import Cartesian2 from "../Core/Cartesian2.js";
import Cartesian3 from "../Core/Cartesian3.js";
import Check from "../Core/Check.js";
import Color from "../Core/Color.js";
import defaultValue from "../Core/defaultValue.js";
import defined from "../Core/defined.js";
import destroyObject from "../Core/destroyObject.js";
import Event from "../Core/Event.js";
import JulianDate from "../Core/JulianDate.js";
import CesiumMath from "../Core/Math.js";
import Matrix4 from "../Core/Matrix4.js";
import BillboardCollection from "./BillboardCollection.js";
import CircleEmitter from "./CircleEmitter.js";
import Particle from "./Particle.js";
const defaultImageSize = new Cartesian2(1.0, 1.0);
/**
* A ParticleSystem manages the updating and display of a collection of particles.
*
* @alias ParticleSystem
* @constructor
*
* @param {Object} [options] Object with the following properties:
* @param {Boolean} [options.show=true] Whether to display the particle system.
* @param {ParticleSystem.updateCallback} [options.updateCallback] The callback function to be called each frame to update a particle.
* @param {ParticleEmitter} [options.emitter=new CircleEmitter(0.5)] The particle emitter for this system.
* @param {Matrix4} [options.modelMatrix=Matrix4.IDENTITY] The 4x4 transformation matrix that transforms the particle system from model to world coordinates.
* @param {Matrix4} [options.emitterModelMatrix=Matrix4.IDENTITY] The 4x4 transformation matrix that transforms the particle system emitter within the particle systems local coordinate system.
* @param {Number} [options.emissionRate=5] The number of particles to emit per second.
* @param {ParticleBurst[]} [options.bursts] An array of {@link ParticleBurst}, emitting bursts of particles at periodic times.
* @param {Boolean} [options.loop=true] Whether the particle system should loop its bursts when it is complete.
* @param {Number} [options.scale=1.0] Sets the scale to apply to the image of the particle for the duration of its particleLife.
* @param {Number} [options.startScale] The initial scale to apply to the image of the particle at the beginning of its life.
* @param {Number} [options.endScale] The final scale to apply to the image of the particle at the end of its life.
* @param {Color} [options.color=Color.WHITE] Sets the color of a particle for the duration of its particleLife.
* @param {Color} [options.startColor] The color of the particle at the beginning of its life.
* @param {Color} [options.endColor] The color of the particle at the end of its life.
* @param {Object} [options.image] The URI, HTMLImageElement, or HTMLCanvasElement to use for the billboard.
* @param {Cartesian2} [options.imageSize=new Cartesian2(1.0, 1.0)] If set, overrides the minimumImageSize and maximumImageSize inputs that scale the particle image's dimensions in pixels.
* @param {Cartesian2} [options.minimumImageSize] Sets the minimum bound, width by height, above which to randomly scale the particle image's dimensions in pixels.
* @param {Cartesian2} [options.maximumImageSize] Sets the maximum bound, width by height, below which to randomly scale the particle image's dimensions in pixels.
* @param {Boolean} [options.sizeInMeters] Sets if the size of particles is in meters or pixels. true
to size the particles in meters; otherwise, the size is in pixels.
* @param {Number} [options.speed=1.0] If set, overrides the minimumSpeed and maximumSpeed inputs with this value.
* @param {Number} [options.minimumSpeed] Sets the minimum bound in meters per second above which a particle's actual speed will be randomly chosen.
* @param {Number} [options.maximumSpeed] Sets the maximum bound in meters per second below which a particle's actual speed will be randomly chosen.
* @param {Number} [options.lifetime=Number.MAX_VALUE] How long the particle system will emit particles, in seconds.
* @param {Number} [options.particleLife=5.0] If set, overrides the minimumParticleLife and maximumParticleLife inputs with this value.
* @param {Number} [options.minimumParticleLife] Sets the minimum bound in seconds for the possible duration of a particle's life above which a particle's actual life will be randomly chosen.
* @param {Number} [options.maximumParticleLife] Sets the maximum bound in seconds for the possible duration of a particle's life below which a particle's actual life will be randomly chosen.
* @param {Number} [options.mass=1.0] Sets the minimum and maximum mass of particles in kilograms.
* @param {Number} [options.minimumMass] Sets the minimum bound for the mass of a particle in kilograms. A particle's actual mass will be chosen as a random amount above this value.
* @param {Number} [options.maximumMass] Sets the maximum mass of particles in kilograms. A particle's actual mass will be chosen as a random amount below this value.
* @demo {@link https://cesium.com/learn/cesiumjs-learn/cesiumjs-particle-systems/|Particle Systems Tutorial}
* @demo {@link https://sandcastle.cesium.com/?src=Particle%20System.html&label=Showcases|Particle Systems Tutorial Demo}
* @demo {@link https://sandcastle.cesium.com/?src=Particle%20System%20Fireworks.html&label=Showcases|Particle Systems Fireworks Demo}
*/
function ParticleSystem(options) {
options = defaultValue(options, defaultValue.EMPTY_OBJECT);
/**
* Whether to display the particle system.
* @type {Boolean}
* @default true
*/
this.show = defaultValue(options.show, true);
/**
* An array of force callbacks. The callback is passed a {@link Particle} and the difference from the last time
* @type {ParticleSystem.updateCallback}
* @default undefined
*/
this.updateCallback = options.updateCallback;
/**
* Whether the particle system should loop it's bursts when it is complete.
* @type {Boolean}
* @default true
*/
this.loop = defaultValue(options.loop, true);
/**
* The URI, HTMLImageElement, or HTMLCanvasElement to use for the billboard.
* @type {Object}
* @default undefined
*/
this.image = defaultValue(options.image, undefined);
let emitter = options.emitter;
if (!defined(emitter)) {
emitter = new CircleEmitter(0.5);
}
this._emitter = emitter;
this._bursts = options.bursts;
this._modelMatrix = Matrix4.clone(
defaultValue(options.modelMatrix, Matrix4.IDENTITY)
);
this._emitterModelMatrix = Matrix4.clone(
defaultValue(options.emitterModelMatrix, Matrix4.IDENTITY)
);
this._matrixDirty = true;
this._combinedMatrix = new Matrix4();
this._startColor = Color.clone(
defaultValue(options.color, defaultValue(options.startColor, Color.WHITE))
);
this._endColor = Color.clone(
defaultValue(options.color, defaultValue(options.endColor, Color.WHITE))
);
this._startScale = defaultValue(
options.scale,
defaultValue(options.startScale, 1.0)
);
this._endScale = defaultValue(
options.scale,
defaultValue(options.endScale, 1.0)
);
this._emissionRate = defaultValue(options.emissionRate, 5.0);
this._minimumSpeed = defaultValue(
options.speed,
defaultValue(options.minimumSpeed, 1.0)
);
this._maximumSpeed = defaultValue(
options.speed,
defaultValue(options.maximumSpeed, 1.0)
);
this._minimumParticleLife = defaultValue(
options.particleLife,
defaultValue(options.minimumParticleLife, 5.0)
);
this._maximumParticleLife = defaultValue(
options.particleLife,
defaultValue(options.maximumParticleLife, 5.0)
);
this._minimumMass = defaultValue(
options.mass,
defaultValue(options.minimumMass, 1.0)
);
this._maximumMass = defaultValue(
options.mass,
defaultValue(options.maximumMass, 1.0)
);
this._minimumImageSize = Cartesian2.clone(
defaultValue(
options.imageSize,
defaultValue(options.minimumImageSize, defaultImageSize)
)
);
this._maximumImageSize = Cartesian2.clone(
defaultValue(
options.imageSize,
defaultValue(options.maximumImageSize, defaultImageSize)
)
);
this._sizeInMeters = defaultValue(options.sizeInMeters, false);
this._lifetime = defaultValue(options.lifetime, Number.MAX_VALUE);
this._billboardCollection = undefined;
this._particles = [];
// An array of available particles that we can reuse instead of allocating new.
this._particlePool = [];
this._previousTime = undefined;
this._currentTime = 0.0;
this._carryOver = 0.0;
this._complete = new Event();
this._isComplete = false;
this._updateParticlePool = true;
this._particleEstimate = 0;
}
Object.defineProperties(ParticleSystem.prototype, {
/**
* The particle emitter for this
* @memberof ParticleSystem.prototype
* @type {ParticleEmitter}
* @default CircleEmitter
*/
emitter: {
get: function () {
return this._emitter;
},
set: function (value) {
//>>includeStart('debug', pragmas.debug);
Check.defined("value", value);
//>>includeEnd('debug');
this._emitter = value;
},
},
/**
* An array of {@link ParticleBurst}, emitting bursts of particles at periodic times.
* @memberof ParticleSystem.prototype
* @type {ParticleBurst[]}
* @default undefined
*/
bursts: {
get: function () {
return this._bursts;
},
set: function (value) {
this._bursts = value;
this._updateParticlePool = true;
},
},
/**
* The 4x4 transformation matrix that transforms the particle system from model to world coordinates.
* @memberof ParticleSystem.prototype
* @type {Matrix4}
* @default Matrix4.IDENTITY
*/
modelMatrix: {
get: function () {
return this._modelMatrix;
},
set: function (value) {
//>>includeStart('debug', pragmas.debug);
Check.defined("value", value);
//>>includeEnd('debug');
this._matrixDirty =
this._matrixDirty || !Matrix4.equals(this._modelMatrix, value);
Matrix4.clone(value, this._modelMatrix);
},
},
/**
* The 4x4 transformation matrix that transforms the particle system emitter within the particle systems local coordinate system.
* @memberof ParticleSystem.prototype
* @type {Matrix4}
* @default Matrix4.IDENTITY
*/
emitterModelMatrix: {
get: function () {
return this._emitterModelMatrix;
},
set: function (value) {
//>>includeStart('debug', pragmas.debug);
Check.defined("value", value);
//>>includeEnd('debug');
this._matrixDirty =
this._matrixDirty || !Matrix4.equals(this._emitterModelMatrix, value);
Matrix4.clone(value, this._emitterModelMatrix);
},
},
/**
* The color of the particle at the beginning of its life.
* @memberof ParticleSystem.prototype
* @type {Color}
* @default Color.WHITE
*/
startColor: {
get: function () {
return this._startColor;
},
set: function (value) {
//>>includeStart('debug', pragmas.debug);
Check.defined("value", value);
//>>includeEnd('debug');
Color.clone(value, this._startColor);
},
},
/**
* The color of the particle at the end of its life.
* @memberof ParticleSystem.prototype
* @type {Color}
* @default Color.WHITE
*/
endColor: {
get: function () {
return this._endColor;
},
set: function (value) {
//>>includeStart('debug', pragmas.debug);
Check.defined("value", value);
//>>includeEnd('debug');
Color.clone(value, this._endColor);
},
},
/**
* The initial scale to apply to the image of the particle at the beginning of its life.
* @memberof ParticleSystem.prototype
* @type {Number}
* @default 1.0
*/
startScale: {
get: function () {
return this._startScale;
},
set: function (value) {
//>>includeStart('debug', pragmas.debug);
Check.typeOf.number.greaterThanOrEquals("value", value, 0.0);
//>>includeEnd('debug');
this._startScale = value;
},
},
/**
* The final scale to apply to the image of the particle at the end of its life.
* @memberof ParticleSystem.prototype
* @type {Number}
* @default 1.0
*/
endScale: {
get: function () {
return this._endScale;
},
set: function (value) {
//>>includeStart('debug', pragmas.debug);
Check.typeOf.number.greaterThanOrEquals("value", value, 0.0);
//>>includeEnd('debug');
this._endScale = value;
},
},
/**
* The number of particles to emit per second.
* @memberof ParticleSystem.prototype
* @type {Number}
* @default 5
*/
emissionRate: {
get: function () {
return this._emissionRate;
},
set: function (value) {
//>>includeStart('debug', pragmas.debug);
Check.typeOf.number.greaterThanOrEquals("value", value, 0.0);
//>>includeEnd('debug');
this._emissionRate = value;
this._updateParticlePool = true;
},
},
/**
* Sets the minimum bound in meters per second above which a particle's actual speed will be randomly chosen.
* @memberof ParticleSystem.prototype
* @type {Number}
* @default 1.0
*/
minimumSpeed: {
get: function () {
return this._minimumSpeed;
},
set: function (value) {
//>>includeStart('debug', pragmas.debug);
Check.typeOf.number.greaterThanOrEquals("value", value, 0.0);
//>>includeEnd('debug');
this._minimumSpeed = value;
},
},
/**
* Sets the maximum bound in meters per second below which a particle's actual speed will be randomly chosen.
* @memberof ParticleSystem.prototype
* @type {Number}
* @default 1.0
*/
maximumSpeed: {
get: function () {
return this._maximumSpeed;
},
set: function (value) {
//>>includeStart('debug', pragmas.debug);
Check.typeOf.number.greaterThanOrEquals("value", value, 0.0);
//>>includeEnd('debug');
this._maximumSpeed = value;
},
},
/**
* Sets the minimum bound in seconds for the possible duration of a particle's life above which a particle's actual life will be randomly chosen.
* @memberof ParticleSystem.prototype
* @type {Number}
* @default 5.0
*/
minimumParticleLife: {
get: function () {
return this._minimumParticleLife;
},
set: function (value) {
//>>includeStart('debug', pragmas.debug);
Check.typeOf.number.greaterThanOrEquals("value", value, 0.0);
//>>includeEnd('debug');
this._minimumParticleLife = value;
},
},
/**
* Sets the maximum bound in seconds for the possible duration of a particle's life below which a particle's actual life will be randomly chosen.
* @memberof ParticleSystem.prototype
* @type {Number}
* @default 5.0
*/
maximumParticleLife: {
get: function () {
return this._maximumParticleLife;
},
set: function (value) {
//>>includeStart('debug', pragmas.debug);
Check.typeOf.number.greaterThanOrEquals("value", value, 0.0);
//>>includeEnd('debug');
this._maximumParticleLife = value;
this._updateParticlePool = true;
},
},
/**
* Sets the minimum mass of particles in kilograms.
* @memberof ParticleSystem.prototype
* @type {Number}
* @default 1.0
*/
minimumMass: {
get: function () {
return this._minimumMass;
},
set: function (value) {
//>>includeStart('debug', pragmas.debug);
Check.typeOf.number.greaterThanOrEquals("value", value, 0.0);
//>>includeEnd('debug');
this._minimumMass = value;
},
},
/**
* Sets the maximum mass of particles in kilograms.
* @memberof ParticleSystem.prototype
* @type {Number}
* @default 1.0
*/
maximumMass: {
get: function () {
return this._maximumMass;
},
set: function (value) {
//>>includeStart('debug', pragmas.debug);
Check.typeOf.number.greaterThanOrEquals("value", value, 0.0);
//>>includeEnd('debug');
this._maximumMass = value;
},
},
/**
* Sets the minimum bound, width by height, above which to randomly scale the particle image's dimensions in pixels.
* @memberof ParticleSystem.prototype
* @type {Cartesian2}
* @default new Cartesian2(1.0, 1.0)
*/
minimumImageSize: {
get: function () {
return this._minimumImageSize;
},
set: function (value) {
//>>includeStart('debug', pragmas.debug);
Check.typeOf.object("value", value);
Check.typeOf.number.greaterThanOrEquals("value.x", value.x, 0.0);
Check.typeOf.number.greaterThanOrEquals("value.y", value.y, 0.0);
//>>includeEnd('debug');
this._minimumImageSize = value;
},
},
/**
* Sets the maximum bound, width by height, below which to randomly scale the particle image's dimensions in pixels.
* @memberof ParticleSystem.prototype
* @type {Cartesian2}
* @default new Cartesian2(1.0, 1.0)
*/
maximumImageSize: {
get: function () {
return this._maximumImageSize;
},
set: function (value) {
//>>includeStart('debug', pragmas.debug);
Check.typeOf.object("value", value);
Check.typeOf.number.greaterThanOrEquals("value.x", value.x, 0.0);
Check.typeOf.number.greaterThanOrEquals("value.y", value.y, 0.0);
//>>includeEnd('debug');
this._maximumImageSize = value;
},
},
/**
* Gets or sets if the particle size is in meters or pixels. true
to size particles in meters; otherwise, the size is in pixels.
* @memberof ParticleSystem.prototype
* @type {Boolean}
* @default false
*/
sizeInMeters: {
get: function () {
return this._sizeInMeters;
},
set: function (value) {
//>>includeStart('debug', pragmas.debug);
Check.typeOf.bool("value", value);
//>>includeEnd('debug');
this._sizeInMeters = value;
},
},
/**
* How long the particle system will emit particles, in seconds.
* @memberof ParticleSystem.prototype
* @type {Number}
* @default Number.MAX_VALUE
*/
lifetime: {
get: function () {
return this._lifetime;
},
set: function (value) {
//>>includeStart('debug', pragmas.debug);
Check.typeOf.number.greaterThanOrEquals("value", value, 0.0);
//>>includeEnd('debug');
this._lifetime = value;
},
},
/**
* Fires an event when the particle system has reached the end of its lifetime.
* @memberof ParticleSystem.prototype
* @type {Event}
*/
complete: {
get: function () {
return this._complete;
},
},
/**
* When true
, the particle system has reached the end of its lifetime; false
otherwise.
* @memberof ParticleSystem.prototype
* @type {Boolean}
*/
isComplete: {
get: function () {
return this._isComplete;
},
},
});
function updateParticlePool(system) {
const emissionRate = system._emissionRate;
const life = system._maximumParticleLife;
let burstAmount = 0;
const bursts = system._bursts;
if (defined(bursts)) {
const length = bursts.length;
for (let i = 0; i < length; ++i) {
burstAmount += bursts[i].maximum;
}
}
const billboardCollection = system._billboardCollection;
const image = system.image;
const particleEstimate = Math.ceil(emissionRate * life + burstAmount);
const particles = system._particles;
const particlePool = system._particlePool;
const numToAdd = Math.max(
particleEstimate - particles.length - particlePool.length,
0
);
for (let j = 0; j < numToAdd; ++j) {
const particle = new Particle();
particle._billboard = billboardCollection.add({
image: image,
});
particlePool.push(particle);
}
system._particleEstimate = particleEstimate;
}
function getOrCreateParticle(system) {
// Try to reuse an existing particle from the pool.
let particle = system._particlePool.pop();
if (!defined(particle)) {
// Create a new one
particle = new Particle();
}
return particle;
}
function addParticleToPool(system, particle) {
system._particlePool.push(particle);
}
function freeParticlePool(system) {
const particles = system._particles;
const particlePool = system._particlePool;
const billboardCollection = system._billboardCollection;
const numParticles = particles.length;
const numInPool = particlePool.length;
const estimate = system._particleEstimate;
const start = numInPool - Math.max(estimate - numParticles - numInPool, 0);
for (let i = start; i < numInPool; ++i) {
const p = particlePool[i];
billboardCollection.remove(p._billboard);
}
particlePool.length = start;
}
function removeBillboard(particle) {
if (defined(particle._billboard)) {
particle._billboard.show = false;
}
}
function updateBillboard(system, particle) {
let billboard = particle._billboard;
if (!defined(billboard)) {
billboard = particle._billboard = system._billboardCollection.add({
image: particle.image,
});
}
billboard.width = particle.imageSize.x;
billboard.height = particle.imageSize.y;
billboard.position = particle.position;
billboard.sizeInMeters = system.sizeInMeters;
billboard.show = true;
// Update the color
const r = CesiumMath.lerp(
particle.startColor.red,
particle.endColor.red,
particle.normalizedAge
);
const g = CesiumMath.lerp(
particle.startColor.green,
particle.endColor.green,
particle.normalizedAge
);
const b = CesiumMath.lerp(
particle.startColor.blue,
particle.endColor.blue,
particle.normalizedAge
);
const a = CesiumMath.lerp(
particle.startColor.alpha,
particle.endColor.alpha,
particle.normalizedAge
);
billboard.color = new Color(r, g, b, a);
// Update the scale
billboard.scale = CesiumMath.lerp(
particle.startScale,
particle.endScale,
particle.normalizedAge
);
}
function addParticle(system, particle) {
particle.startColor = Color.clone(system._startColor, particle.startColor);
particle.endColor = Color.clone(system._endColor, particle.endColor);
particle.startScale = system._startScale;
particle.endScale = system._endScale;
particle.image = system.image;
particle.life = CesiumMath.randomBetween(
system._minimumParticleLife,
system._maximumParticleLife
);
particle.mass = CesiumMath.randomBetween(
system._minimumMass,
system._maximumMass
);
particle.imageSize.x = CesiumMath.randomBetween(
system._minimumImageSize.x,
system._maximumImageSize.x
);
particle.imageSize.y = CesiumMath.randomBetween(
system._minimumImageSize.y,
system._maximumImageSize.y
);
// Reset the normalizedAge and age in case the particle was reused.
particle._normalizedAge = 0.0;
particle._age = 0.0;
const speed = CesiumMath.randomBetween(
system._minimumSpeed,
system._maximumSpeed
);
Cartesian3.multiplyByScalar(particle.velocity, speed, particle.velocity);
system._particles.push(particle);
}
function calculateNumberToEmit(system, dt) {
// This emitter is finished if it exceeds it's lifetime.
if (system._isComplete) {
return 0;
}
dt = CesiumMath.mod(dt, system._lifetime);
// Compute the number of particles to emit based on the emissionRate.
const v = dt * system._emissionRate;
let numToEmit = Math.floor(v);
system._carryOver += v - numToEmit;
if (system._carryOver > 1.0) {
numToEmit++;
system._carryOver -= 1.0;
}
// Apply any bursts
if (defined(system.bursts)) {
const length = system.bursts.length;
for (let i = 0; i < length; i++) {
const burst = system.bursts[i];
const currentTime = system._currentTime;
if (defined(burst) && !burst._complete && currentTime > burst.time) {
numToEmit += CesiumMath.randomBetween(burst.minimum, burst.maximum);
burst._complete = true;
}
}
}
return numToEmit;
}
const rotatedVelocityScratch = new Cartesian3();
/**
* @private
*/
ParticleSystem.prototype.update = function (frameState) {
if (!this.show) {
return;
}
if (!defined(this._billboardCollection)) {
this._billboardCollection = new BillboardCollection();
}
if (this._updateParticlePool) {
updateParticlePool(this);
this._updateParticlePool = false;
}
// Compute the frame time
let dt = 0.0;
if (this._previousTime) {
dt = JulianDate.secondsDifference(frameState.time, this._previousTime);
}
if (dt < 0.0) {
dt = 0.0;
}
const particles = this._particles;
const emitter = this._emitter;
const updateCallback = this.updateCallback;
let i;
let particle;
// update particles and remove dead particles
let length = particles.length;
for (i = 0; i < length; ++i) {
particle = particles[i];
if (!particle.update(dt, updateCallback)) {
removeBillboard(particle);
// Add the particle back to the pool so it can be reused.
addParticleToPool(this, particle);
particles[i] = particles[length - 1];
--i;
--length;
} else {
updateBillboard(this, particle);
}
}
particles.length = length;
const numToEmit = calculateNumberToEmit(this, dt);
if (numToEmit > 0 && defined(emitter)) {
// Compute the final model matrix by combining the particle systems model matrix and the emitter matrix.
if (this._matrixDirty) {
this._combinedMatrix = Matrix4.multiply(
this.modelMatrix,
this.emitterModelMatrix,
this._combinedMatrix
);
this._matrixDirty = false;
}
const combinedMatrix = this._combinedMatrix;
for (i = 0; i < numToEmit; i++) {
// Create a new particle.
particle = getOrCreateParticle(this);
// Let the emitter initialize the particle.
this._emitter.emit(particle);
//For the velocity we need to add it to the original position and then multiply by point.
Cartesian3.add(
particle.position,
particle.velocity,
rotatedVelocityScratch
);
Matrix4.multiplyByPoint(
combinedMatrix,
rotatedVelocityScratch,
rotatedVelocityScratch
);
// Change the position to be in world coordinates
particle.position = Matrix4.multiplyByPoint(
combinedMatrix,
particle.position,
particle.position
);
// Orient the velocity in world space as well.
Cartesian3.subtract(
rotatedVelocityScratch,
particle.position,
particle.velocity
);
Cartesian3.normalize(particle.velocity, particle.velocity);
// Add the particle to the system.
addParticle(this, particle);
updateBillboard(this, particle);
}
}
this._billboardCollection.update(frameState);
this._previousTime = JulianDate.clone(frameState.time, this._previousTime);
this._currentTime += dt;
if (
this._lifetime !== Number.MAX_VALUE &&
this._currentTime > this._lifetime
) {
if (this.loop) {
this._currentTime = CesiumMath.mod(this._currentTime, this._lifetime);
if (this.bursts) {
const burstLength = this.bursts.length;
// Reset any bursts
for (i = 0; i < burstLength; i++) {
this.bursts[i]._complete = false;
}
}
} else {
this._isComplete = true;
this._complete.raiseEvent(this);
}
}
// free particles in the pool and release billboard GPU memory
if (frameState.frameNumber % 120 === 0) {
freeParticlePool(this);
}
};
/**
* Returns true if this object was destroyed; otherwise, false.
*
* If this object was destroyed, it should not be used; calling any function other than
* isDestroyed
will result in a {@link DeveloperError} exception.
*
* @returns {Boolean} true
if this object was destroyed; otherwise, false
.
*
* @see ParticleSystem#destroy
*/
ParticleSystem.prototype.isDestroyed = function () {
return false;
};
/**
* Destroys the WebGL resources held by this object. Destroying an object allows for deterministic
* release of WebGL resources, instead of relying on the garbage collector to destroy this object.
*
* Once an object is destroyed, it should not be used; calling any function other than
* isDestroyed
will result in a {@link DeveloperError} exception. Therefore,
* assign the return value (undefined
) to the object as done in the example.
*
* @exception {DeveloperError} This object was destroyed, i.e., destroy() was called.
*
* @see ParticleSystem#isDestroyed
*/
ParticleSystem.prototype.destroy = function () {
this._billboardCollection =
this._billboardCollection && this._billboardCollection.destroy();
return destroyObject(this);
};
/**
* A function used to modify attributes of the particle at each time step. This can include force modifications,
* color, sizing, etc.
*
* @callback ParticleSystem.updateCallback
*
* @param {Particle} particle The particle being updated.
* @param {Number} dt The time in seconds since the last update.
*
* @example
* function applyGravity(particle, dt) {
* const position = particle.position;
* const gravityVector = Cesium.Cartesian3.normalize(position, new Cesium.Cartesian3());
* Cesium.Cartesian3.multiplyByScalar(gravityVector, GRAVITATIONAL_CONSTANT * dt, gravityVector);
* particle.velocity = Cesium.Cartesian3.add(particle.velocity, gravityVector, particle.velocity);
* }
*/
export default ParticleSystem;