertex: undefined, arcType: undefined, granularity: undefined, }; /** * Retrieves an instance from a packed array. * * @param {Number[]} array The packed array. * @param {Number} [startingIndex=0] The starting index of the element to be unpacked. * @param {PolylineGeometry} [result] The object into which to store the result. * @returns {PolylineGeometry} The modified result parameter or a new PolylineGeometry instance if one was not provided. */ PolylineGeometry.unpack = function (array, startingIndex, result) { //>>includeStart('debug', pragmas.debug); if (!defined(array)) { throw new DeveloperError("array is required"); } //>>includeEnd('debug'); startingIndex = defaultValue(startingIndex, 0); let i; let length = array[startingIndex++]; const positions = new Array(length); for (i = 0; i < length; ++i, startingIndex += Cartesian3.packedLength) { positions[i] = Cartesian3.unpack(array, startingIndex); } length = array[startingIndex++]; const colors = length > 0 ? new Array(length) : undefined; for (i = 0; i < length; ++i, startingIndex += Color.packedLength) { colors[i] = Color.unpack(array, startingIndex); } const ellipsoid = Ellipsoid.unpack(array, startingIndex, scratchEllipsoid); startingIndex += Ellipsoid.packedLength; const vertexFormat = VertexFormat.unpack( array, startingIndex, scratchVertexFormat ); startingIndex += VertexFormat.packedLength; const width = array[startingIndex++]; const colorsPerVertex = array[startingIndex++] === 1.0; const arcType = array[startingIndex++]; const granularity = array[startingIndex]; if (!defined(result)) { scratchOptions.positions = positions; scratchOptions.colors = colors; scratchOptions.width = width; scratchOptions.colorsPerVertex = colorsPerVertex; scratchOptions.arcType = arcType; scratchOptions.granularity = granularity; return new PolylineGeometry(scratchOptions); } result._positions = positions; result._colors = colors; result._ellipsoid = Ellipsoid.clone(ellipsoid, result._ellipsoid); result._vertexFormat = VertexFormat.clone(vertexFormat, result._vertexFormat); result._width = width; result._colorsPerVertex = colorsPerVertex; result._arcType = arcType; result._granularity = granularity; return result; }; const scratchCartesian3 = new Cartesian3(); const scratchPosition = new Cartesian3(); const scratchPrevPosition = new Cartesian3(); const scratchNextPosition = new Cartesian3(); /** * Computes the geometric representation of a polyline, including its vertices, indices, and a bounding sphere. * * @param {PolylineGeometry} polylineGeometry A description of the polyline. * @returns {Geometry|undefined} The computed vertices and indices. */ PolylineGeometry.createGeometry = function (polylineGeometry) { const width = polylineGeometry._width; const vertexFormat = polylineGeometry._vertexFormat; let colors = polylineGeometry._colors; const colorsPerVertex = polylineGeometry._colorsPerVertex; const arcType = polylineGeometry._arcType; const granularity = polylineGeometry._granularity; const ellipsoid = polylineGeometry._ellipsoid; let i; let j; let k; const removedIndices = []; let positions = arrayRemoveDuplicates( polylineGeometry._positions, Cartesian3.equalsEpsilon, false, removedIndices ); if (defined(colors) && removedIndices.length > 0) { let removedArrayIndex = 0; let nextRemovedIndex = removedIndices[0]; colors = colors.filter(function (color, index) { let remove = false; if (colorsPerVertex) { remove = index === nextRemovedIndex || (index === 0 && nextRemovedIndex === 1); } else { remove = index + 1 === nextRemovedIndex; } if (remove) { removedArrayIndex++; nextRemovedIndex = removedIndices[removedArrayIndex]; return false; } return true; }); } let positionsLength = positions.length; // A width of a pixel or less is not a valid geometry, but in order to support external data // that may have errors we treat this as an empty geometry. if (positionsLength < 2 || width <= 0.0) { return undefined; } if (arcType === ArcType.GEODESIC || arcType === ArcType.RHUMB) { let subdivisionSize; let numberOfPointsFunction; if (arcType === ArcType.GEODESIC) { subdivisionSize = CesiumMath.chordLength( granularity, ellipsoid.maximumRadius ); numberOfPointsFunction = PolylinePipeline.numberOfPoints; } else { subdivisionSize = granularity; numberOfPointsFunction = PolylinePipeline.numberOfPointsRhumbLine; } const heights = PolylinePipeline.extractHeights(positions, ellipsoid); if (defined(colors)) { let colorLength = 1; for (i = 0; i < positionsLength - 1; ++i) { colorLength += numberOfPointsFunction( positions[i], positions[i + 1], subdivisionSize ); } const newColors = new Array(colorLength); let newColorIndex = 0; for (i = 0; i < positionsLength - 1; ++i) { const p0 = positions[i]; const p1 = positions[i + 1]; const c0 = colors[i]; const numColors = numberOfPointsFunction(p0, p1, subdivisionSize); if (colorsPerVertex && i < colorLength) { const c1 = colors[i + 1]; const interpolatedColors = interpolateColors( p0, p1, c0, c1, numColors ); const interpolatedColorsLength = interpolatedColors.length; for (j = 0; j < interpolatedColorsLength; ++j) { newColors[newColorIndex++] = interpolatedColors[j]; } } else { for (j = 0; j < numColors; ++j) { newColors[newColorIndex++] = Color.clone(c0); } } } newColors[newColorIndex] = Color.clone(colors[colors.length - 1]); colors = newColors; scratchInterpolateColorsArray.length = 0; } if (arcType === ArcType.GEODESIC) { positions = PolylinePipeline.generateCartesianArc({ positions: positions, minDistance: subdivisionSize, ellipsoid: ellipsoid, height: heights, }); } else { positions = PolylinePipeline.generateCartesianRhumbArc({ positions: positions, granularity: subdivisionSize, ellipsoid: ellipsoid, height: heights, }); } } positionsLength = positions.length; const size = positionsLength * 4.0 - 4.0; const finalPositions = new Float64Array(size * 3); const prevPositions = new Float64Array(size * 3); const nextPositions = new Float64Array(size * 3); const expandAndWidth = new Float32Array(size * 2); const st = vertexFormat.st ? new Float32Array(size * 2) : undefined; const finalColors = defined(colors) ? new Uint8Array(size * 4) : undefined; let positionIndex = 0; let expandAndWidthIndex = 0; let stIndex = 0; let colorIndex = 0; let position; for (j = 0; j < positionsLength; ++j) { if (j === 0) { position = scratchCartesian3; Cartesian3.subtract(positions[0], positions[1], position); Cartesian3.add(positions[0], position, position); } else { position = positions[j - 1]; } Cartesian3.clone(position, scratchPrevPosition); Cartesian3.clone(positions[j], scratchPosition); if (j === positionsLength - 1) { position = scratchCartesian3; Cartesian3.subtract( positions[positionsLength - 1], positions[positionsLength - 2], position ); Cartesian3.add(positions[positionsLength - 1], position, position); } else { position = positions[j + 1]; } Cartesian3.clone(position, scratchNextPosition); let color0, color1; if (defined(finalColors)) { if (j !== 0 && !colorsPerVertex) { color0 = colors[j - 1]; } else { color0 = colors[j]; } if (j !== positionsLength - 1) { color1 = colors[j]; } } const startK = j === 0 ? 2 : 0; const endK = j === positionsLength - 1 ? 2 : 4; for (k = startK; k < endK; ++k) { Cartesian3.pack(scratchPosition, finalPositions, positionIndex); Cartesian3.pack(scratchPrevPosition, prevPositions, positionIndex); Cartesian3.pack(scratchNextPosition, nextPositions, positionIndex); positionIndex += 3; const direction = k - 2 < 0 ? -1.0 : 1.0; expandAndWidth[expandAndWidthIndex++] = 2 * (k % 2) - 1; // expand direction expandAndWidth[expandAndWidthIndex++] = direction * width; if (vertexFormat.st) { st[stIndex++] = j / (positionsLength - 1); st[stIndex++] = Math.max(expandAndWidth[expandAndWidthIndex - 2], 0.0); } if (defined(finalColors)) { const color = k < 2 ? color0 : color1; finalColors[colorIndex++] = Color.floatToByte(color.red); finalColors[colorIndex++] = Color.floatToByte(color.green); finalColors[colorIndex++] = Color.floatToByte(color.blue); finalColors[colorIndex++] = Color.floatToByte(color.alpha); } } } const attributes = new GeometryAttributes(); attributes.position = new GeometryAttribute({ componentDatatype: ComponentDatatype.DOUBLE, componentsPerAttribute: 3, values: finalPositions, }); attributes.prevPosition = new GeometryAttribute({ componentDatatype: ComponentDatatype.DOUBLE, componentsPerAttribute: 3, values: prevPositions, }); attributes.nextPosition = new GeometryAttribute({ componentDatatype: ComponentDatatype.DOUBLE, componentsPerAttribute: 3, values: nextPositions, }); attributes.expandAndWidth = new GeometryAttribute({ componentDatatype: ComponentDatatype.FLOAT, componentsPerAttribute: 2, values: expandAndWidth, }); if (vertexFormat.st) { attributes.st = new GeometryAttribute({ componentDatatype: ComponentDatatype.FLOAT, componentsPerAttribute: 2, values: st, }); } if (defined(finalColors)) { attributes.color = new GeometryAttribute({ componentDatatype: ComponentDatatype.UNSIGNED_BYTE, componentsPerAttribute: 4, values: finalColors, normalize: true, }); } const indices = IndexDatatype.createTypedArray(size, positionsLength * 6 - 6); let index = 0; let indicesIndex = 0; const length = positionsLength - 1.0; for (j = 0; j < length; ++j) { indices[indicesIndex++] = index; indices[indicesIndex++] = index + 2; indices[indicesIndex++] = index + 1; indices[indicesIndex++] = index + 1; indices[indicesIndex++] = index + 2; indices[indicesIndex++] = index + 3; index += 4; } return new Geometry({ attributes: attributes, indices: indices, primitiveType: PrimitiveType.TRIANGLES, boundingSphere: BoundingSphere.fromPoints(positions), geometryType: GeometryType.POLYLINES, }); }; export default PolylineGeometry;