import arrayRemoveDuplicates from "./arrayRemoveDuplicates.js"; import BoundingRectangle from "./BoundingRectangle.js"; import BoundingSphere from "./BoundingSphere.js"; import Cartesian2 from "./Cartesian2.js"; import Cartesian3 from "./Cartesian3.js"; import ComponentDatatype from "./ComponentDatatype.js"; import CornerType from "./CornerType.js"; import defaultValue from "./defaultValue.js"; import defined from "./defined.js"; import DeveloperError from "./DeveloperError.js"; import Ellipsoid from "./Ellipsoid.js"; import Geometry from "./Geometry.js"; import GeometryAttribute from "./GeometryAttribute.js"; import GeometryAttributes from "./GeometryAttributes.js"; import GeometryPipeline from "./GeometryPipeline.js"; import IndexDatatype from "./IndexDatatype.js"; import CesiumMath from "./Math.js"; import oneTimeWarning from "./oneTimeWarning.js"; import PolygonPipeline from "./PolygonPipeline.js"; import PolylineVolumeGeometryLibrary from "./PolylineVolumeGeometryLibrary.js"; import PrimitiveType from "./PrimitiveType.js"; import VertexFormat from "./VertexFormat.js"; import WindingOrder from "./WindingOrder.js"; function computeAttributes( combinedPositions, shape, boundingRectangle, vertexFormat ) { const attributes = new GeometryAttributes(); if (vertexFormat.position) { attributes.position = new GeometryAttribute({ componentDatatype: ComponentDatatype.DOUBLE, componentsPerAttribute: 3, values: combinedPositions, }); } const shapeLength = shape.length; const vertexCount = combinedPositions.length / 3; const length = (vertexCount - shapeLength * 2) / (shapeLength * 2); const firstEndIndices = PolygonPipeline.triangulate(shape); const indicesCount = (length - 1) * shapeLength * 6 + firstEndIndices.length * 2; const indices = IndexDatatype.createTypedArray(vertexCount, indicesCount); let i, j; let ll, ul, ur, lr; const offset = shapeLength * 2; let index = 0; for (i = 0; i < length - 1; i++) { for (j = 0; j < shapeLength - 1; j++) { ll = j * 2 + i * shapeLength * 2; lr = ll + offset; ul = ll + 1; ur = ul + offset; indices[index++] = ul; indices[index++] = ll; indices[index++] = ur; indices[index++] = ur; indices[index++] = ll; indices[index++] = lr; } ll = shapeLength * 2 - 2 + i * shapeLength * 2; ul = ll + 1; ur = ul + offset; lr = ll + offset; indices[index++] = ul; indices[index++] = ll; indices[index++] = ur; indices[index++] = ur; indices[index++] = ll; indices[index++] = lr; } if (vertexFormat.st || vertexFormat.tangent || vertexFormat.bitangent) { // st required for tangent/bitangent calculation const st = new Float32Array(vertexCount * 2); const lengthSt = 1 / (length - 1); const heightSt = 1 / boundingRectangle.height; const heightOffset = boundingRectangle.height / 2; let s, t; let stindex = 0; for (i = 0; i < length; i++) { s = i * lengthSt; t = heightSt * (shape[0].y + heightOffset); st[stindex++] = s; st[stindex++] = t; for (j = 1; j < shapeLength; j++) { t = heightSt * (shape[j].y + heightOffset); st[stindex++] = s; st[stindex++] = t; st[stindex++] = s; st[stindex++] = t; } t = heightSt * (shape[0].y + heightOffset); st[stindex++] = s; st[stindex++] = t; } for (j = 0; j < shapeLength; j++) { s = 0; t = heightSt * (shape[j].y + heightOffset); st[stindex++] = s; st[stindex++] = t; } for (j = 0; j < shapeLength; j++) { s = (length - 1) * lengthSt; t = heightSt * (shape[j].y + heightOffset); st[stindex++] = s; st[stindex++] = t; } attributes.st = new GeometryAttribute({ componentDatatype: ComponentDatatype.FLOAT, componentsPerAttribute: 2, values: new Float32Array(st), }); } const endOffset = vertexCount - shapeLength * 2; for (i = 0; i < firstEndIndices.length; i += 3) { const v0 = firstEndIndices[i] + endOffset; const v1 = firstEndIndices[i + 1] + endOffset; const v2 = firstEndIndices[i + 2] + endOffset; indices[index++] = v0; indices[index++] = v1; indices[index++] = v2; indices[index++] = v2 + shapeLength; indices[index++] = v1 + shapeLength; indices[index++] = v0 + shapeLength; } let geometry = new Geometry({ attributes: attributes, indices: indices, boundingSphere: BoundingSphere.fromVertices(combinedPositions), primitiveType: PrimitiveType.TRIANGLES, }); if (vertexFormat.normal) { geometry = GeometryPipeline.computeNormal(geometry); } if (vertexFormat.tangent || vertexFormat.bitangent) { try { geometry = GeometryPipeline.computeTangentAndBitangent(geometry); } catch (e) { oneTimeWarning( "polyline-volume-tangent-bitangent", "Unable to compute tangents and bitangents for polyline volume geometry" ); //TODO https://github.com/CesiumGS/cesium/issues/3609 } if (!vertexFormat.tangent) { geometry.attributes.tangent = undefined; } if (!vertexFormat.bitangent) { geometry.attributes.bitangent = undefined; } if (!vertexFormat.st) { geometry.attributes.st = undefined; } } return geometry; } /** * A description of a polyline with a volume (a 2D shape extruded along a polyline). * * @alias PolylineVolumeGeometry * @constructor * * @param {Object} options Object with the following properties: * @param {Cartesian3[]} options.polylinePositions An array of {@link Cartesian3} positions that define the center of the polyline volume. * @param {Cartesian2[]} options.shapePositions An array of {@link Cartesian2} positions that define the shape to be extruded along the polyline * @param {Ellipsoid} [options.ellipsoid=Ellipsoid.WGS84] The ellipsoid to be used as a reference. * @param {Number} [options.granularity=CesiumMath.RADIANS_PER_DEGREE] The distance, in radians, between each latitude and longitude. Determines the number of positions in the buffer. * @param {VertexFormat} [options.vertexFormat=VertexFormat.DEFAULT] The vertex attributes to be computed. * @param {CornerType} [options.cornerType=CornerType.ROUNDED] Determines the style of the corners. * * @see PolylineVolumeGeometry#createGeometry * * @demo {@link https://sandcastle.cesium.com/index.html?src=Polyline%20Volume.html|Cesium Sandcastle Polyline Volume Demo} * * @example * function computeCircle(radius) { * const positions = []; * for (let i = 0; i < 360; i++) { * const radians = Cesium.Math.toRadians(i); * positions.push(new Cesium.Cartesian2(radius * Math.cos(radians), radius * Math.sin(radians))); * } * return positions; * } * * const volume = new Cesium.PolylineVolumeGeometry({ * vertexFormat : Cesium.VertexFormat.POSITION_ONLY, * polylinePositions : Cesium.Cartesian3.fromDegreesArray([ * -72.0, 40.0, * -70.0, 35.0 * ]), * shapePositions : computeCircle(100000.0) * }); */ function PolylineVolumeGeometry(options) { options = defaultValue(options, defaultValue.EMPTY_OBJECT); const positions = options.polylinePositions; const shape = options.shapePositions; //>>includeStart('debug', pragmas.debug); if (!defined(positions)) { throw new DeveloperError("options.polylinePositions is required."); } if (!defined(shape)) { throw new DeveloperError("options.shapePositions is required."); } //>>includeEnd('debug'); this._positions = positions; this._shape = shape; this._ellipsoid = Ellipsoid.clone( defaultValue(options.ellipsoid, Ellipsoid.WGS84) ); this._cornerType = defaultValue(options.cornerType, CornerType.ROUNDED); this._vertexFormat = VertexFormat.clone( defaultValue(options.vertexFormat, VertexFormat.DEFAULT) ); this._granularity = defaultValue( options.granularity, CesiumMath.RADIANS_PER_DEGREE ); this._workerName = "createPolylineVolumeGeometry"; let numComponents = 1 + positions.length * Cartesian3.packedLength; numComponents += 1 + shape.length * Cartesian2.packedLength; /** * The number of elements used to pack the object into an array. * @type {Number} */ this.packedLength = numComponents + Ellipsoid.packedLength + VertexFormat.packedLength + 2; } /** * Stores the provided instance into the provided array. * * @param {PolylineVolumeGeometry} value The value to pack. * @param {Number[]} array The array to pack into. * @param {Number} [startingIndex=0] The index into the array at which to start packing the elements. * * @returns {Number[]} The array that was packed into */ PolylineVolumeGeometry.pack = function (value, array, startingIndex) { //>>includeStart('debug', pragmas.debug); if (!defined(value)) { throw new DeveloperError("value is required"); } if (!defined(array)) { throw new DeveloperError("array is required"); } //>>includeEnd('debug'); startingIndex = defaultValue(startingIndex, 0); let i; const positions = value._positions; let length = positions.length; array[startingIndex++] = length; for (i = 0; i < length; ++i, startingIndex += Cartesian3.packedLength) { Cartesian3.pack(positions[i], array, startingIndex); } const shape = value._shape; length = shape.length; array[startingIndex++] = length; for (i = 0; i < length; ++i, startingIndex += Cartesian2.packedLength) { Cartesian2.pack(shape[i], array, startingIndex); } Ellipsoid.pack(value._ellipsoid, array, startingIndex); startingIndex += Ellipsoid.packedLength; VertexFormat.pack(value._vertexFormat, array, startingIndex); startingIndex += VertexFormat.packedLength; array[startingIndex++] = value._cornerType; array[startingIndex] = value._granularity; return array; }; const scratchEllipsoid = Ellipsoid.clone(Ellipsoid.UNIT_SPHERE); const scratchVertexFormat = new VertexFormat(); const scratchOptions = { polylinePositions: undefined, shapePositions: undefined, ellipsoid: scratchEllipsoid, vertexFormat: scratchVertexFormat, cornerType: undefined, granularity: undefined, }; /** * Retrieves an instance from a packed array. * * @param {Number[]} array The packed array. * @param {Number} [startingIndex=0] The starting index of the element to be unpacked. * @param {PolylineVolumeGeometry} [result] The object into which to store the result. * @returns {PolylineVolumeGeometry} The modified result parameter or a new PolylineVolumeGeometry instance if one was not provided. */ PolylineVolumeGeometry.unpack = function (array, startingIndex, result) { //>>includeStart('debug', pragmas.debug); if (!defined(array)) { throw new DeveloperError("array is required"); } //>>includeEnd('debug'); startingIndex = defaultValue(startingIndex, 0); let i; let length = array[startingIndex++]; const positions = new Array(length); for (i = 0; i < length; ++i, startingIndex += Cartesian3.packedLength) { positions[i] = Cartesian3.unpack(array, startingIndex); } length = array[startingIndex++]; const shape = new Array(length); for (i = 0; i < length; ++i, startingIndex += Cartesian2.packedLength) { shape[i] = Cartesian2.unpack(array, startingIndex); } const ellipsoid = Ellipsoid.unpack(array, startingIndex, scratchEllipsoid); startingIndex += Ellipsoid.packedLength; const vertexFormat = VertexFormat.unpack( array, startingIndex, scratchVertexFormat ); startingIndex += VertexFormat.packedLength; const cornerType = array[startingIndex++]; const granularity = array[startingIndex]; if (!defined(result)) { scratchOptions.polylinePositions = positions; scratchOptions.shapePositions = shape; scratchOptions.cornerType = cornerType; scratchOptions.granularity = granularity; return new PolylineVolumeGeometry(scratchOptions); } result._positions = positions; result._shape = shape; result._ellipsoid = Ellipsoid.clone(ellipsoid, result._ellipsoid); result._vertexFormat = VertexFormat.clone(vertexFormat, result._vertexFormat); result._cornerType = cornerType; result._granularity = granularity; return result; }; const brScratch = new BoundingRectangle(); /** * Computes the geometric representation of a polyline with a volume, including its vertices, indices, and a bounding sphere. * * @param {PolylineVolumeGeometry} polylineVolumeGeometry A description of the polyline volume. * @returns {Geometry|undefined} The computed vertices and indices. */ PolylineVolumeGeometry.createGeometry = function (polylineVolumeGeometry) { const positions = polylineVolumeGeometry._positions; const cleanPositions = arrayRemoveDuplicates( positions, Cartesian3.equalsEpsilon ); let shape2D = polylineVolumeGeometry._shape; shape2D = PolylineVolumeGeometryLibrary.removeDuplicatesFromShape(shape2D); if (cleanPositions.length < 2 || shape2D.length < 3) { return undefined; } if ( PolygonPipeline.computeWindingOrder2D(shape2D) === WindingOrder.CLOCKWISE ) { shape2D.reverse(); } const boundingRectangle = BoundingRectangle.fromPoints(shape2D, brScratch); const computedPositions = PolylineVolumeGeometryLibrary.computePositions( cleanPositions, shape2D, boundingRectangle, polylineVolumeGeometry, true ); return computeAttributes( computedPositions, shape2D, boundingRectangle, polylineVolumeGeometry._vertexFormat ); }; export default PolylineVolumeGeometry;