import BoundingSphere from "../Core/BoundingSphere.js";
import BoxOutlineGeometry from "../Core/BoxOutlineGeometry.js";
import Cartesian2 from "../Core/Cartesian2.js";
import Cartesian3 from "../Core/Cartesian3.js";
import Cartesian4 from "../Core/Cartesian4.js";
import Cartographic from "../Core/Cartographic.js";
import clone from "../Core/clone.js";
import Color from "../Core/Color.js";
import ColorGeometryInstanceAttribute from "../Core/ColorGeometryInstanceAttribute.js";
import combine from "../Core/combine.js";
import defaultValue from "../Core/defaultValue.js";
import defined from "../Core/defined.js";
import destroyObject from "../Core/destroyObject.js";
import DeveloperError from "../Core/DeveloperError.js";
import Event from "../Core/Event.js";
import GeometryInstance from "../Core/GeometryInstance.js";
import GeometryPipeline from "../Core/GeometryPipeline.js";
import IndexDatatype from "../Core/IndexDatatype.js";
import Intersect from "../Core/Intersect.js";
import CesiumMath from "../Core/Math.js";
import Matrix4 from "../Core/Matrix4.js";
import NearFarScalar from "../Core/NearFarScalar.js";
import OrientedBoundingBox from "../Core/OrientedBoundingBox.js";
import OrthographicFrustum from "../Core/OrthographicFrustum.js";
import PrimitiveType from "../Core/PrimitiveType.js";
import Rectangle from "../Core/Rectangle.js";
import SphereOutlineGeometry from "../Core/SphereOutlineGeometry.js";
import TerrainExaggeration from "../Core/TerrainExaggeration.js";
import TerrainQuantization from "../Core/TerrainQuantization.js";
import Visibility from "../Core/Visibility.js";
import WebMercatorProjection from "../Core/WebMercatorProjection.js";
import Buffer from "../Renderer/Buffer.js";
import BufferUsage from "../Renderer/BufferUsage.js";
import ContextLimits from "../Renderer/ContextLimits.js";
import DrawCommand from "../Renderer/DrawCommand.js";
import Pass from "../Renderer/Pass.js";
import RenderState from "../Renderer/RenderState.js";
import VertexArray from "../Renderer/VertexArray.js";
import BlendingState from "./BlendingState.js";
import ClippingPlaneCollection from "./ClippingPlaneCollection.js";
import DepthFunction from "./DepthFunction.js";
import GlobeSurfaceTile from "./GlobeSurfaceTile.js";
import ImageryLayer from "./ImageryLayer.js";
import ImageryState from "./ImageryState.js";
import PerInstanceColorAppearance from "./PerInstanceColorAppearance.js";
import Primitive from "./Primitive.js";
import QuadtreeTileLoadState from "./QuadtreeTileLoadState.js";
import SceneMode from "./SceneMode.js";
import ShadowMode from "./ShadowMode.js";
import TerrainFillMesh from "./TerrainFillMesh.js";
import TerrainState from "./TerrainState.js";
import TileBoundingRegion from "./TileBoundingRegion.js";
import TileSelectionResult from "./TileSelectionResult.js";
/**
* Provides quadtree tiles representing the surface of the globe. This type is intended to be used
* with {@link QuadtreePrimitive}.
*
* @alias GlobeSurfaceTileProvider
* @constructor
*
* @param {TerrainProvider} options.terrainProvider The terrain provider that describes the surface geometry.
* @param {ImageryLayerCollection} option.imageryLayers The collection of imagery layers describing the shading of the surface.
* @param {GlobeSurfaceShaderSet} options.surfaceShaderSet The set of shaders used to render the surface.
*
* @private
*/
function GlobeSurfaceTileProvider(options) {
//>>includeStart('debug', pragmas.debug);
if (!defined(options)) {
throw new DeveloperError("options is required.");
}
if (!defined(options.terrainProvider)) {
throw new DeveloperError("options.terrainProvider is required.");
} else if (!defined(options.imageryLayers)) {
throw new DeveloperError("options.imageryLayers is required.");
} else if (!defined(options.surfaceShaderSet)) {
throw new DeveloperError("options.surfaceShaderSet is required.");
}
//>>includeEnd('debug');
this.lightingFadeOutDistance = 6500000.0;
this.lightingFadeInDistance = 9000000.0;
this.hasWaterMask = false;
this.oceanNormalMap = undefined;
this.zoomedOutOceanSpecularIntensity = 0.5;
this.enableLighting = false;
this.dynamicAtmosphereLighting = false;
this.dynamicAtmosphereLightingFromSun = false;
this.showGroundAtmosphere = false;
this.shadows = ShadowMode.RECEIVE_ONLY;
/**
* The color to use to highlight terrain fill tiles. If undefined, fill tiles are not
* highlighted at all. The alpha value is used to alpha blend with the tile's
* actual color. Because terrain fill tiles do not represent the actual terrain surface,
* it may be useful in some applications to indicate visually that they are not to be trusted.
* @type {Color}
* @default undefined
*/
this.fillHighlightColor = undefined;
this.hueShift = 0.0;
this.saturationShift = 0.0;
this.brightnessShift = 0.0;
this.showSkirts = true;
this.backFaceCulling = true;
this.undergroundColor = undefined;
this.undergroundColorAlphaByDistance = undefined;
this.lambertDiffuseMultiplier = 0.0;
this.materialUniformMap = undefined;
this._materialUniformMap = undefined;
this._quadtree = undefined;
this._terrainProvider = options.terrainProvider;
this._imageryLayers = options.imageryLayers;
this._surfaceShaderSet = options.surfaceShaderSet;
this._renderState = undefined;
this._blendRenderState = undefined;
this._disableCullingRenderState = undefined;
this._disableCullingBlendRenderState = undefined;
this._errorEvent = new Event();
this._imageryLayers.layerAdded.addEventListener(
GlobeSurfaceTileProvider.prototype._onLayerAdded,
this
);
this._imageryLayers.layerRemoved.addEventListener(
GlobeSurfaceTileProvider.prototype._onLayerRemoved,
this
);
this._imageryLayers.layerMoved.addEventListener(
GlobeSurfaceTileProvider.prototype._onLayerMoved,
this
);
this._imageryLayers.layerShownOrHidden.addEventListener(
GlobeSurfaceTileProvider.prototype._onLayerShownOrHidden,
this
);
this._imageryLayersUpdatedEvent = new Event();
this._layerOrderChanged = false;
this._tilesToRenderByTextureCount = [];
this._drawCommands = [];
this._uniformMaps = [];
this._usedDrawCommands = 0;
this._vertexArraysToDestroy = [];
this._debug = {
wireframe: false,
boundingSphereTile: undefined,
};
this._baseColor = undefined;
this._firstPassInitialColor = undefined;
this.baseColor = new Color(0.0, 0.0, 0.5, 1.0);
/**
* A property specifying a {@link ClippingPlaneCollection} used to selectively disable rendering on the outside of each plane.
* @type {ClippingPlaneCollection}
* @private
*/
this._clippingPlanes = undefined;
/**
* A property specifying a {@link Rectangle} used to selectively limit terrain and imagery rendering.
* @type {Rectangle}
*/
this.cartographicLimitRectangle = Rectangle.clone(Rectangle.MAX_VALUE);
this._hasLoadedTilesThisFrame = false;
this._hasFillTilesThisFrame = false;
this._oldTerrainExaggeration = undefined;
this._oldTerrainExaggerationRelativeHeight = undefined;
}
Object.defineProperties(GlobeSurfaceTileProvider.prototype, {
/**
* Gets or sets the color of the globe when no imagery is available.
* @memberof GlobeSurfaceTileProvider.prototype
* @type {Color}
*/
baseColor: {
get: function () {
return this._baseColor;
},
set: function (value) {
//>>includeStart('debug', pragmas.debug);
if (!defined(value)) {
throw new DeveloperError("value is required.");
}
//>>includeEnd('debug');
this._baseColor = value;
this._firstPassInitialColor = Cartesian4.fromColor(
value,
this._firstPassInitialColor
);
},
},
/**
* Gets or sets the {@link QuadtreePrimitive} for which this provider is
* providing tiles. This property may be undefined if the provider is not yet associated
* with a {@link QuadtreePrimitive}.
* @memberof GlobeSurfaceTileProvider.prototype
* @type {QuadtreePrimitive}
*/
quadtree: {
get: function () {
return this._quadtree;
},
set: function (value) {
//>>includeStart('debug', pragmas.debug);
if (!defined(value)) {
throw new DeveloperError("value is required.");
}
//>>includeEnd('debug');
this._quadtree = value;
},
},
/**
* Gets a value indicating whether or not the provider is ready for use.
* @memberof GlobeSurfaceTileProvider.prototype
* @type {Boolean}
*/
ready: {
get: function () {
return (
this._terrainProvider.ready &&
(this._imageryLayers.length === 0 ||
this._imageryLayers.get(0).imageryProvider.ready)
);
},
},
/**
* Gets the tiling scheme used by the provider. This property should
* not be accessed before {@link GlobeSurfaceTileProvider#ready} returns true.
* @memberof GlobeSurfaceTileProvider.prototype
* @type {TilingScheme}
*/
tilingScheme: {
get: function () {
return this._terrainProvider.tilingScheme;
},
},
/**
* Gets an event that is raised when the geometry provider encounters an asynchronous error. By subscribing
* to the event, you will be notified of the error and can potentially recover from it. Event listeners
* are passed an instance of {@link TileProviderError}.
* @memberof GlobeSurfaceTileProvider.prototype
* @type {Event}
*/
errorEvent: {
get: function () {
return this._errorEvent;
},
},
/**
* Gets an event that is raised when an imagery layer is added, shown, hidden, moved, or removed.
* @memberof GlobeSurfaceTileProvider.prototype
* @type {Event}
*/
imageryLayersUpdatedEvent: {
get: function () {
return this._imageryLayersUpdatedEvent;
},
},
/**
* Gets or sets the terrain provider that describes the surface geometry.
* @memberof GlobeSurfaceTileProvider.prototype
* @type {TerrainProvider}
*/
terrainProvider: {
get: function () {
return this._terrainProvider;
},
set: function (terrainProvider) {
if (this._terrainProvider === terrainProvider) {
return;
}
//>>includeStart('debug', pragmas.debug);
if (!defined(terrainProvider)) {
throw new DeveloperError("terrainProvider is required.");
}
//>>includeEnd('debug');
this._terrainProvider = terrainProvider;
if (defined(this._quadtree)) {
this._quadtree.invalidateAllTiles();
}
},
},
/**
* The {@link ClippingPlaneCollection} used to selectively disable rendering the tileset.
*
* @type {ClippingPlaneCollection}
*
* @private
*/
clippingPlanes: {
get: function () {
return this._clippingPlanes;
},
set: function (value) {
ClippingPlaneCollection.setOwner(value, this, "_clippingPlanes");
},
},
});
function sortTileImageryByLayerIndex(a, b) {
let aImagery = a.loadingImagery;
if (!defined(aImagery)) {
aImagery = a.readyImagery;
}
let bImagery = b.loadingImagery;
if (!defined(bImagery)) {
bImagery = b.readyImagery;
}
return aImagery.imageryLayer._layerIndex - bImagery.imageryLayer._layerIndex;
}
/**
* Make updates to the tile provider that are not involved in rendering. Called before the render update cycle.
*/
GlobeSurfaceTileProvider.prototype.update = function (frameState) {
// update collection: imagery indices, base layers, raise layer show/hide event
this._imageryLayers._update();
};
function updateCredits(surface, frameState) {
const creditDisplay = frameState.creditDisplay;
if (
surface._terrainProvider.ready &&
defined(surface._terrainProvider.credit)
) {
creditDisplay.addCredit(surface._terrainProvider.credit);
}
const imageryLayers = surface._imageryLayers;
for (let i = 0, len = imageryLayers.length; i < len; ++i) {
const imageryProvider = imageryLayers.get(i).imageryProvider;
if (imageryProvider.ready && defined(imageryProvider.credit)) {
creditDisplay.addCredit(imageryProvider.credit);
}
}
}
/**
* Called at the beginning of each render frame, before {@link QuadtreeTileProvider#showTileThisFrame}
* @param {FrameState} frameState The frame state.
*/
GlobeSurfaceTileProvider.prototype.initialize = function (frameState) {
// update each layer for texture reprojection.
this._imageryLayers.queueReprojectionCommands(frameState);
if (this._layerOrderChanged) {
this._layerOrderChanged = false;
// Sort the TileImagery instances in each tile by the layer index.
this._quadtree.forEachLoadedTile(function (tile) {
tile.data.imagery.sort(sortTileImageryByLayerIndex);
});
}
// Add credits for terrain and imagery providers.
updateCredits(this, frameState);
const vertexArraysToDestroy = this._vertexArraysToDestroy;
const length = vertexArraysToDestroy.length;
for (let j = 0; j < length; ++j) {
GlobeSurfaceTile._freeVertexArray(vertexArraysToDestroy[j]);
}
vertexArraysToDestroy.length = 0;
};
/**
* Called at the beginning of the update cycle for each render frame, before {@link QuadtreeTileProvider#showTileThisFrame}
* or any other functions.
*
* @param {FrameState} frameState The frame state.
*/
GlobeSurfaceTileProvider.prototype.beginUpdate = function (frameState) {
const tilesToRenderByTextureCount = this._tilesToRenderByTextureCount;
for (let i = 0, len = tilesToRenderByTextureCount.length; i < len; ++i) {
const tiles = tilesToRenderByTextureCount[i];
if (defined(tiles)) {
tiles.length = 0;
}
}
// update clipping planes
const clippingPlanes = this._clippingPlanes;
if (defined(clippingPlanes) && clippingPlanes.enabled) {
clippingPlanes.update(frameState);
}
this._usedDrawCommands = 0;
this._hasLoadedTilesThisFrame = false;
this._hasFillTilesThisFrame = false;
};
/**
* Called at the end of the update cycle for each render frame, after {@link QuadtreeTileProvider#showTileThisFrame}
* and any other functions.
*
* @param {FrameState} frameState The frame state.
*/
GlobeSurfaceTileProvider.prototype.endUpdate = function (frameState) {
if (!defined(this._renderState)) {
this._renderState = RenderState.fromCache({
// Write color and depth
cull: {
enabled: true,
},
depthTest: {
enabled: true,
func: DepthFunction.LESS,
},
});
this._blendRenderState = RenderState.fromCache({
// Write color and depth
cull: {
enabled: true,
},
depthTest: {
enabled: true,
func: DepthFunction.LESS_OR_EQUAL,
},
blending: BlendingState.ALPHA_BLEND,
});
let rs = clone(this._renderState, true);
rs.cull.enabled = false;
this._disableCullingRenderState = RenderState.fromCache(rs);
rs = clone(this._blendRenderState, true);
rs.cull.enabled = false;
this._disableCullingBlendRenderState = RenderState.fromCache(rs);
}
// If this frame has a mix of loaded and fill tiles, we need to propagate
// loaded heights to the fill tiles.
if (this._hasFillTilesThisFrame && this._hasLoadedTilesThisFrame) {
TerrainFillMesh.updateFillTiles(
this,
this._quadtree._tilesToRender,
frameState,
this._vertexArraysToDestroy
);
}
// When terrain exaggeration changes, all of the loaded tiles need to generate
// geodetic surface normals so they can scale properly when rendered.
// When exaggeration is reset, geodetic surface normals are removed to decrease
// memory usage. Some tiles might have been constructed with the correct
// exaggeration already, so skip over them.
// If the geodetic surface normals can't be created because the tile doesn't
// have a mesh, keep checking until the tile does have a mesh. This can happen
// if the tile's mesh starts construction in a worker thread right before the
// exaggeration changes.
const quadtree = this.quadtree;
const exaggeration = frameState.terrainExaggeration;
const exaggerationRelativeHeight =
frameState.terrainExaggerationRelativeHeight;
const exaggerationChanged =
this._oldTerrainExaggeration !== exaggeration ||
this._oldTerrainExaggerationRelativeHeight !== exaggerationRelativeHeight;
// Keep track of the next time there is a change in exaggeration
this._oldTerrainExaggeration = exaggeration;
this._oldTerrainExaggerationRelativeHeight = exaggerationRelativeHeight;
if (exaggerationChanged) {
quadtree.forEachLoadedTile(function (tile) {
const surfaceTile = tile.data;
surfaceTile.updateExaggeration(tile, frameState, quadtree);
});
}
// Add the tile render commands to the command list, sorted by texture count.
const tilesToRenderByTextureCount = this._tilesToRenderByTextureCount;
for (
let textureCountIndex = 0,
textureCountLength = tilesToRenderByTextureCount.length;
textureCountIndex < textureCountLength;
++textureCountIndex
) {
const tilesToRender = tilesToRenderByTextureCount[textureCountIndex];
if (!defined(tilesToRender)) {
continue;
}
for (
let tileIndex = 0, tileLength = tilesToRender.length;
tileIndex < tileLength;
++tileIndex
) {
const tile = tilesToRender[tileIndex];
const tileBoundingRegion = tile.data.tileBoundingRegion;
addDrawCommandsForTile(this, tile, frameState);
frameState.minimumTerrainHeight = Math.min(
frameState.minimumTerrainHeight,
tileBoundingRegion.minimumHeight
);
}
}
};
function pushCommand(command, frameState) {
const globeTranslucencyState = frameState.globeTranslucencyState;
if (globeTranslucencyState.translucent) {
const isBlendCommand = command.renderState.blending.enabled;
globeTranslucencyState.pushDerivedCommands(
command,
isBlendCommand,
frameState
);
} else {
frameState.commandList.push(command);
}
}
/**
* Adds draw commands for tiles rendered in the previous frame for a pick pass.
*
* @param {FrameState} frameState The frame state.
*/
GlobeSurfaceTileProvider.prototype.updateForPick = function (frameState) {
// Add the tile pick commands from the tiles drawn last frame.
const drawCommands = this._drawCommands;
for (let i = 0, length = this._usedDrawCommands; i < length; ++i) {
pushCommand(drawCommands[i], frameState);
}
};
/**
* Cancels any imagery re-projections in the queue.
*/
GlobeSurfaceTileProvider.prototype.cancelReprojections = function () {
this._imageryLayers.cancelReprojections();
};
/**
* Gets the maximum geometric error allowed in a tile at a given level, in meters. This function should not be
* called before {@link GlobeSurfaceTileProvider#ready} returns true.
*
* @param {Number} level The tile level for which to get the maximum geometric error.
* @returns {Number} The maximum geometric error in meters.
*/
GlobeSurfaceTileProvider.prototype.getLevelMaximumGeometricError = function (
level
) {
return this._terrainProvider.getLevelMaximumGeometricError(level);
};
/**
* Loads, or continues loading, a given tile. This function will continue to be called
* until {@link QuadtreeTile#state} is no longer {@link QuadtreeTileLoadState#LOADING}. This function should
* not be called before {@link GlobeSurfaceTileProvider#ready} returns true.
*
* @param {FrameState} frameState The frame state.
* @param {QuadtreeTile} tile The tile to load.
*
* @exception {DeveloperError} loadTile
must not be called before the tile provider is ready.
*/
GlobeSurfaceTileProvider.prototype.loadTile = function (frameState, tile) {
// We don't want to load imagery until we're certain that the terrain tiles are actually visible.
// So if our bounding volume isn't accurate because it came from another tile, load terrain only
// initially. If we load some terrain and suddenly have a more accurate bounding volume and the
// tile is _still_ visible, give the tile a chance to load imagery immediately rather than
// waiting for next frame.
let surfaceTile = tile.data;
let terrainOnly = true;
let terrainStateBefore;
if (defined(surfaceTile)) {
terrainOnly =
surfaceTile.boundingVolumeSourceTile !== tile ||
tile._lastSelectionResult === TileSelectionResult.CULLED_BUT_NEEDED;
terrainStateBefore = surfaceTile.terrainState;
}
GlobeSurfaceTile.processStateMachine(
tile,
frameState,
this.terrainProvider,
this._imageryLayers,
this.quadtree,
this._vertexArraysToDestroy,
terrainOnly
);
surfaceTile = tile.data;
if (terrainOnly && terrainStateBefore !== tile.data.terrainState) {
// Terrain state changed. If:
// a) The tile is visible, and
// b) The bounding volume is accurate (updated as a side effect of computing visibility)
// Then we'll load imagery, too.
if (
this.computeTileVisibility(tile, frameState, this.quadtree.occluders) !==
Visibility.NONE &&
surfaceTile.boundingVolumeSourceTile === tile
) {
terrainOnly = false;
GlobeSurfaceTile.processStateMachine(
tile,
frameState,
this.terrainProvider,
this._imageryLayers,
this.quadtree,
this._vertexArraysToDestroy,
terrainOnly
);
}
}
};
const boundingSphereScratch = new BoundingSphere();
const rectangleIntersectionScratch = new Rectangle();
const splitCartographicLimitRectangleScratch = new Rectangle();
const rectangleCenterScratch = new Cartographic();
// cartographicLimitRectangle may span the IDL, but tiles never will.
function clipRectangleAntimeridian(tileRectangle, cartographicLimitRectangle) {
if (cartographicLimitRectangle.west < cartographicLimitRectangle.east) {
return cartographicLimitRectangle;
}
const splitRectangle = Rectangle.clone(
cartographicLimitRectangle,
splitCartographicLimitRectangleScratch
);
const tileCenter = Rectangle.center(tileRectangle, rectangleCenterScratch);
if (tileCenter.longitude > 0.0) {
splitRectangle.east = CesiumMath.PI;
} else {
splitRectangle.west = -CesiumMath.PI;
}
return splitRectangle;
}
function isUndergroundVisible(tileProvider, frameState) {
if (frameState.cameraUnderground) {
return true;
}
if (frameState.globeTranslucencyState.translucent) {
return true;
}
if (tileProvider.backFaceCulling) {
return false;
}
const clippingPlanes = tileProvider._clippingPlanes;
if (defined(clippingPlanes) && clippingPlanes.enabled) {
return true;
}
if (
!Rectangle.equals(
tileProvider.cartographicLimitRectangle,
Rectangle.MAX_VALUE
)
) {
return true;
}
return false;
}
/**
* Determines the visibility of a given tile. The tile may be fully visible, partially visible, or not
* visible at all. Tiles that are renderable and are at least partially visible will be shown by a call
* to {@link GlobeSurfaceTileProvider#showTileThisFrame}.
*
* @param {QuadtreeTile} tile The tile instance.
* @param {FrameState} frameState The state information about the current frame.
* @param {QuadtreeOccluders} occluders The objects that may occlude this tile.
*
* @returns {Visibility} Visibility.NONE if the tile is not visible,
* Visibility.PARTIAL if the tile is partially visible, or
* Visibility.FULL if the tile is fully visible.
*/
GlobeSurfaceTileProvider.prototype.computeTileVisibility = function (
tile,
frameState,
occluders
) {
const distance = this.computeDistanceToTile(tile, frameState);
tile._distance = distance;
const undergroundVisible = isUndergroundVisible(this, frameState);
if (frameState.fog.enabled && !undergroundVisible) {
if (CesiumMath.fog(distance, frameState.fog.density) >= 1.0) {
// Tile is completely in fog so return that it is not visible.
return Visibility.NONE;
}
}
const surfaceTile = tile.data;
const tileBoundingRegion = surfaceTile.tileBoundingRegion;
if (surfaceTile.boundingVolumeSourceTile === undefined) {
// We have no idea where this tile is, so let's just call it partially visible.
return Visibility.PARTIAL;
}
const cullingVolume = frameState.cullingVolume;
let boundingVolume = tileBoundingRegion.boundingVolume;
if (!defined(boundingVolume)) {
boundingVolume = tileBoundingRegion.boundingSphere;
}
// Check if the tile is outside the limit area in cartographic space
surfaceTile.clippedByBoundaries = false;
const clippedCartographicLimitRectangle = clipRectangleAntimeridian(
tile.rectangle,
this.cartographicLimitRectangle
);
const areaLimitIntersection = Rectangle.simpleIntersection(
clippedCartographicLimitRectangle,
tile.rectangle,
rectangleIntersectionScratch
);
if (!defined(areaLimitIntersection)) {
return Visibility.NONE;
}
if (!Rectangle.equals(areaLimitIntersection, tile.rectangle)) {
surfaceTile.clippedByBoundaries = true;
}
if (frameState.mode !== SceneMode.SCENE3D) {
boundingVolume = boundingSphereScratch;
BoundingSphere.fromRectangleWithHeights2D(
tile.rectangle,
frameState.mapProjection,
tileBoundingRegion.minimumHeight,
tileBoundingRegion.maximumHeight,
boundingVolume
);
Cartesian3.fromElements(
boundingVolume.center.z,
boundingVolume.center.x,
boundingVolume.center.y,
boundingVolume.center
);
if (
frameState.mode === SceneMode.MORPHING &&
defined(surfaceTile.renderedMesh)
) {
boundingVolume = BoundingSphere.union(
tileBoundingRegion.boundingSphere,
boundingVolume,
boundingVolume
);
}
}
if (!defined(boundingVolume)) {
return Visibility.PARTIAL;
}
const clippingPlanes = this._clippingPlanes;
if (defined(clippingPlanes) && clippingPlanes.enabled) {
const planeIntersection = clippingPlanes.computeIntersectionWithBoundingVolume(
boundingVolume
);
tile.isClipped = planeIntersection !== Intersect.INSIDE;
if (planeIntersection === Intersect.OUTSIDE) {
return Visibility.NONE;
}
}
let visibility;
const intersection = cullingVolume.computeVisibility(boundingVolume);
if (intersection === Intersect.OUTSIDE) {
visibility = Visibility.NONE;
} else if (intersection === Intersect.INTERSECTING) {
visibility = Visibility.PARTIAL;
} else if (intersection === Intersect.INSIDE) {
visibility = Visibility.FULL;
}
if (visibility === Visibility.NONE) {
return visibility;
}
const ortho3D =
frameState.mode === SceneMode.SCENE3D &&
frameState.camera.frustum instanceof OrthographicFrustum;
if (
frameState.mode === SceneMode.SCENE3D &&
!ortho3D &&
defined(occluders) &&
!undergroundVisible
) {
const occludeePointInScaledSpace = surfaceTile.occludeePointInScaledSpace;
if (!defined(occludeePointInScaledSpace)) {
return visibility;
}
if (
occluders.ellipsoid.isScaledSpacePointVisiblePossiblyUnderEllipsoid(
occludeePointInScaledSpace,
tileBoundingRegion.minimumHeight
)
) {
return visibility;
}
return Visibility.NONE;
}
return visibility;
};
/**
* Determines if the given tile can be refined
* @param {QuadtreeTile} tile The tile to check.
* @returns {boolean} True if the tile can be refined, false if it cannot.
*/
GlobeSurfaceTileProvider.prototype.canRefine = function (tile) {
// Only allow refinement it we know whether or not the children of this tile exist.
// For a tileset with `availability`, we'll always be able to refine.
// We can ask for availability of _any_ child tile because we only need to confirm
// that we get a yes or no answer, it doesn't matter what the answer is.
if (defined(tile.data.terrainData)) {
return true;
}
const childAvailable = this.terrainProvider.getTileDataAvailable(
tile.x * 2,
tile.y * 2,
tile.level + 1
);
return childAvailable !== undefined;
};
const readyImageryScratch = [];
const canRenderTraversalStack = [];
/**
* Determines if the given not-fully-loaded tile can be rendered without losing detail that
* was present last frame as a result of rendering descendant tiles. This method will only be
* called if this tile's descendants were rendered last frame. If the tile is fully loaded,
* it is assumed that this method will return true and it will not be called.
* @param {QuadtreeTile} tile The tile to check.
* @returns {boolean} True if the tile can be rendered without losing detail.
*/
GlobeSurfaceTileProvider.prototype.canRenderWithoutLosingDetail = function (
tile,
frameState
) {
const surfaceTile = tile.data;
const readyImagery = readyImageryScratch;
readyImagery.length = this._imageryLayers.length;
let terrainReady = false;
let initialImageryState = false;
let imagery;
if (defined(surfaceTile)) {
// We can render even with non-ready terrain as long as all our rendered descendants
// are missing terrain geometry too. i.e. if we rendered fills for more detailed tiles
// last frame, it's ok to render a fill for this tile this frame.
terrainReady = surfaceTile.terrainState === TerrainState.READY;
// Initially assume all imagery layers are ready, unless imagery hasn't been initialized at all.
initialImageryState = true;
imagery = surfaceTile.imagery;
}
let i;
let len;
for (i = 0, len = readyImagery.length; i < len; ++i) {
readyImagery[i] = initialImageryState;
}
if (defined(imagery)) {
for (i = 0, len = imagery.length; i < len; ++i) {
const tileImagery = imagery[i];
const loadingImagery = tileImagery.loadingImagery;
const isReady =
!defined(loadingImagery) ||
loadingImagery.state === ImageryState.FAILED ||
loadingImagery.state === ImageryState.INVALID;
const layerIndex = (
tileImagery.loadingImagery || tileImagery.readyImagery
).imageryLayer._layerIndex;
// For a layer to be ready, all tiles belonging to that layer must be ready.
readyImagery[layerIndex] = isReady && readyImagery[layerIndex];
}
}
const lastFrame = this.quadtree._lastSelectionFrameNumber;
// Traverse the descendants looking for one with terrain or imagery that is not loaded on this tile.
const stack = canRenderTraversalStack;
stack.length = 0;
stack.push(
tile.southwestChild,
tile.southeastChild,
tile.northwestChild,
tile.northeastChild
);
while (stack.length > 0) {
const descendant = stack.pop();
const lastFrameSelectionResult =
descendant._lastSelectionResultFrame === lastFrame
? descendant._lastSelectionResult
: TileSelectionResult.NONE;
if (lastFrameSelectionResult === TileSelectionResult.RENDERED) {
const descendantSurface = descendant.data;
if (!defined(descendantSurface)) {
// Descendant has no data, so it can't block rendering.
continue;
}
if (
!terrainReady &&
descendant.data.terrainState === TerrainState.READY
) {
// Rendered descendant has real terrain, but we don't. Rendering is blocked.
return false;
}
const descendantImagery = descendant.data.imagery;
for (i = 0, len = descendantImagery.length; i < len; ++i) {
const descendantTileImagery = descendantImagery[i];
const descendantLoadingImagery = descendantTileImagery.loadingImagery;
const descendantIsReady =
!defined(descendantLoadingImagery) ||
descendantLoadingImagery.state === ImageryState.FAILED ||
descendantLoadingImagery.state === ImageryState.INVALID;
const descendantLayerIndex = (
descendantTileImagery.loadingImagery ||
descendantTileImagery.readyImagery
).imageryLayer._layerIndex;
// If this imagery tile of a descendant is ready but the layer isn't ready in this tile,
// then rendering is blocked.
if (descendantIsReady && !readyImagery[descendantLayerIndex]) {
return false;
}
}
} else if (lastFrameSelectionResult === TileSelectionResult.REFINED) {
stack.push(
descendant.southwestChild,
descendant.southeastChild,
descendant.northwestChild,
descendant.northeastChild
);
}
}
return true;
};
const tileDirectionScratch = new Cartesian3();
/**
* Determines the priority for loading this tile. Lower priority values load sooner.
* @param {QuadtreeTile} tile The tile.
* @param {FrameState} frameState The frame state.
* @returns {Number} The load priority value.
*/
GlobeSurfaceTileProvider.prototype.computeTileLoadPriority = function (
tile,
frameState
) {
const surfaceTile = tile.data;
if (surfaceTile === undefined) {
return 0.0;
}
const obb = surfaceTile.tileBoundingRegion.boundingVolume;
if (obb === undefined) {
return 0.0;
}
const cameraPosition = frameState.camera.positionWC;
const cameraDirection = frameState.camera.directionWC;
const tileDirection = Cartesian3.subtract(
obb.center,
cameraPosition,
tileDirectionScratch
);
const magnitude = Cartesian3.magnitude(tileDirection);
if (magnitude < CesiumMath.EPSILON5) {
return 0.0;
}
Cartesian3.divideByScalar(tileDirection, magnitude, tileDirection);
return (
(1.0 - Cartesian3.dot(tileDirection, cameraDirection)) * tile._distance
);
};
const modifiedModelViewScratch = new Matrix4();
const modifiedModelViewProjectionScratch = new Matrix4();
const tileRectangleScratch = new Cartesian4();
const localizedCartographicLimitRectangleScratch = new Cartesian4();
const localizedTranslucencyRectangleScratch = new Cartesian4();
const rtcScratch = new Cartesian3();
const centerEyeScratch = new Cartesian3();
const southwestScratch = new Cartesian3();
const northeastScratch = new Cartesian3();
/**
* Shows a specified tile in this frame. The provider can cause the tile to be shown by adding
* render commands to the commandList, or use any other method as appropriate. The tile is not
* expected to be visible next frame as well, unless this method is called next frame, too.
*
* @param {QuadtreeTile} tile The tile instance.
* @param {FrameState} frameState The state information of the current rendering frame.
*/
GlobeSurfaceTileProvider.prototype.showTileThisFrame = function (
tile,
frameState
) {
let readyTextureCount = 0;
const tileImageryCollection = tile.data.imagery;
for (let i = 0, len = tileImageryCollection.length; i < len; ++i) {
const tileImagery = tileImageryCollection[i];
if (
defined(tileImagery.readyImagery) &&
tileImagery.readyImagery.imageryLayer.alpha !== 0.0
) {
++readyTextureCount;
}
}
let tileSet = this._tilesToRenderByTextureCount[readyTextureCount];
if (!defined(tileSet)) {
tileSet = [];
this._tilesToRenderByTextureCount[readyTextureCount] = tileSet;
}
tileSet.push(tile);
const surfaceTile = tile.data;
if (!defined(surfaceTile.vertexArray)) {
this._hasFillTilesThisFrame = true;
} else {
this._hasLoadedTilesThisFrame = true;
}
const debug = this._debug;
++debug.tilesRendered;
debug.texturesRendered += readyTextureCount;
};
const cornerPositionsScratch = [
new Cartesian3(),
new Cartesian3(),
new Cartesian3(),
new Cartesian3(),
];
function computeOccludeePoint(
tileProvider,
center,
rectangle,
minimumHeight,
maximumHeight,
result
) {
const ellipsoidalOccluder = tileProvider.quadtree._occluders.ellipsoid;
const ellipsoid = ellipsoidalOccluder.ellipsoid;
const cornerPositions = cornerPositionsScratch;
Cartesian3.fromRadians(
rectangle.west,
rectangle.south,
maximumHeight,
ellipsoid,
cornerPositions[0]
);
Cartesian3.fromRadians(
rectangle.east,
rectangle.south,
maximumHeight,
ellipsoid,
cornerPositions[1]
);
Cartesian3.fromRadians(
rectangle.west,
rectangle.north,
maximumHeight,
ellipsoid,
cornerPositions[2]
);
Cartesian3.fromRadians(
rectangle.east,
rectangle.north,
maximumHeight,
ellipsoid,
cornerPositions[3]
);
return ellipsoidalOccluder.computeHorizonCullingPointPossiblyUnderEllipsoid(
center,
cornerPositions,
minimumHeight,
result
);
}
/**
* Gets the distance from the camera to the closest point on the tile. This is used for level-of-detail selection.
*
* @param {QuadtreeTile} tile The tile instance.
* @param {FrameState} frameState The state information of the current rendering frame.
*
* @returns {Number} The distance from the camera to the closest point on the tile, in meters.
*/
GlobeSurfaceTileProvider.prototype.computeDistanceToTile = function (
tile,
frameState
) {
// The distance should be:
// 1. the actual distance to the tight-fitting bounding volume, or
// 2. a distance that is equal to or greater than the actual distance to the tight-fitting bounding volume.
//
// When we don't know the min/max heights for a tile, but we do know the min/max of an ancestor tile, we can
// build a tight-fitting bounding volume horizontally, but not vertically. The min/max heights from the
// ancestor will likely form a volume that is much bigger than it needs to be. This means that the volume may
// be deemed to be much closer to the camera than it really is, causing us to select tiles that are too detailed.
// Loading too-detailed tiles is super expensive, so we don't want to do that. We don't know where the child
// tile really lies within the parent range of heights, but we _do_ know the child tile can't be any closer than
// the ancestor height surface (min or max) that is _farthest away_ from the camera. So if we compute distance
// based on that conservative metric, we may end up loading tiles that are not detailed enough, but that's much
// better (faster) than loading tiles that are too detailed.
updateTileBoundingRegion(tile, this, frameState);
const surfaceTile = tile.data;
const boundingVolumeSourceTile = surfaceTile.boundingVolumeSourceTile;
if (boundingVolumeSourceTile === undefined) {
// Can't find any min/max heights anywhere? Ok, let's just say the
// tile is really far away so we'll load and render it rather than
// refining.
return 9999999999.0;
}
const tileBoundingRegion = surfaceTile.tileBoundingRegion;
const min = tileBoundingRegion.minimumHeight;
const max = tileBoundingRegion.maximumHeight;
if (surfaceTile.boundingVolumeSourceTile !== tile) {
const cameraHeight = frameState.camera.positionCartographic.height;
const distanceToMin = Math.abs(cameraHeight - min);
const distanceToMax = Math.abs(cameraHeight - max);
if (distanceToMin > distanceToMax) {
tileBoundingRegion.minimumHeight = min;
tileBoundingRegion.maximumHeight = min;
} else {
tileBoundingRegion.minimumHeight = max;
tileBoundingRegion.maximumHeight = max;
}
}
const result = tileBoundingRegion.distanceToCamera(frameState);
tileBoundingRegion.minimumHeight = min;
tileBoundingRegion.maximumHeight = max;
return result;
};
function updateTileBoundingRegion(tile, tileProvider, frameState) {
let surfaceTile = tile.data;
if (surfaceTile === undefined) {
surfaceTile = tile.data = new GlobeSurfaceTile();
}
const ellipsoid = tile.tilingScheme.ellipsoid;
if (surfaceTile.tileBoundingRegion === undefined) {
surfaceTile.tileBoundingRegion = new TileBoundingRegion({
computeBoundingVolumes: false,
rectangle: tile.rectangle,
ellipsoid: ellipsoid,
minimumHeight: 0.0,
maximumHeight: 0.0,
});
}
const tileBoundingRegion = surfaceTile.tileBoundingRegion;
const oldMinimumHeight = tileBoundingRegion.minimumHeight;
const oldMaximumHeight = tileBoundingRegion.maximumHeight;
let hasBoundingVolumesFromMesh = false;
let sourceTile = tile;
// Get min and max heights from the mesh.
// If the mesh is not available, get them from the terrain data.
// If the terrain data is not available either, get them from an ancestor.
// If none of the ancestors are available, then there are no min and max heights for this tile at this time.
const mesh = surfaceTile.mesh;
const terrainData = surfaceTile.terrainData;
if (
mesh !== undefined &&
mesh.minimumHeight !== undefined &&
mesh.maximumHeight !== undefined
) {
tileBoundingRegion.minimumHeight = mesh.minimumHeight;
tileBoundingRegion.maximumHeight = mesh.maximumHeight;
hasBoundingVolumesFromMesh = true;
} else if (
terrainData !== undefined &&
terrainData._minimumHeight !== undefined &&
terrainData._maximumHeight !== undefined
) {
tileBoundingRegion.minimumHeight = terrainData._minimumHeight;
tileBoundingRegion.maximumHeight = terrainData._maximumHeight;
} else {
// No accurate min/max heights available, so we're stuck with min/max heights from an ancestor tile.
tileBoundingRegion.minimumHeight = Number.NaN;
tileBoundingRegion.maximumHeight = Number.NaN;
let ancestorTile = tile.parent;
while (ancestorTile !== undefined) {
const ancestorSurfaceTile = ancestorTile.data;
if (ancestorSurfaceTile !== undefined) {
const ancestorMesh = ancestorSurfaceTile.mesh;
const ancestorTerrainData = ancestorSurfaceTile.terrainData;
if (
ancestorMesh !== undefined &&
ancestorMesh.minimumHeight !== undefined &&
ancestorMesh.maximumHeight !== undefined
) {
tileBoundingRegion.minimumHeight = ancestorMesh.minimumHeight;
tileBoundingRegion.maximumHeight = ancestorMesh.maximumHeight;
break;
} else if (
ancestorTerrainData !== undefined &&
ancestorTerrainData._minimumHeight !== undefined &&
ancestorTerrainData._maximumHeight !== undefined
) {
tileBoundingRegion.minimumHeight = ancestorTerrainData._minimumHeight;
tileBoundingRegion.maximumHeight = ancestorTerrainData._maximumHeight;
break;
}
}
ancestorTile = ancestorTile.parent;
}
sourceTile = ancestorTile;
}
// Update bounding regions from the min and max heights
if (sourceTile !== undefined) {
const exaggeration = frameState.terrainExaggeration;
const exaggerationRelativeHeight =
frameState.terrainExaggerationRelativeHeight;
const hasExaggeration = exaggeration !== 1.0;
if (hasExaggeration) {
hasBoundingVolumesFromMesh = false;
tileBoundingRegion.minimumHeight = TerrainExaggeration.getHeight(
tileBoundingRegion.minimumHeight,
exaggeration,
exaggerationRelativeHeight
);
tileBoundingRegion.maximumHeight = TerrainExaggeration.getHeight(
tileBoundingRegion.maximumHeight,
exaggeration,
exaggerationRelativeHeight
);
}
if (hasBoundingVolumesFromMesh) {
if (!surfaceTile.boundingVolumeIsFromMesh) {
tileBoundingRegion._orientedBoundingBox = OrientedBoundingBox.clone(
mesh.orientedBoundingBox,
tileBoundingRegion._orientedBoundingBox
);
tileBoundingRegion._boundingSphere = BoundingSphere.clone(
mesh.boundingSphere3D,
tileBoundingRegion._boundingSphere
);
surfaceTile.occludeePointInScaledSpace = Cartesian3.clone(
mesh.occludeePointInScaledSpace,
surfaceTile.occludeePointInScaledSpace
);
// If the occludee point is not defined, fallback to calculating it from the OBB
if (!defined(surfaceTile.occludeePointInScaledSpace)) {
surfaceTile.occludeePointInScaledSpace = computeOccludeePoint(
tileProvider,
tileBoundingRegion._orientedBoundingBox.center,
tile.rectangle,
tileBoundingRegion.minimumHeight,
tileBoundingRegion.maximumHeight,
surfaceTile.occludeePointInScaledSpace
);
}
}
} else {
const needsBounds =
tileBoundingRegion._orientedBoundingBox === undefined ||
tileBoundingRegion._boundingSphere === undefined;
const heightChanged =
tileBoundingRegion.minimumHeight !== oldMinimumHeight ||
tileBoundingRegion.maximumHeight !== oldMaximumHeight;
if (heightChanged || needsBounds) {
// Bounding volumes need to be recomputed in some circumstances
tileBoundingRegion.computeBoundingVolumes(ellipsoid);
surfaceTile.occludeePointInScaledSpace = computeOccludeePoint(
tileProvider,
tileBoundingRegion._orientedBoundingBox.center,
tile.rectangle,
tileBoundingRegion.minimumHeight,
tileBoundingRegion.maximumHeight,
surfaceTile.occludeePointInScaledSpace
);
}
}
surfaceTile.boundingVolumeSourceTile = sourceTile;
surfaceTile.boundingVolumeIsFromMesh = hasBoundingVolumesFromMesh;
} else {
surfaceTile.boundingVolumeSourceTile = undefined;
surfaceTile.boundingVolumeIsFromMesh = false;
}
}
/**
* Returns true if this object was destroyed; otherwise, false.
*
* If this object was destroyed, it should not be used; calling any function other than
* isDestroyed
will result in a {@link DeveloperError} exception.
*
* @returns {Boolean} True if this object was destroyed; otherwise, false.
*
* @see GlobeSurfaceTileProvider#destroy
*/
GlobeSurfaceTileProvider.prototype.isDestroyed = function () {
return false;
};
/**
* Destroys the WebGL resources held by this object. Destroying an object allows for deterministic
* release of WebGL resources, instead of relying on the garbage collector to destroy this object.
*
* Once an object is destroyed, it should not be used; calling any function other than
* isDestroyed
will result in a {@link DeveloperError} exception. Therefore,
* assign the return value (undefined
) to the object as done in the example.
*
* @exception {DeveloperError} This object was destroyed, i.e., destroy() was called.
*
*
* @example
* provider = provider && provider();
*
* @see GlobeSurfaceTileProvider#isDestroyed
*/
GlobeSurfaceTileProvider.prototype.destroy = function () {
this._tileProvider = this._tileProvider && this._tileProvider.destroy();
this._clippingPlanes = this._clippingPlanes && this._clippingPlanes.destroy();
return destroyObject(this);
};
function getTileReadyCallback(tileImageriesToFree, layer, terrainProvider) {
return function (tile) {
let tileImagery;
let imagery;
let startIndex = -1;
const tileImageryCollection = tile.data.imagery;
const length = tileImageryCollection.length;
let i;
for (i = 0; i < length; ++i) {
tileImagery = tileImageryCollection[i];
imagery = defaultValue(
tileImagery.readyImagery,
tileImagery.loadingImagery
);
if (imagery.imageryLayer === layer) {
startIndex = i;
break;
}
}
if (startIndex !== -1) {
const endIndex = startIndex + tileImageriesToFree;
tileImagery = tileImageryCollection[endIndex];
imagery = defined(tileImagery)
? defaultValue(tileImagery.readyImagery, tileImagery.loadingImagery)
: undefined;
if (!defined(imagery) || imagery.imageryLayer !== layer) {
// Return false to keep the callback if we have to wait on the skeletons
// Return true to remove the callback if something went wrong
return !layer._createTileImagerySkeletons(
tile,
terrainProvider,
endIndex
);
}
for (i = startIndex; i < endIndex; ++i) {
tileImageryCollection[i].freeResources();
}
tileImageryCollection.splice(startIndex, tileImageriesToFree);
}
return true; // Everything is done, so remove the callback
};
}
GlobeSurfaceTileProvider.prototype._onLayerAdded = function (layer, index) {
if (layer.show) {
const terrainProvider = this._terrainProvider;
const that = this;
const imageryProvider = layer.imageryProvider;
const tileImageryUpdatedEvent = this._imageryLayersUpdatedEvent;
imageryProvider._reload = function () {
// Clear the layer's cache
layer._imageryCache = {};
that._quadtree.forEachLoadedTile(function (tile) {
// If this layer is still waiting to for the loaded callback, just return
if (defined(tile._loadedCallbacks[layer._layerIndex])) {
return;
}
let i;
// Figure out how many TileImageries we will need to remove and where to insert new ones
const tileImageryCollection = tile.data.imagery;
const length = tileImageryCollection.length;
let startIndex = -1;
let tileImageriesToFree = 0;
for (i = 0; i < length; ++i) {
const tileImagery = tileImageryCollection[i];
const imagery = defaultValue(
tileImagery.readyImagery,
tileImagery.loadingImagery
);
if (imagery.imageryLayer === layer) {
if (startIndex === -1) {
startIndex = i;
}
++tileImageriesToFree;
} else if (startIndex !== -1) {
// iterated past the section of TileImageries belonging to this layer, no need to continue.
break;
}
}
if (startIndex === -1) {
return;
}
// Insert immediately after existing TileImageries
const insertionPoint = startIndex + tileImageriesToFree;
// Create new TileImageries for all loaded tiles
if (
layer._createTileImagerySkeletons(
tile,
terrainProvider,
insertionPoint
)
) {
// Add callback to remove old TileImageries when the new TileImageries are ready
tile._loadedCallbacks[layer._layerIndex] = getTileReadyCallback(
tileImageriesToFree,
layer,
terrainProvider
);
tile.state = QuadtreeTileLoadState.LOADING;
}
});
};
// create TileImageries for this layer for all previously loaded tiles
this._quadtree.forEachLoadedTile(function (tile) {
if (layer._createTileImagerySkeletons(tile, terrainProvider)) {
tile.state = QuadtreeTileLoadState.LOADING;
// Tiles that are not currently being rendered need to load the new layer before they're renderable.
// We don't mark the rendered tiles non-renderable, though, because that would make the globe disappear.
if (
tile.level !== 0 &&
(tile._lastSelectionResultFrame !==
that.quadtree._lastSelectionFrameNumber ||
tile._lastSelectionResult !== TileSelectionResult.RENDERED)
) {
tile.renderable = false;
}
}
});
this._layerOrderChanged = true;
tileImageryUpdatedEvent.raiseEvent();
}
};
GlobeSurfaceTileProvider.prototype._onLayerRemoved = function (layer, index) {
// destroy TileImagerys for this layer for all previously loaded tiles
this._quadtree.forEachLoadedTile(function (tile) {
const tileImageryCollection = tile.data.imagery;
let startIndex = -1;
let numDestroyed = 0;
for (let i = 0, len = tileImageryCollection.length; i < len; ++i) {
const tileImagery = tileImageryCollection[i];
let imagery = tileImagery.loadingImagery;
if (!defined(imagery)) {
imagery = tileImagery.readyImagery;
}
if (imagery.imageryLayer === layer) {
if (startIndex === -1) {
startIndex = i;
}
tileImagery.freeResources();
++numDestroyed;
} else if (startIndex !== -1) {
// iterated past the section of TileImagerys belonging to this layer, no need to continue.
break;
}
}
if (startIndex !== -1) {
tileImageryCollection.splice(startIndex, numDestroyed);
}
});
if (defined(layer.imageryProvider)) {
layer.imageryProvider._reload = undefined;
}
this._imageryLayersUpdatedEvent.raiseEvent();
};
GlobeSurfaceTileProvider.prototype._onLayerMoved = function (
layer,
newIndex,
oldIndex
) {
this._layerOrderChanged = true;
this._imageryLayersUpdatedEvent.raiseEvent();
};
GlobeSurfaceTileProvider.prototype._onLayerShownOrHidden = function (
layer,
index,
show
) {
if (show) {
this._onLayerAdded(layer, index);
} else {
this._onLayerRemoved(layer, index);
}
};
const scratchClippingPlanesMatrix = new Matrix4();
const scratchInverseTransposeClippingPlanesMatrix = new Matrix4();
function createTileUniformMap(frameState, globeSurfaceTileProvider) {
const uniformMap = {
u_initialColor: function () {
return this.properties.initialColor;
},
u_fillHighlightColor: function () {
return this.properties.fillHighlightColor;
},
u_zoomedOutOceanSpecularIntensity: function () {
return this.properties.zoomedOutOceanSpecularIntensity;
},
u_oceanNormalMap: function () {
return this.properties.oceanNormalMap;
},
u_atmosphereLightIntensity: function () {
return this.properties.atmosphereLightIntensity;
},
u_atmosphereRayleighCoefficient: function () {
return this.properties.atmosphereRayleighCoefficient;
},
u_atmosphereMieCoefficient: function () {
return this.properties.atmosphereMieCoefficient;
},
u_atmosphereRayleighScaleHeight: function () {
return this.properties.atmosphereRayleighScaleHeight;
},
u_atmosphereMieScaleHeight: function () {
return this.properties.atmosphereMieScaleHeight;
},
u_atmosphereMieAnisotropy: function () {
return this.properties.atmosphereMieAnisotropy;
},
u_lightingFadeDistance: function () {
return this.properties.lightingFadeDistance;
},
u_nightFadeDistance: function () {
return this.properties.nightFadeDistance;
},
u_center3D: function () {
return this.properties.center3D;
},
u_terrainExaggerationAndRelativeHeight: function () {
return this.properties.terrainExaggerationAndRelativeHeight;
},
u_tileRectangle: function () {
return this.properties.tileRectangle;
},
u_modifiedModelView: function () {
const viewMatrix = frameState.context.uniformState.view;
const centerEye = Matrix4.multiplyByPoint(
viewMatrix,
this.properties.rtc,
centerEyeScratch
);
Matrix4.setTranslation(viewMatrix, centerEye, modifiedModelViewScratch);
return modifiedModelViewScratch;
},
u_modifiedModelViewProjection: function () {
const viewMatrix = frameState.context.uniformState.view;
const projectionMatrix = frameState.context.uniformState.projection;
const centerEye = Matrix4.multiplyByPoint(
viewMatrix,
this.properties.rtc,
centerEyeScratch
);
Matrix4.setTranslation(
viewMatrix,
centerEye,
modifiedModelViewProjectionScratch
);
Matrix4.multiply(
projectionMatrix,
modifiedModelViewProjectionScratch,
modifiedModelViewProjectionScratch
);
return modifiedModelViewProjectionScratch;
},
u_dayTextures: function () {
return this.properties.dayTextures;
},
u_dayTextureTranslationAndScale: function () {
return this.properties.dayTextureTranslationAndScale;
},
u_dayTextureTexCoordsRectangle: function () {
return this.properties.dayTextureTexCoordsRectangle;
},
u_dayTextureUseWebMercatorT: function () {
return this.properties.dayTextureUseWebMercatorT;
},
u_dayTextureAlpha: function () {
return this.properties.dayTextureAlpha;
},
u_dayTextureNightAlpha: function () {
return this.properties.dayTextureNightAlpha;
},
u_dayTextureDayAlpha: function () {
return this.properties.dayTextureDayAlpha;
},
u_dayTextureBrightness: function () {
return this.properties.dayTextureBrightness;
},
u_dayTextureContrast: function () {
return this.properties.dayTextureContrast;
},
u_dayTextureHue: function () {
return this.properties.dayTextureHue;
},
u_dayTextureSaturation: function () {
return this.properties.dayTextureSaturation;
},
u_dayTextureOneOverGamma: function () {
return this.properties.dayTextureOneOverGamma;
},
u_dayIntensity: function () {
return this.properties.dayIntensity;
},
u_southAndNorthLatitude: function () {
return this.properties.southAndNorthLatitude;
},
u_southMercatorYAndOneOverHeight: function () {
return this.properties.southMercatorYAndOneOverHeight;
},
u_waterMask: function () {
return this.properties.waterMask;
},
u_waterMaskTranslationAndScale: function () {
return this.properties.waterMaskTranslationAndScale;
},
u_minMaxHeight: function () {
return this.properties.minMaxHeight;
},
u_scaleAndBias: function () {
return this.properties.scaleAndBias;
},
u_dayTextureSplit: function () {
return this.properties.dayTextureSplit;
},
u_dayTextureCutoutRectangles: function () {
return this.properties.dayTextureCutoutRectangles;
},
u_clippingPlanes: function () {
const clippingPlanes = globeSurfaceTileProvider._clippingPlanes;
if (defined(clippingPlanes) && defined(clippingPlanes.texture)) {
// Check in case clippingPlanes hasn't been updated yet.
return clippingPlanes.texture;
}
return frameState.context.defaultTexture;
},
u_cartographicLimitRectangle: function () {
return this.properties.localizedCartographicLimitRectangle;
},
u_clippingPlanesMatrix: function () {
const clippingPlanes = globeSurfaceTileProvider._clippingPlanes;
const transform = defined(clippingPlanes)
? Matrix4.multiply(
frameState.context.uniformState.view,
clippingPlanes.modelMatrix,
scratchClippingPlanesMatrix
)
: Matrix4.IDENTITY;
return Matrix4.inverseTranspose(
transform,
scratchInverseTransposeClippingPlanesMatrix
);
},
u_clippingPlanesEdgeStyle: function () {
const style = this.properties.clippingPlanesEdgeColor;
style.alpha = this.properties.clippingPlanesEdgeWidth;
return style;
},
u_minimumBrightness: function () {
return frameState.fog.minimumBrightness;
},
u_hsbShift: function () {
return this.properties.hsbShift;
},
u_colorsToAlpha: function () {
return this.properties.colorsToAlpha;
},
u_frontFaceAlphaByDistance: function () {
return this.properties.frontFaceAlphaByDistance;
},
u_backFaceAlphaByDistance: function () {
return this.properties.backFaceAlphaByDistance;
},
u_translucencyRectangle: function () {
return this.properties.localizedTranslucencyRectangle;
},
u_undergroundColor: function () {
return this.properties.undergroundColor;
},
u_undergroundColorAlphaByDistance: function () {
return this.properties.undergroundColorAlphaByDistance;
},
u_lambertDiffuseMultiplier: function () {
return this.properties.lambertDiffuseMultiplier;
},
// make a separate object so that changes to the properties are seen on
// derived commands that combine another uniform map with this one.
properties: {
initialColor: new Cartesian4(0.0, 0.0, 0.5, 1.0),
fillHighlightColor: new Color(0.0, 0.0, 0.0, 0.0),
zoomedOutOceanSpecularIntensity: 0.5,
oceanNormalMap: undefined,
lightingFadeDistance: new Cartesian2(6500000.0, 9000000.0),
nightFadeDistance: new Cartesian2(10000000.0, 40000000.0),
atmosphereLightIntensity: 10.0,
atmosphereRayleighCoefficient: new Cartesian3(5.5e-6, 13.0e-6, 28.4e-6),
atmosphereMieCoefficient: new Cartesian3(21e-6, 21e-6, 21e-6),
atmosphereRayleighScaleHeight: 10000.0,
atmosphereMieScaleHeight: 3200.0,
atmosphereMieAnisotropy: 0.9,
hsbShift: new Cartesian3(),
center3D: undefined,
rtc: new Cartesian3(),
modifiedModelView: new Matrix4(),
tileRectangle: new Cartesian4(),
terrainExaggerationAndRelativeHeight: new Cartesian2(1.0, 0.0),
dayTextures: [],
dayTextureTranslationAndScale: [],
dayTextureTexCoordsRectangle: [],
dayTextureUseWebMercatorT: [],
dayTextureAlpha: [],
dayTextureNightAlpha: [],
dayTextureDayAlpha: [],
dayTextureBrightness: [],
dayTextureContrast: [],
dayTextureHue: [],
dayTextureSaturation: [],
dayTextureOneOverGamma: [],
dayTextureSplit: [],
dayTextureCutoutRectangles: [],
dayIntensity: 0.0,
colorsToAlpha: [],
southAndNorthLatitude: new Cartesian2(),
southMercatorYAndOneOverHeight: new Cartesian2(),
waterMask: undefined,
waterMaskTranslationAndScale: new Cartesian4(),
minMaxHeight: new Cartesian2(),
scaleAndBias: new Matrix4(),
clippingPlanesEdgeColor: Color.clone(Color.WHITE),
clippingPlanesEdgeWidth: 0.0,
localizedCartographicLimitRectangle: new Cartesian4(),
frontFaceAlphaByDistance: new Cartesian4(),
backFaceAlphaByDistance: new Cartesian4(),
localizedTranslucencyRectangle: new Cartesian4(),
undergroundColor: Color.clone(Color.TRANSPARENT),
undergroundColorAlphaByDistance: new Cartesian4(),
lambertDiffuseMultiplier: 0.0,
},
};
if (defined(globeSurfaceTileProvider.materialUniformMap)) {
return combine(uniformMap, globeSurfaceTileProvider.materialUniformMap);
}
return uniformMap;
}
function createWireframeVertexArrayIfNecessary(context, provider, tile) {
const surfaceTile = tile.data;
let mesh;
let vertexArray;
if (defined(surfaceTile.vertexArray)) {
mesh = surfaceTile.mesh;
vertexArray = surfaceTile.vertexArray;
} else if (
defined(surfaceTile.fill) &&
defined(surfaceTile.fill.vertexArray)
) {
mesh = surfaceTile.fill.mesh;
vertexArray = surfaceTile.fill.vertexArray;
}
if (!defined(mesh) || !defined(vertexArray)) {
return;
}
if (defined(surfaceTile.wireframeVertexArray)) {
if (surfaceTile.wireframeVertexArray.mesh === mesh) {
return;
}
surfaceTile.wireframeVertexArray.destroy();
surfaceTile.wireframeVertexArray = undefined;
}
surfaceTile.wireframeVertexArray = createWireframeVertexArray(
context,
vertexArray,
mesh
);
surfaceTile.wireframeVertexArray.mesh = mesh;
}
/**
* Creates a vertex array for wireframe rendering of a terrain tile.
*
* @private
*
* @param {Context} context The context in which to create the vertex array.
* @param {VertexArray} vertexArray The existing, non-wireframe vertex array. The new vertex array
* will share vertex buffers with this existing one.
* @param {TerrainMesh} terrainMesh The terrain mesh containing non-wireframe indices.
* @returns {VertexArray} The vertex array for wireframe rendering.
*/
function createWireframeVertexArray(context, vertexArray, terrainMesh) {
const indices = terrainMesh.indices;
const geometry = {
indices: indices,
primitiveType: PrimitiveType.TRIANGLES,
};
GeometryPipeline.toWireframe(geometry);
const wireframeIndices = geometry.indices;
const wireframeIndexBuffer = Buffer.createIndexBuffer({
context: context,
typedArray: wireframeIndices,
usage: BufferUsage.STATIC_DRAW,
indexDatatype: IndexDatatype.fromSizeInBytes(
wireframeIndices.BYTES_PER_ELEMENT
),
});
return new VertexArray({
context: context,
attributes: vertexArray._attributes,
indexBuffer: wireframeIndexBuffer,
});
}
let getDebugOrientedBoundingBox;
let getDebugBoundingSphere;
let debugDestroyPrimitive;
(function () {
const instanceOBB = new GeometryInstance({
geometry: BoxOutlineGeometry.fromDimensions({
dimensions: new Cartesian3(2.0, 2.0, 2.0),
}),
});
const instanceSphere = new GeometryInstance({
geometry: new SphereOutlineGeometry({ radius: 1.0 }),
});
let modelMatrix = new Matrix4();
let previousVolume;
let primitive;
function createDebugPrimitive(instance) {
return new Primitive({
geometryInstances: instance,
appearance: new PerInstanceColorAppearance({
translucent: false,
flat: true,
}),
asynchronous: false,
});
}
getDebugOrientedBoundingBox = function (obb, color) {
if (obb === previousVolume) {
return primitive;
}
debugDestroyPrimitive();
previousVolume = obb;
modelMatrix = Matrix4.fromRotationTranslation(
obb.halfAxes,
obb.center,
modelMatrix
);
instanceOBB.modelMatrix = modelMatrix;
instanceOBB.attributes.color = ColorGeometryInstanceAttribute.fromColor(
color
);
primitive = createDebugPrimitive(instanceOBB);
return primitive;
};
getDebugBoundingSphere = function (sphere, color) {
if (sphere === previousVolume) {
return primitive;
}
debugDestroyPrimitive();
previousVolume = sphere;
modelMatrix = Matrix4.fromTranslation(sphere.center, modelMatrix);
modelMatrix = Matrix4.multiplyByUniformScale(
modelMatrix,
sphere.radius,
modelMatrix
);
instanceSphere.modelMatrix = modelMatrix;
instanceSphere.attributes.color = ColorGeometryInstanceAttribute.fromColor(
color
);
primitive = createDebugPrimitive(instanceSphere);
return primitive;
};
debugDestroyPrimitive = function () {
if (defined(primitive)) {
primitive.destroy();
primitive = undefined;
previousVolume = undefined;
}
};
})();
const otherPassesInitialColor = new Cartesian4(0.0, 0.0, 0.0, 0.0);
const surfaceShaderSetOptionsScratch = {
frameState: undefined,
surfaceTile: undefined,
numberOfDayTextures: undefined,
applyBrightness: undefined,
applyContrast: undefined,
applyHue: undefined,
applySaturation: undefined,
applyGamma: undefined,
applyAlpha: undefined,
applyDayNightAlpha: undefined,
applySplit: undefined,
showReflectiveOcean: undefined,
showOceanWaves: undefined,
enableLighting: undefined,
dynamicAtmosphereLighting: undefined,
dynamicAtmosphereLightingFromSun: undefined,
showGroundAtmosphere: undefined,
perFragmentGroundAtmosphere: undefined,
hasVertexNormals: undefined,
useWebMercatorProjection: undefined,
enableFog: undefined,
enableClippingPlanes: undefined,
clippingPlanes: undefined,
clippedByBoundaries: undefined,
hasImageryLayerCutout: undefined,
colorCorrect: undefined,
colorToAlpha: undefined,
hasGeodeticSurfaceNormals: undefined,
hasExaggeration: undefined,
};
const defaultUndergroundColor = Color.TRANSPARENT;
const defaultUndergroundColorAlphaByDistance = new NearFarScalar();
function addDrawCommandsForTile(tileProvider, tile, frameState) {
const surfaceTile = tile.data;
if (!defined(surfaceTile.vertexArray)) {
if (surfaceTile.fill === undefined) {
// No fill was created for this tile, probably because this tile is not connected to
// any renderable tiles. So create a simple tile in the middle of the tile's possible
// height range.
surfaceTile.fill = new TerrainFillMesh(tile);
}
surfaceTile.fill.update(tileProvider, frameState);
}
const creditDisplay = frameState.creditDisplay;
const terrainData = surfaceTile.terrainData;
if (defined(terrainData) && defined(terrainData.credits)) {
const tileCredits = terrainData.credits;
for (
let tileCreditIndex = 0, tileCreditLength = tileCredits.length;
tileCreditIndex < tileCreditLength;
++tileCreditIndex
) {
creditDisplay.addCredit(tileCredits[tileCreditIndex]);
}
}
let maxTextures = ContextLimits.maximumTextureImageUnits;
let waterMaskTexture = surfaceTile.waterMaskTexture;
let waterMaskTranslationAndScale = surfaceTile.waterMaskTranslationAndScale;
if (!defined(waterMaskTexture) && defined(surfaceTile.fill)) {
waterMaskTexture = surfaceTile.fill.waterMaskTexture;
waterMaskTranslationAndScale =
surfaceTile.fill.waterMaskTranslationAndScale;
}
const cameraUnderground = frameState.cameraUnderground;
const globeTranslucencyState = frameState.globeTranslucencyState;
const translucent = globeTranslucencyState.translucent;
const frontFaceAlphaByDistance =
globeTranslucencyState.frontFaceAlphaByDistance;
const backFaceAlphaByDistance =
globeTranslucencyState.backFaceAlphaByDistance;
const translucencyRectangle = globeTranslucencyState.rectangle;
const undergroundColor = defaultValue(
tileProvider.undergroundColor,
defaultUndergroundColor
);
const undergroundColorAlphaByDistance = defaultValue(
tileProvider.undergroundColorAlphaByDistance,
defaultUndergroundColorAlphaByDistance
);
const showUndergroundColor =
isUndergroundVisible(tileProvider, frameState) &&
frameState.mode === SceneMode.SCENE3D &&
undergroundColor.alpha > 0.0 &&
(undergroundColorAlphaByDistance.nearValue > 0.0 ||
undergroundColorAlphaByDistance.farValue > 0.0);
const lambertDiffuseMultiplier = tileProvider.lambertDiffuseMultiplier;
const showReflectiveOcean =
tileProvider.hasWaterMask && defined(waterMaskTexture);
const oceanNormalMap = tileProvider.oceanNormalMap;
const showOceanWaves = showReflectiveOcean && defined(oceanNormalMap);
const hasVertexNormals =
tileProvider.terrainProvider.ready &&
tileProvider.terrainProvider.hasVertexNormals;
const enableFog =
frameState.fog.enabled && frameState.fog.renderable && !cameraUnderground;
const showGroundAtmosphere =
tileProvider.showGroundAtmosphere && frameState.mode === SceneMode.SCENE3D;
const castShadows =
ShadowMode.castShadows(tileProvider.shadows) && !translucent;
const receiveShadows =
ShadowMode.receiveShadows(tileProvider.shadows) && !translucent;
const hueShift = tileProvider.hueShift;
const saturationShift = tileProvider.saturationShift;
const brightnessShift = tileProvider.brightnessShift;
let colorCorrect = !(
CesiumMath.equalsEpsilon(hueShift, 0.0, CesiumMath.EPSILON7) &&
CesiumMath.equalsEpsilon(saturationShift, 0.0, CesiumMath.EPSILON7) &&
CesiumMath.equalsEpsilon(brightnessShift, 0.0, CesiumMath.EPSILON7)
);
let perFragmentGroundAtmosphere = false;
if (showGroundAtmosphere) {
const cameraDistance = Cartesian3.magnitude(frameState.camera.positionWC);
const fadeOutDistance = tileProvider.nightFadeOutDistance;
perFragmentGroundAtmosphere = cameraDistance > fadeOutDistance;
}
if (showReflectiveOcean) {
--maxTextures;
}
if (showOceanWaves) {
--maxTextures;
}
if (
defined(frameState.shadowState) &&
frameState.shadowState.shadowsEnabled
) {
--maxTextures;
}
if (
defined(tileProvider.clippingPlanes) &&
tileProvider.clippingPlanes.enabled
) {
--maxTextures;
}
maxTextures -= globeTranslucencyState.numberOfTextureUniforms;
const mesh = surfaceTile.renderedMesh;
let rtc = mesh.center;
const encoding = mesh.encoding;
const tileBoundingRegion = surfaceTile.tileBoundingRegion;
const exaggeration = frameState.terrainExaggeration;
const exaggerationRelativeHeight =
frameState.terrainExaggerationRelativeHeight;
const hasExaggeration = exaggeration !== 1.0;
const hasGeodeticSurfaceNormals = encoding.hasGeodeticSurfaceNormals;
// Not used in 3D.
const tileRectangle = tileRectangleScratch;
// Only used for Mercator projections.
let southLatitude = 0.0;
let northLatitude = 0.0;
let southMercatorY = 0.0;
let oneOverMercatorHeight = 0.0;
let useWebMercatorProjection = false;
if (frameState.mode !== SceneMode.SCENE3D) {
const projection = frameState.mapProjection;
const southwest = projection.project(
Rectangle.southwest(tile.rectangle),
southwestScratch
);
const northeast = projection.project(
Rectangle.northeast(tile.rectangle),
northeastScratch
);
tileRectangle.x = southwest.x;
tileRectangle.y = southwest.y;
tileRectangle.z = northeast.x;
tileRectangle.w = northeast.y;
// In 2D and Columbus View, use the center of the tile for RTC rendering.
if (frameState.mode !== SceneMode.MORPHING) {
rtc = rtcScratch;
rtc.x = 0.0;
rtc.y = (tileRectangle.z + tileRectangle.x) * 0.5;
rtc.z = (tileRectangle.w + tileRectangle.y) * 0.5;
tileRectangle.x -= rtc.y;
tileRectangle.y -= rtc.z;
tileRectangle.z -= rtc.y;
tileRectangle.w -= rtc.z;
}
if (
frameState.mode === SceneMode.SCENE2D &&
encoding.quantization === TerrainQuantization.BITS12
) {
// In 2D, the texture coordinates of the tile are interpolated over the rectangle to get the position in the vertex shader.
// When the texture coordinates are quantized, error is introduced. This can be seen through the 1px wide cracking
// between the quantized tiles in 2D. To compensate for the error, move the expand the rectangle in each direction by
// half the error amount.
const epsilon = (1.0 / (Math.pow(2.0, 12.0) - 1.0)) * 0.5;
const widthEpsilon = (tileRectangle.z - tileRectangle.x) * epsilon;
const heightEpsilon = (tileRectangle.w - tileRectangle.y) * epsilon;
tileRectangle.x -= widthEpsilon;
tileRectangle.y -= heightEpsilon;
tileRectangle.z += widthEpsilon;
tileRectangle.w += heightEpsilon;
}
if (projection instanceof WebMercatorProjection) {
southLatitude = tile.rectangle.south;
northLatitude = tile.rectangle.north;
southMercatorY = WebMercatorProjection.geodeticLatitudeToMercatorAngle(
southLatitude
);
oneOverMercatorHeight =
1.0 /
(WebMercatorProjection.geodeticLatitudeToMercatorAngle(northLatitude) -
southMercatorY);
useWebMercatorProjection = true;
}
}
const surfaceShaderSetOptions = surfaceShaderSetOptionsScratch;
surfaceShaderSetOptions.frameState = frameState;
surfaceShaderSetOptions.surfaceTile = surfaceTile;
surfaceShaderSetOptions.showReflectiveOcean = showReflectiveOcean;
surfaceShaderSetOptions.showOceanWaves = showOceanWaves;
surfaceShaderSetOptions.enableLighting = tileProvider.enableLighting;
surfaceShaderSetOptions.dynamicAtmosphereLighting =
tileProvider.dynamicAtmosphereLighting;
surfaceShaderSetOptions.dynamicAtmosphereLightingFromSun =
tileProvider.dynamicAtmosphereLightingFromSun;
surfaceShaderSetOptions.showGroundAtmosphere = showGroundAtmosphere;
surfaceShaderSetOptions.atmosphereLightIntensity =
tileProvider.atmosphereLightIntensity;
surfaceShaderSetOptions.atmosphereRayleighCoefficient =
tileProvider.atmosphereRayleighCoefficient;
surfaceShaderSetOptions.atmosphereMieCoefficient =
tileProvider.atmosphereMieCoefficient;
surfaceShaderSetOptions.atmosphereRayleighScaleHeight =
tileProvider.atmosphereRayleighScaleHeight;
surfaceShaderSetOptions.atmosphereMieScaleHeight =
tileProvider.atmosphereMieScaleHeight;
surfaceShaderSetOptions.atmosphereMieAnisotropy =
tileProvider.atmosphereMieAnisotropy;
surfaceShaderSetOptions.perFragmentGroundAtmosphere = perFragmentGroundAtmosphere;
surfaceShaderSetOptions.hasVertexNormals = hasVertexNormals;
surfaceShaderSetOptions.useWebMercatorProjection = useWebMercatorProjection;
surfaceShaderSetOptions.clippedByBoundaries = surfaceTile.clippedByBoundaries;
surfaceShaderSetOptions.hasGeodeticSurfaceNormals = hasGeodeticSurfaceNormals;
surfaceShaderSetOptions.hasExaggeration = hasExaggeration;
const tileImageryCollection = surfaceTile.imagery;
let imageryIndex = 0;
const imageryLen = tileImageryCollection.length;
const showSkirts =
tileProvider.showSkirts && !cameraUnderground && !translucent;
const backFaceCulling =
tileProvider.backFaceCulling && !cameraUnderground && !translucent;
const firstPassRenderState = backFaceCulling
? tileProvider._renderState
: tileProvider._disableCullingRenderState;
const otherPassesRenderState = backFaceCulling
? tileProvider._blendRenderState
: tileProvider._disableCullingBlendRenderState;
let renderState = firstPassRenderState;
let initialColor = tileProvider._firstPassInitialColor;
const context = frameState.context;
if (!defined(tileProvider._debug.boundingSphereTile)) {
debugDestroyPrimitive();
}
const materialUniformMapChanged =
tileProvider._materialUniformMap !== tileProvider.materialUniformMap;
if (materialUniformMapChanged) {
tileProvider._materialUniformMap = tileProvider.materialUniformMap;
const drawCommandsLength = tileProvider._drawCommands.length;
for (let i = 0; i < drawCommandsLength; ++i) {
tileProvider._uniformMaps[i] = createTileUniformMap(
frameState,
tileProvider
);
}
}
do {
let numberOfDayTextures = 0;
let command;
let uniformMap;
if (tileProvider._drawCommands.length <= tileProvider._usedDrawCommands) {
command = new DrawCommand();
command.owner = tile;
command.cull = false;
command.boundingVolume = new BoundingSphere();
command.orientedBoundingBox = undefined;
uniformMap = createTileUniformMap(frameState, tileProvider);
tileProvider._drawCommands.push(command);
tileProvider._uniformMaps.push(uniformMap);
} else {
command = tileProvider._drawCommands[tileProvider._usedDrawCommands];
uniformMap = tileProvider._uniformMaps[tileProvider._usedDrawCommands];
}
command.owner = tile;
++tileProvider._usedDrawCommands;
if (tile === tileProvider._debug.boundingSphereTile) {
const obb = tileBoundingRegion.boundingVolume;
const boundingSphere = tileBoundingRegion.boundingSphere;
// If a debug primitive already exists for this tile, it will not be
// re-created, to avoid allocation every frame. If it were possible
// to have more than one selected tile, this would have to change.
if (defined(obb)) {
getDebugOrientedBoundingBox(obb, Color.RED).update(frameState);
} else if (defined(boundingSphere)) {
getDebugBoundingSphere(boundingSphere, Color.RED).update(frameState);
}
}
const uniformMapProperties = uniformMap.properties;
Cartesian4.clone(initialColor, uniformMapProperties.initialColor);
uniformMapProperties.oceanNormalMap = oceanNormalMap;
uniformMapProperties.lightingFadeDistance.x =
tileProvider.lightingFadeOutDistance;
uniformMapProperties.lightingFadeDistance.y =
tileProvider.lightingFadeInDistance;
uniformMapProperties.nightFadeDistance.x =
tileProvider.nightFadeOutDistance;
uniformMapProperties.nightFadeDistance.y = tileProvider.nightFadeInDistance;
uniformMapProperties.atmosphereLightIntensity =
tileProvider.atmosphereLightIntensity;
uniformMapProperties.atmosphereRayleighCoefficient =
tileProvider.atmosphereRayleighCoefficient;
uniformMapProperties.atmosphereMieCoefficient =
tileProvider.atmosphereMieCoefficient;
uniformMapProperties.atmosphereRayleighScaleHeight =
tileProvider.atmosphereRayleighScaleHeight;
uniformMapProperties.atmosphereMieScaleHeight =
tileProvider.atmosphereMieScaleHeight;
uniformMapProperties.atmosphereMieAnisotropy =
tileProvider.atmosphereMieAnisotropy;
uniformMapProperties.zoomedOutOceanSpecularIntensity =
tileProvider.zoomedOutOceanSpecularIntensity;
const frontFaceAlphaByDistanceFinal = cameraUnderground
? backFaceAlphaByDistance
: frontFaceAlphaByDistance;
const backFaceAlphaByDistanceFinal = cameraUnderground
? frontFaceAlphaByDistance
: backFaceAlphaByDistance;
if (defined(frontFaceAlphaByDistanceFinal)) {
Cartesian4.fromElements(
frontFaceAlphaByDistanceFinal.near,
frontFaceAlphaByDistanceFinal.nearValue,
frontFaceAlphaByDistanceFinal.far,
frontFaceAlphaByDistanceFinal.farValue,
uniformMapProperties.frontFaceAlphaByDistance
);
Cartesian4.fromElements(
backFaceAlphaByDistanceFinal.near,
backFaceAlphaByDistanceFinal.nearValue,
backFaceAlphaByDistanceFinal.far,
backFaceAlphaByDistanceFinal.farValue,
uniformMapProperties.backFaceAlphaByDistance
);
}
Cartesian4.fromElements(
undergroundColorAlphaByDistance.near,
undergroundColorAlphaByDistance.nearValue,
undergroundColorAlphaByDistance.far,
undergroundColorAlphaByDistance.farValue,
uniformMapProperties.undergroundColorAlphaByDistance
);
Color.clone(undergroundColor, uniformMapProperties.undergroundColor);
uniformMapProperties.lambertDiffuseMultiplier = lambertDiffuseMultiplier;
const highlightFillTile =
!defined(surfaceTile.vertexArray) &&
defined(tileProvider.fillHighlightColor) &&
tileProvider.fillHighlightColor.alpha > 0.0;
if (highlightFillTile) {
Color.clone(
tileProvider.fillHighlightColor,
uniformMapProperties.fillHighlightColor
);
}
uniformMapProperties.terrainExaggerationAndRelativeHeight.x = exaggeration;
uniformMapProperties.terrainExaggerationAndRelativeHeight.y = exaggerationRelativeHeight;
uniformMapProperties.center3D = mesh.center;
Cartesian3.clone(rtc, uniformMapProperties.rtc);
Cartesian4.clone(tileRectangle, uniformMapProperties.tileRectangle);
uniformMapProperties.southAndNorthLatitude.x = southLatitude;
uniformMapProperties.southAndNorthLatitude.y = northLatitude;
uniformMapProperties.southMercatorYAndOneOverHeight.x = southMercatorY;
uniformMapProperties.southMercatorYAndOneOverHeight.y = oneOverMercatorHeight;
// Convert tile limiter rectangle from cartographic to texture space using the tileRectangle.
const localizedCartographicLimitRectangle = localizedCartographicLimitRectangleScratch;
const cartographicLimitRectangle = clipRectangleAntimeridian(
tile.rectangle,
tileProvider.cartographicLimitRectangle
);
const localizedTranslucencyRectangle = localizedTranslucencyRectangleScratch;
const clippedTranslucencyRectangle = clipRectangleAntimeridian(
tile.rectangle,
translucencyRectangle
);
Cartesian3.fromElements(
hueShift,
saturationShift,
brightnessShift,
uniformMapProperties.hsbShift
);
const cartographicTileRectangle = tile.rectangle;
const inverseTileWidth = 1.0 / cartographicTileRectangle.width;
const inverseTileHeight = 1.0 / cartographicTileRectangle.height;
localizedCartographicLimitRectangle.x =
(cartographicLimitRectangle.west - cartographicTileRectangle.west) *
inverseTileWidth;
localizedCartographicLimitRectangle.y =
(cartographicLimitRectangle.south - cartographicTileRectangle.south) *
inverseTileHeight;
localizedCartographicLimitRectangle.z =
(cartographicLimitRectangle.east - cartographicTileRectangle.west) *
inverseTileWidth;
localizedCartographicLimitRectangle.w =
(cartographicLimitRectangle.north - cartographicTileRectangle.south) *
inverseTileHeight;
Cartesian4.clone(
localizedCartographicLimitRectangle,
uniformMapProperties.localizedCartographicLimitRectangle
);
localizedTranslucencyRectangle.x =
(clippedTranslucencyRectangle.west - cartographicTileRectangle.west) *
inverseTileWidth;
localizedTranslucencyRectangle.y =
(clippedTranslucencyRectangle.south - cartographicTileRectangle.south) *
inverseTileHeight;
localizedTranslucencyRectangle.z =
(clippedTranslucencyRectangle.east - cartographicTileRectangle.west) *
inverseTileWidth;
localizedTranslucencyRectangle.w =
(clippedTranslucencyRectangle.north - cartographicTileRectangle.south) *
inverseTileHeight;
Cartesian4.clone(
localizedTranslucencyRectangle,
uniformMapProperties.localizedTranslucencyRectangle
);
// For performance, use fog in the shader only when the tile is in fog.
const applyFog =
enableFog &&
CesiumMath.fog(tile._distance, frameState.fog.density) >
CesiumMath.EPSILON3;
colorCorrect = colorCorrect && (applyFog || showGroundAtmosphere);
let applyBrightness = false;
let applyContrast = false;
let applyHue = false;
let applySaturation = false;
let applyGamma = false;
let applyAlpha = false;
let applyDayNightAlpha = false;
let applySplit = false;
let applyCutout = false;
let applyColorToAlpha = false;
while (numberOfDayTextures < maxTextures && imageryIndex < imageryLen) {
const tileImagery = tileImageryCollection[imageryIndex];
const imagery = tileImagery.readyImagery;
++imageryIndex;
if (!defined(imagery) || imagery.imageryLayer.alpha === 0.0) {
continue;
}
const texture = tileImagery.useWebMercatorT
? imagery.textureWebMercator
: imagery.texture;
//>>includeStart('debug', pragmas.debug);
if (!defined(texture)) {
// Our "ready" texture isn't actually ready. This should never happen.
//
// Side note: It IS possible for it to not be in the READY ImageryState, though.
// This can happen when a single imagery tile is shared by two terrain tiles (common)
// and one of them (A) needs a geographic version of the tile because it is near the poles,
// and the other (B) does not. B can and will transition the imagery tile to the READY state
// without reprojecting to geographic. Then, later, A will deem that same tile not-ready-yet
// because it only has the Web Mercator texture, and flip it back to the TRANSITIONING state.
// The imagery tile won't be in the READY state anymore, but it's still READY enough for B's
// purposes.
throw new DeveloperError("readyImagery is not actually ready!");
}
//>>includeEnd('debug');
const imageryLayer = imagery.imageryLayer;
if (!defined(tileImagery.textureTranslationAndScale)) {
tileImagery.textureTranslationAndScale = imageryLayer._calculateTextureTranslationAndScale(
tile,
tileImagery
);
}
uniformMapProperties.dayTextures[numberOfDayTextures] = texture;
uniformMapProperties.dayTextureTranslationAndScale[numberOfDayTextures] =
tileImagery.textureTranslationAndScale;
uniformMapProperties.dayTextureTexCoordsRectangle[numberOfDayTextures] =
tileImagery.textureCoordinateRectangle;
uniformMapProperties.dayTextureUseWebMercatorT[numberOfDayTextures] =
tileImagery.useWebMercatorT;
uniformMapProperties.dayTextureAlpha[numberOfDayTextures] =
imageryLayer.alpha;
applyAlpha =
applyAlpha ||
uniformMapProperties.dayTextureAlpha[numberOfDayTextures] !== 1.0;
uniformMapProperties.dayTextureNightAlpha[numberOfDayTextures] =
imageryLayer.nightAlpha;
applyDayNightAlpha =
applyDayNightAlpha ||
uniformMapProperties.dayTextureNightAlpha[numberOfDayTextures] !== 1.0;
uniformMapProperties.dayTextureDayAlpha[numberOfDayTextures] =
imageryLayer.dayAlpha;
applyDayNightAlpha =
applyDayNightAlpha ||
uniformMapProperties.dayTextureDayAlpha[numberOfDayTextures] !== 1.0;
uniformMapProperties.dayTextureBrightness[numberOfDayTextures] =
imageryLayer.brightness;
applyBrightness =
applyBrightness ||
uniformMapProperties.dayTextureBrightness[numberOfDayTextures] !==
ImageryLayer.DEFAULT_BRIGHTNESS;
uniformMapProperties.dayTextureContrast[numberOfDayTextures] =
imageryLayer.contrast;
applyContrast =
applyContrast ||
uniformMapProperties.dayTextureContrast[numberOfDayTextures] !==
ImageryLayer.DEFAULT_CONTRAST;
uniformMapProperties.dayTextureHue[numberOfDayTextures] =
imageryLayer.hue;
applyHue =
applyHue ||
uniformMapProperties.dayTextureHue[numberOfDayTextures] !==
ImageryLayer.DEFAULT_HUE;
uniformMapProperties.dayTextureSaturation[numberOfDayTextures] =
imageryLayer.saturation;
applySaturation =
applySaturation ||
uniformMapProperties.dayTextureSaturation[numberOfDayTextures] !==
ImageryLayer.DEFAULT_SATURATION;
uniformMapProperties.dayTextureOneOverGamma[numberOfDayTextures] =
1.0 / imageryLayer.gamma;
applyGamma =
applyGamma ||
uniformMapProperties.dayTextureOneOverGamma[numberOfDayTextures] !==
1.0 / ImageryLayer.DEFAULT_GAMMA;
uniformMapProperties.dayTextureSplit[numberOfDayTextures] =
imageryLayer.splitDirection;
applySplit =
applySplit ||
uniformMapProperties.dayTextureSplit[numberOfDayTextures] !== 0.0;
// Update cutout rectangle
let dayTextureCutoutRectangle =
uniformMapProperties.dayTextureCutoutRectangles[numberOfDayTextures];
if (!defined(dayTextureCutoutRectangle)) {
dayTextureCutoutRectangle = uniformMapProperties.dayTextureCutoutRectangles[
numberOfDayTextures
] = new Cartesian4();
}
Cartesian4.clone(Cartesian4.ZERO, dayTextureCutoutRectangle);
if (defined(imageryLayer.cutoutRectangle)) {
const cutoutRectangle = clipRectangleAntimeridian(
cartographicTileRectangle,
imageryLayer.cutoutRectangle
);
const intersection = Rectangle.simpleIntersection(
cutoutRectangle,
cartographicTileRectangle,
rectangleIntersectionScratch
);
applyCutout = defined(intersection) || applyCutout;
dayTextureCutoutRectangle.x =
(cutoutRectangle.west - cartographicTileRectangle.west) *
inverseTileWidth;
dayTextureCutoutRectangle.y =
(cutoutRectangle.south - cartographicTileRectangle.south) *
inverseTileHeight;
dayTextureCutoutRectangle.z =
(cutoutRectangle.east - cartographicTileRectangle.west) *
inverseTileWidth;
dayTextureCutoutRectangle.w =
(cutoutRectangle.north - cartographicTileRectangle.south) *
inverseTileHeight;
}
// Update color to alpha
let colorToAlpha =
uniformMapProperties.colorsToAlpha[numberOfDayTextures];
if (!defined(colorToAlpha)) {
colorToAlpha = uniformMapProperties.colorsToAlpha[
numberOfDayTextures
] = new Cartesian4();
}
const hasColorToAlpha =
defined(imageryLayer.colorToAlpha) &&
imageryLayer.colorToAlphaThreshold > 0.0;
applyColorToAlpha = applyColorToAlpha || hasColorToAlpha;
if (hasColorToAlpha) {
const color = imageryLayer.colorToAlpha;
colorToAlpha.x = color.red;
colorToAlpha.y = color.green;
colorToAlpha.z = color.blue;
colorToAlpha.w = imageryLayer.colorToAlphaThreshold;
} else {
colorToAlpha.w = -1.0;
}
if (defined(imagery.credits)) {
const credits = imagery.credits;
for (
let creditIndex = 0, creditLength = credits.length;
creditIndex < creditLength;
++creditIndex
) {
creditDisplay.addCredit(credits[creditIndex]);
}
}
++numberOfDayTextures;
}
// trim texture array to the used length so we don't end up using old textures
// which might get destroyed eventually
uniformMapProperties.dayTextures.length = numberOfDayTextures;
uniformMapProperties.waterMask = waterMaskTexture;
Cartesian4.clone(
waterMaskTranslationAndScale,
uniformMapProperties.waterMaskTranslationAndScale
);
uniformMapProperties.minMaxHeight.x = encoding.minimumHeight;
uniformMapProperties.minMaxHeight.y = encoding.maximumHeight;
Matrix4.clone(encoding.matrix, uniformMapProperties.scaleAndBias);
// update clipping planes
const clippingPlanes = tileProvider._clippingPlanes;
const clippingPlanesEnabled =
defined(clippingPlanes) && clippingPlanes.enabled && tile.isClipped;
if (clippingPlanesEnabled) {
uniformMapProperties.clippingPlanesEdgeColor = Color.clone(
clippingPlanes.edgeColor,
uniformMapProperties.clippingPlanesEdgeColor
);
uniformMapProperties.clippingPlanesEdgeWidth = clippingPlanes.edgeWidth;
}
surfaceShaderSetOptions.numberOfDayTextures = numberOfDayTextures;
surfaceShaderSetOptions.applyBrightness = applyBrightness;
surfaceShaderSetOptions.applyContrast = applyContrast;
surfaceShaderSetOptions.applyHue = applyHue;
surfaceShaderSetOptions.applySaturation = applySaturation;
surfaceShaderSetOptions.applyGamma = applyGamma;
surfaceShaderSetOptions.applyAlpha = applyAlpha;
surfaceShaderSetOptions.applyDayNightAlpha = applyDayNightAlpha;
surfaceShaderSetOptions.applySplit = applySplit;
surfaceShaderSetOptions.enableFog = applyFog;
surfaceShaderSetOptions.enableClippingPlanes = clippingPlanesEnabled;
surfaceShaderSetOptions.clippingPlanes = clippingPlanes;
surfaceShaderSetOptions.hasImageryLayerCutout = applyCutout;
surfaceShaderSetOptions.colorCorrect = colorCorrect;
surfaceShaderSetOptions.highlightFillTile = highlightFillTile;
surfaceShaderSetOptions.colorToAlpha = applyColorToAlpha;
surfaceShaderSetOptions.showUndergroundColor = showUndergroundColor;
surfaceShaderSetOptions.translucent = translucent;
let count = surfaceTile.renderedMesh.indices.length;
if (!showSkirts) {
count = surfaceTile.renderedMesh.indexCountWithoutSkirts;
}
command.shaderProgram = tileProvider._surfaceShaderSet.getShaderProgram(
surfaceShaderSetOptions
);
command.castShadows = castShadows;
command.receiveShadows = receiveShadows;
command.renderState = renderState;
command.primitiveType = PrimitiveType.TRIANGLES;
command.vertexArray =
surfaceTile.vertexArray || surfaceTile.fill.vertexArray;
command.count = count;
command.uniformMap = uniformMap;
command.pass = Pass.GLOBE;
if (tileProvider._debug.wireframe) {
createWireframeVertexArrayIfNecessary(context, tileProvider, tile);
if (defined(surfaceTile.wireframeVertexArray)) {
command.vertexArray = surfaceTile.wireframeVertexArray;
command.primitiveType = PrimitiveType.LINES;
command.count = count * 2;
}
}
let boundingVolume = command.boundingVolume;
const orientedBoundingBox = command.orientedBoundingBox;
if (frameState.mode !== SceneMode.SCENE3D) {
BoundingSphere.fromRectangleWithHeights2D(
tile.rectangle,
frameState.mapProjection,
tileBoundingRegion.minimumHeight,
tileBoundingRegion.maximumHeight,
boundingVolume
);
Cartesian3.fromElements(
boundingVolume.center.z,
boundingVolume.center.x,
boundingVolume.center.y,
boundingVolume.center
);
if (frameState.mode === SceneMode.MORPHING) {
boundingVolume = BoundingSphere.union(
tileBoundingRegion.boundingSphere,
boundingVolume,
boundingVolume
);
}
} else {
command.boundingVolume = BoundingSphere.clone(
tileBoundingRegion.boundingSphere,
boundingVolume
);
command.orientedBoundingBox = OrientedBoundingBox.clone(
tileBoundingRegion.boundingVolume,
orientedBoundingBox
);
}
command.dirty = true;
if (translucent) {
globeTranslucencyState.updateDerivedCommands(command, frameState);
}
pushCommand(command, frameState);
renderState = otherPassesRenderState;
initialColor = otherPassesInitialColor;
} while (imageryIndex < imageryLen);
}
export default GlobeSurfaceTileProvider;