import Cartesian2 from "../Core/Cartesian2.js";
import Cartesian3 from "../Core/Cartesian3.js";
import Cartesian4 from "../Core/Cartesian4.js";
import Cartographic from "../Core/Cartographic.js";
import defaultValue from "../Core/defaultValue.js";
import defined from "../Core/defined.js";
import destroyObject from "../Core/destroyObject.js";
import DeveloperError from "../Core/DeveloperError.js";
import Ellipsoid from "../Core/Ellipsoid.js";
import HeadingPitchRoll from "../Core/HeadingPitchRoll.js";
import IntersectionTests from "../Core/IntersectionTests.js";
import KeyboardEventModifier from "../Core/KeyboardEventModifier.js";
import CesiumMath from "../Core/Math.js";
import Matrix3 from "../Core/Matrix3.js";
import Matrix4 from "../Core/Matrix4.js";
import OrthographicFrustum from "../Core/OrthographicFrustum.js";
import Plane from "../Core/Plane.js";
import Quaternion from "../Core/Quaternion.js";
import Ray from "../Core/Ray.js";
import TerrainExaggeration from "../Core/TerrainExaggeration.js";
import Transforms from "../Core/Transforms.js";
import CameraEventAggregator from "./CameraEventAggregator.js";
import CameraEventType from "./CameraEventType.js";
import MapMode2D from "./MapMode2D.js";
import SceneMode from "./SceneMode.js";
import SceneTransforms from "./SceneTransforms.js";
import TweenCollection from "./TweenCollection.js";
/**
* Modifies the camera position and orientation based on mouse input to a canvas.
* @alias ScreenSpaceCameraController
* @constructor
*
* @param {Scene} scene The scene.
*/
function ScreenSpaceCameraController(scene) {
//>>includeStart('debug', pragmas.debug);
if (!defined(scene)) {
throw new DeveloperError("scene is required.");
}
//>>includeEnd('debug');
/**
* If true, inputs are allowed conditionally with the flags enableTranslate, enableZoom,
* enableRotate, enableTilt, and enableLook. If false, all inputs are disabled.
*
* NOTE: This setting is for temporary use cases, such as camera flights and
* drag-selection of regions (see Picking demo). It is typically set to false at the
* start of such events, and set true on completion. To keep inputs disabled
* past the end of camera flights, you must use the other booleans (enableTranslate,
* enableZoom, enableRotate, enableTilt, and enableLook).
* @type {Boolean}
* @default true
*/
this.enableInputs = true;
/**
* If true, allows the user to pan around the map. If false, the camera stays locked at the current position.
* This flag only applies in 2D and Columbus view modes.
* @type {Boolean}
* @default true
*/
this.enableTranslate = true;
/**
* If true, allows the user to zoom in and out. If false, the camera is locked to the current distance from the ellipsoid.
* @type {Boolean}
* @default true
*/
this.enableZoom = true;
/**
* If true, allows the user to rotate the world which translates the user's position.
* This flag only applies in 2D and 3D.
* @type {Boolean}
* @default true
*/
this.enableRotate = true;
/**
* If true, allows the user to tilt the camera. If false, the camera is locked to the current heading.
* This flag only applies in 3D and Columbus view.
* @type {Boolean}
* @default true
*/
this.enableTilt = true;
/**
* If true, allows the user to use free-look. If false, the camera view direction can only be changed through translating
* or rotating. This flag only applies in 3D and Columbus view modes.
* @type {Boolean}
* @default true
*/
this.enableLook = true;
/**
* A parameter in the range [0, 1)
used to determine how long
* the camera will continue to spin because of inertia.
* With value of zero, the camera will have no inertia.
* @type {Number}
* @default 0.9
*/
this.inertiaSpin = 0.9;
/**
* A parameter in the range [0, 1)
used to determine how long
* the camera will continue to translate because of inertia.
* With value of zero, the camera will have no inertia.
* @type {Number}
* @default 0.9
*/
this.inertiaTranslate = 0.9;
/**
* A parameter in the range [0, 1)
used to determine how long
* the camera will continue to zoom because of inertia.
* With value of zero, the camera will have no inertia.
* @type {Number}
* @default 0.8
*/
this.inertiaZoom = 0.8;
/**
* A parameter in the range [0, 1)
used to limit the range
* of various user inputs to a percentage of the window width/height per animation frame.
* This helps keep the camera under control in low-frame-rate situations.
* @type {Number}
* @default 0.1
*/
this.maximumMovementRatio = 0.1;
/**
* Sets the duration, in seconds, of the bounce back animations in 2D and Columbus view.
* @type {Number}
* @default 3.0
*/
this.bounceAnimationTime = 3.0;
/**
* The minimum magnitude, in meters, of the camera position when zooming. Defaults to 1.0.
* @type {Number}
* @default 1.0
*/
this.minimumZoomDistance = 1.0;
/**
* The maximum magnitude, in meters, of the camera position when zooming. Defaults to positive infinity.
* @type {Number}
* @default {@link Number.POSITIVE_INFINITY}
*/
this.maximumZoomDistance = Number.POSITIVE_INFINITY;
/**
* The input that allows the user to pan around the map. This only applies in 2D and Columbus view modes.
*
* The type came be a {@link CameraEventType}, undefined
, an object with eventType
* and modifier
properties with types CameraEventType
and {@link KeyboardEventModifier},
* or an array of any of the preceding.
*
* @type {CameraEventType|Array|undefined}
* @default {@link CameraEventType.LEFT_DRAG}
*/
this.translateEventTypes = CameraEventType.LEFT_DRAG;
/**
* The input that allows the user to zoom in/out.
*
* The type came be a {@link CameraEventType}, undefined
, an object with eventType
* and modifier
properties with types CameraEventType
and {@link KeyboardEventModifier},
* or an array of any of the preceding.
*
* @type {CameraEventType|Array|undefined}
* @default [{@link CameraEventType.RIGHT_DRAG}, {@link CameraEventType.WHEEL}, {@link CameraEventType.PINCH}]
*/
this.zoomEventTypes = [
CameraEventType.RIGHT_DRAG,
CameraEventType.WHEEL,
CameraEventType.PINCH,
];
/**
* The input that allows the user to rotate around the globe or another object. This only applies in 3D and Columbus view modes.
*
* The type came be a {@link CameraEventType}, undefined
, an object with eventType
* and modifier
properties with types CameraEventType
and {@link KeyboardEventModifier},
* or an array of any of the preceding.
*
* @type {CameraEventType|Array|undefined}
* @default {@link CameraEventType.LEFT_DRAG}
*/
this.rotateEventTypes = CameraEventType.LEFT_DRAG;
/**
* The input that allows the user to tilt in 3D and Columbus view or twist in 2D.
*
* The type came be a {@link CameraEventType}, undefined
, an object with eventType
* and modifier
properties with types CameraEventType
and {@link KeyboardEventModifier},
* or an array of any of the preceding.
*
* @type {CameraEventType|Array|undefined}
* @default [{@link CameraEventType.MIDDLE_DRAG}, {@link CameraEventType.PINCH}, {
* eventType : {@link CameraEventType.LEFT_DRAG},
* modifier : {@link KeyboardEventModifier.CTRL}
* }, {
* eventType : {@link CameraEventType.RIGHT_DRAG},
* modifier : {@link KeyboardEventModifier.CTRL}
* }]
*/
this.tiltEventTypes = [
CameraEventType.MIDDLE_DRAG,
CameraEventType.PINCH,
{
eventType: CameraEventType.LEFT_DRAG,
modifier: KeyboardEventModifier.CTRL,
},
{
eventType: CameraEventType.RIGHT_DRAG,
modifier: KeyboardEventModifier.CTRL,
},
];
/**
* The input that allows the user to change the direction the camera is viewing. This only applies in 3D and Columbus view modes.
*
* The type came be a {@link CameraEventType}, undefined
, an object with eventType
* and modifier
properties with types CameraEventType
and {@link KeyboardEventModifier},
* or an array of any of the preceding.
*
* @type {CameraEventType|Array|undefined}
* @default { eventType : {@link CameraEventType.LEFT_DRAG}, modifier : {@link KeyboardEventModifier.SHIFT} }
*/
this.lookEventTypes = {
eventType: CameraEventType.LEFT_DRAG,
modifier: KeyboardEventModifier.SHIFT,
};
/**
* The minimum height the camera must be before picking the terrain instead of the ellipsoid.
* @type {Number}
* @default 150000.0
*/
this.minimumPickingTerrainHeight = 150000.0;
this._minimumPickingTerrainHeight = this.minimumPickingTerrainHeight;
/**
* The minimum height the camera must be before testing for collision with terrain.
* @type {Number}
* @default 15000.0
*/
this.minimumCollisionTerrainHeight = 15000.0;
this._minimumCollisionTerrainHeight = this.minimumCollisionTerrainHeight;
/**
* The minimum height the camera must be before switching from rotating a track ball to
* free look when clicks originate on the sky or in space.
* @type {Number}
* @default 7500000.0
*/
this.minimumTrackBallHeight = 7500000.0;
this._minimumTrackBallHeight = this.minimumTrackBallHeight;
/**
* Enables or disables camera collision detection with terrain.
* @type {Boolean}
* @default true
*/
this.enableCollisionDetection = true;
this._scene = scene;
this._globe = undefined;
this._ellipsoid = undefined;
this._aggregator = new CameraEventAggregator(scene.canvas);
this._lastInertiaSpinMovement = undefined;
this._lastInertiaZoomMovement = undefined;
this._lastInertiaTranslateMovement = undefined;
this._lastInertiaTiltMovement = undefined;
// Zoom disables tilt, spin, and translate inertia
// Tilt disables spin and translate inertia
this._inertiaDisablers = {
_lastInertiaZoomMovement: [
"_lastInertiaSpinMovement",
"_lastInertiaTranslateMovement",
"_lastInertiaTiltMovement",
],
_lastInertiaTiltMovement: [
"_lastInertiaSpinMovement",
"_lastInertiaTranslateMovement",
],
};
this._tweens = new TweenCollection();
this._tween = undefined;
this._horizontalRotationAxis = undefined;
this._tiltCenterMousePosition = new Cartesian2(-1.0, -1.0);
this._tiltCenter = new Cartesian3();
this._rotateMousePosition = new Cartesian2(-1.0, -1.0);
this._rotateStartPosition = new Cartesian3();
this._strafeStartPosition = new Cartesian3();
this._strafeMousePosition = new Cartesian2();
this._strafeEndMousePosition = new Cartesian2();
this._zoomMouseStart = new Cartesian2(-1.0, -1.0);
this._zoomWorldPosition = new Cartesian3();
this._useZoomWorldPosition = false;
this._tiltCVOffMap = false;
this._looking = false;
this._rotating = false;
this._strafing = false;
this._zoomingOnVector = false;
this._zoomingUnderground = false;
this._rotatingZoom = false;
this._adjustedHeightForTerrain = false;
this._cameraUnderground = false;
const projection = scene.mapProjection;
this._maxCoord = projection.project(
new Cartographic(Math.PI, CesiumMath.PI_OVER_TWO)
);
// Constants, Make any of these public?
this._zoomFactor = 5.0;
this._rotateFactor = undefined;
this._rotateRateRangeAdjustment = undefined;
this._maximumRotateRate = 1.77;
this._minimumRotateRate = 1.0 / 5000.0;
this._minimumZoomRate = 20.0;
this._maximumZoomRate = 5906376272000.0; // distance from the Sun to Pluto in meters.
this._minimumUndergroundPickDistance = 2000.0;
this._maximumUndergroundPickDistance = 10000.0;
}
function decay(time, coefficient) {
if (time < 0) {
return 0.0;
}
const tau = (1.0 - coefficient) * 25.0;
return Math.exp(-tau * time);
}
function sameMousePosition(movement) {
return Cartesian2.equalsEpsilon(
movement.startPosition,
movement.endPosition,
CesiumMath.EPSILON14
);
}
// If the time between mouse down and mouse up is not between
// these thresholds, the camera will not move with inertia.
// This value is probably dependent on the browser and/or the
// hardware. Should be investigated further.
const inertiaMaxClickTimeThreshold = 0.4;
function maintainInertia(
aggregator,
type,
modifier,
decayCoef,
action,
object,
lastMovementName
) {
let movementState = object[lastMovementName];
if (!defined(movementState)) {
movementState = object[lastMovementName] = {
startPosition: new Cartesian2(),
endPosition: new Cartesian2(),
motion: new Cartesian2(),
inertiaEnabled: true,
};
}
const ts = aggregator.getButtonPressTime(type, modifier);
const tr = aggregator.getButtonReleaseTime(type, modifier);
const threshold = ts && tr && (tr.getTime() - ts.getTime()) / 1000.0;
const now = new Date();
const fromNow = tr && (now.getTime() - tr.getTime()) / 1000.0;
if (ts && tr && threshold < inertiaMaxClickTimeThreshold) {
const d = decay(fromNow, decayCoef);
const lastMovement = aggregator.getLastMovement(type, modifier);
if (
!defined(lastMovement) ||
sameMousePosition(lastMovement) ||
!movementState.inertiaEnabled
) {
return;
}
movementState.motion.x =
(lastMovement.endPosition.x - lastMovement.startPosition.x) * 0.5;
movementState.motion.y =
(lastMovement.endPosition.y - lastMovement.startPosition.y) * 0.5;
movementState.startPosition = Cartesian2.clone(
lastMovement.startPosition,
movementState.startPosition
);
movementState.endPosition = Cartesian2.multiplyByScalar(
movementState.motion,
d,
movementState.endPosition
);
movementState.endPosition = Cartesian2.add(
movementState.startPosition,
movementState.endPosition,
movementState.endPosition
);
// If value from the decreasing exponential function is close to zero,
// the end coordinates may be NaN.
if (
isNaN(movementState.endPosition.x) ||
isNaN(movementState.endPosition.y) ||
Cartesian2.distance(
movementState.startPosition,
movementState.endPosition
) < 0.5
) {
return;
}
if (!aggregator.isButtonDown(type, modifier)) {
const startPosition = aggregator.getStartMousePosition(type, modifier);
action(object, startPosition, movementState);
}
}
}
function activateInertia(controller, inertiaStateName) {
if (defined(inertiaStateName)) {
// Re-enable inertia if it was disabled
let movementState = controller[inertiaStateName];
if (defined(movementState)) {
movementState.inertiaEnabled = true;
}
// Disable inertia on other movements
const inertiasToDisable = controller._inertiaDisablers[inertiaStateName];
if (defined(inertiasToDisable)) {
const length = inertiasToDisable.length;
for (let i = 0; i < length; ++i) {
movementState = controller[inertiasToDisable[i]];
if (defined(movementState)) {
movementState.inertiaEnabled = false;
}
}
}
}
}
const scratchEventTypeArray = [];
function reactToInput(
controller,
enabled,
eventTypes,
action,
inertiaConstant,
inertiaStateName
) {
if (!defined(eventTypes)) {
return;
}
const aggregator = controller._aggregator;
if (!Array.isArray(eventTypes)) {
scratchEventTypeArray[0] = eventTypes;
eventTypes = scratchEventTypeArray;
}
const length = eventTypes.length;
for (let i = 0; i < length; ++i) {
const eventType = eventTypes[i];
const type = defined(eventType.eventType) ? eventType.eventType : eventType;
const modifier = eventType.modifier;
const movement =
aggregator.isMoving(type, modifier) &&
aggregator.getMovement(type, modifier);
const startPosition = aggregator.getStartMousePosition(type, modifier);
if (controller.enableInputs && enabled) {
if (movement) {
action(controller, startPosition, movement);
activateInertia(controller, inertiaStateName);
} else if (inertiaConstant < 1.0) {
maintainInertia(
aggregator,
type,
modifier,
inertiaConstant,
action,
controller,
inertiaStateName
);
}
}
}
}
const scratchZoomPickRay = new Ray();
const scratchPickCartesian = new Cartesian3();
const scratchZoomOffset = new Cartesian2();
const scratchZoomDirection = new Cartesian3();
const scratchCenterPixel = new Cartesian2();
const scratchCenterPosition = new Cartesian3();
const scratchPositionNormal = new Cartesian3();
const scratchPickNormal = new Cartesian3();
const scratchZoomAxis = new Cartesian3();
const scratchCameraPositionNormal = new Cartesian3();
// Scratch variables used in zooming algorithm
const scratchTargetNormal = new Cartesian3();
const scratchCameraPosition = new Cartesian3();
const scratchCameraUpNormal = new Cartesian3();
const scratchCameraRightNormal = new Cartesian3();
const scratchForwardNormal = new Cartesian3();
const scratchPositionToTarget = new Cartesian3();
const scratchPositionToTargetNormal = new Cartesian3();
const scratchPan = new Cartesian3();
const scratchCenterMovement = new Cartesian3();
const scratchCenter = new Cartesian3();
const scratchCartesian = new Cartesian3();
const scratchCartesianTwo = new Cartesian3();
const scratchCartesianThree = new Cartesian3();
const scratchZoomViewOptions = {
orientation: new HeadingPitchRoll(),
};
function handleZoom(
object,
startPosition,
movement,
zoomFactor,
distanceMeasure,
unitPositionDotDirection
) {
let percentage = 1.0;
if (defined(unitPositionDotDirection)) {
percentage = CesiumMath.clamp(
Math.abs(unitPositionDotDirection),
0.25,
1.0
);
}
const diff = movement.endPosition.y - movement.startPosition.y;
// distanceMeasure should be the height above the ellipsoid.
// When approaching the surface, the zoomRate slows and stops minimumZoomDistance above it.
const approachingSurface = diff > 0;
const minHeight = approachingSurface
? object.minimumZoomDistance * percentage
: 0;
const maxHeight = object.maximumZoomDistance;
const minDistance = distanceMeasure - minHeight;
let zoomRate = zoomFactor * minDistance;
zoomRate = CesiumMath.clamp(
zoomRate,
object._minimumZoomRate,
object._maximumZoomRate
);
let rangeWindowRatio = diff / object._scene.canvas.clientHeight;
rangeWindowRatio = Math.min(rangeWindowRatio, object.maximumMovementRatio);
let distance = zoomRate * rangeWindowRatio;
if (
object.enableCollisionDetection ||
object.minimumZoomDistance === 0.0 ||
!defined(object._globe) // look-at mode
) {
if (distance > 0.0 && Math.abs(distanceMeasure - minHeight) < 1.0) {
return;
}
if (distance < 0.0 && Math.abs(distanceMeasure - maxHeight) < 1.0) {
return;
}
if (distanceMeasure - distance < minHeight) {
distance = distanceMeasure - minHeight - 1.0;
} else if (distanceMeasure - distance > maxHeight) {
distance = distanceMeasure - maxHeight;
}
}
const scene = object._scene;
const camera = scene.camera;
const mode = scene.mode;
const orientation = scratchZoomViewOptions.orientation;
orientation.heading = camera.heading;
orientation.pitch = camera.pitch;
orientation.roll = camera.roll;
if (camera.frustum instanceof OrthographicFrustum) {
if (Math.abs(distance) > 0.0) {
camera.zoomIn(distance);
camera._adjustOrthographicFrustum();
}
return;
}
const sameStartPosition = Cartesian2.equals(
startPosition,
object._zoomMouseStart
);
let zoomingOnVector = object._zoomingOnVector;
let rotatingZoom = object._rotatingZoom;
let pickedPosition;
if (!sameStartPosition) {
object._zoomMouseStart = Cartesian2.clone(
startPosition,
object._zoomMouseStart
);
if (defined(object._globe)) {
if (mode === SceneMode.SCENE2D) {
pickedPosition = camera.getPickRay(startPosition, scratchZoomPickRay)
.origin;
pickedPosition = Cartesian3.fromElements(
pickedPosition.y,
pickedPosition.z,
pickedPosition.x
);
} else {
pickedPosition = pickGlobe(object, startPosition, scratchPickCartesian);
}
}
if (defined(pickedPosition)) {
object._useZoomWorldPosition = true;
object._zoomWorldPosition = Cartesian3.clone(
pickedPosition,
object._zoomWorldPosition
);
} else {
object._useZoomWorldPosition = false;
}
zoomingOnVector = object._zoomingOnVector = false;
rotatingZoom = object._rotatingZoom = false;
object._zoomingUnderground = object._cameraUnderground;
}
if (!object._useZoomWorldPosition) {
camera.zoomIn(distance);
return;
}
let zoomOnVector = mode === SceneMode.COLUMBUS_VIEW;
if (camera.positionCartographic.height < 2000000) {
rotatingZoom = true;
}
if (!sameStartPosition || rotatingZoom) {
if (mode === SceneMode.SCENE2D) {
const worldPosition = object._zoomWorldPosition;
const endPosition = camera.position;
if (
!Cartesian3.equals(worldPosition, endPosition) &&
camera.positionCartographic.height < object._maxCoord.x * 2.0
) {
const savedX = camera.position.x;
const direction = Cartesian3.subtract(
worldPosition,
endPosition,
scratchZoomDirection
);
Cartesian3.normalize(direction, direction);
const d =
(Cartesian3.distance(worldPosition, endPosition) * distance) /
(camera.getMagnitude() * 0.5);
camera.move(direction, d * 0.5);
if (
(camera.position.x < 0.0 && savedX > 0.0) ||
(camera.position.x > 0.0 && savedX < 0.0)
) {
pickedPosition = camera.getPickRay(startPosition, scratchZoomPickRay)
.origin;
pickedPosition = Cartesian3.fromElements(
pickedPosition.y,
pickedPosition.z,
pickedPosition.x
);
object._zoomWorldPosition = Cartesian3.clone(
pickedPosition,
object._zoomWorldPosition
);
}
}
} else if (mode === SceneMode.SCENE3D) {
const cameraPositionNormal = Cartesian3.normalize(
camera.position,
scratchCameraPositionNormal
);
if (
object._cameraUnderground ||
object._zoomingUnderground ||
(camera.positionCartographic.height < 3000.0 &&
Math.abs(Cartesian3.dot(camera.direction, cameraPositionNormal)) <
0.6)
) {
zoomOnVector = true;
} else {
const canvas = scene.canvas;
const centerPixel = scratchCenterPixel;
centerPixel.x = canvas.clientWidth / 2;
centerPixel.y = canvas.clientHeight / 2;
const centerPosition = pickGlobe(
object,
centerPixel,
scratchCenterPosition
);
// If centerPosition is not defined, it means the globe does not cover the center position of screen
if (!defined(centerPosition)) {
zoomOnVector = true;
} else if (camera.positionCartographic.height < 1000000) {
// The math in the else block assumes the camera
// points toward the earth surface, so we check it here.
// Theoretically, we should check for 90 degree, but it doesn't behave well when parallel
// to the earth surface
if (Cartesian3.dot(camera.direction, cameraPositionNormal) >= -0.5) {
zoomOnVector = true;
} else {
const cameraPosition = scratchCameraPosition;
Cartesian3.clone(camera.position, cameraPosition);
const target = object._zoomWorldPosition;
let targetNormal = scratchTargetNormal;
targetNormal = Cartesian3.normalize(target, targetNormal);
if (Cartesian3.dot(targetNormal, cameraPositionNormal) < 0.0) {
return;
}
const center = scratchCenter;
const forward = scratchForwardNormal;
Cartesian3.clone(camera.direction, forward);
Cartesian3.add(
cameraPosition,
Cartesian3.multiplyByScalar(forward, 1000, scratchCartesian),
center
);
const positionToTarget = scratchPositionToTarget;
const positionToTargetNormal = scratchPositionToTargetNormal;
Cartesian3.subtract(target, cameraPosition, positionToTarget);
Cartesian3.normalize(positionToTarget, positionToTargetNormal);
const alphaDot = Cartesian3.dot(
cameraPositionNormal,
positionToTargetNormal
);
if (alphaDot >= 0.0) {
// We zoomed past the target, and this zoom is not valid anymore.
// This line causes the next zoom movement to pick a new starting point.
object._zoomMouseStart.x = -1;
return;
}
const alpha = Math.acos(-alphaDot);
const cameraDistance = Cartesian3.magnitude(cameraPosition);
const targetDistance = Cartesian3.magnitude(target);
const remainingDistance = cameraDistance - distance;
const positionToTargetDistance = Cartesian3.magnitude(
positionToTarget
);
const gamma = Math.asin(
CesiumMath.clamp(
(positionToTargetDistance / targetDistance) * Math.sin(alpha),
-1.0,
1.0
)
);
const delta = Math.asin(
CesiumMath.clamp(
(remainingDistance / targetDistance) * Math.sin(alpha),
-1.0,
1.0
)
);
const beta = gamma - delta + alpha;
const up = scratchCameraUpNormal;
Cartesian3.normalize(cameraPosition, up);
let right = scratchCameraRightNormal;
right = Cartesian3.cross(positionToTargetNormal, up, right);
right = Cartesian3.normalize(right, right);
Cartesian3.normalize(
Cartesian3.cross(up, right, scratchCartesian),
forward
);
// Calculate new position to move to
Cartesian3.multiplyByScalar(
Cartesian3.normalize(center, scratchCartesian),
Cartesian3.magnitude(center) - distance,
center
);
Cartesian3.normalize(cameraPosition, cameraPosition);
Cartesian3.multiplyByScalar(
cameraPosition,
remainingDistance,
cameraPosition
);
// Pan
const pMid = scratchPan;
Cartesian3.multiplyByScalar(
Cartesian3.add(
Cartesian3.multiplyByScalar(
up,
Math.cos(beta) - 1,
scratchCartesianTwo
),
Cartesian3.multiplyByScalar(
forward,
Math.sin(beta),
scratchCartesianThree
),
scratchCartesian
),
remainingDistance,
pMid
);
Cartesian3.add(cameraPosition, pMid, cameraPosition);
Cartesian3.normalize(center, up);
Cartesian3.normalize(
Cartesian3.cross(up, right, scratchCartesian),
forward
);
const cMid = scratchCenterMovement;
Cartesian3.multiplyByScalar(
Cartesian3.add(
Cartesian3.multiplyByScalar(
up,
Math.cos(beta) - 1,
scratchCartesianTwo
),
Cartesian3.multiplyByScalar(
forward,
Math.sin(beta),
scratchCartesianThree
),
scratchCartesian
),
Cartesian3.magnitude(center),
cMid
);
Cartesian3.add(center, cMid, center);
// Update camera
// Set new position
Cartesian3.clone(cameraPosition, camera.position);
// Set new direction
Cartesian3.normalize(
Cartesian3.subtract(center, cameraPosition, scratchCartesian),
camera.direction
);
Cartesian3.clone(camera.direction, camera.direction);
// Set new right & up vectors
Cartesian3.cross(camera.direction, camera.up, camera.right);
Cartesian3.cross(camera.right, camera.direction, camera.up);
camera.setView(scratchZoomViewOptions);
return;
}
} else {
const positionNormal = Cartesian3.normalize(
centerPosition,
scratchPositionNormal
);
const pickedNormal = Cartesian3.normalize(
object._zoomWorldPosition,
scratchPickNormal
);
const dotProduct = Cartesian3.dot(pickedNormal, positionNormal);
if (dotProduct > 0.0 && dotProduct < 1.0) {
const angle = CesiumMath.acosClamped(dotProduct);
const axis = Cartesian3.cross(
pickedNormal,
positionNormal,
scratchZoomAxis
);
const denom =
Math.abs(angle) > CesiumMath.toRadians(20.0)
? camera.positionCartographic.height * 0.75
: camera.positionCartographic.height - distance;
const scalar = distance / denom;
camera.rotate(axis, angle * scalar);
}
}
}
}
object._rotatingZoom = !zoomOnVector;
}
if ((!sameStartPosition && zoomOnVector) || zoomingOnVector) {
let ray;
const zoomMouseStart = SceneTransforms.wgs84ToWindowCoordinates(
scene,
object._zoomWorldPosition,
scratchZoomOffset
);
if (
mode !== SceneMode.COLUMBUS_VIEW &&
Cartesian2.equals(startPosition, object._zoomMouseStart) &&
defined(zoomMouseStart)
) {
ray = camera.getPickRay(zoomMouseStart, scratchZoomPickRay);
} else {
ray = camera.getPickRay(startPosition, scratchZoomPickRay);
}
const rayDirection = ray.direction;
if (mode === SceneMode.COLUMBUS_VIEW || mode === SceneMode.SCENE2D) {
Cartesian3.fromElements(
rayDirection.y,
rayDirection.z,
rayDirection.x,
rayDirection
);
}
camera.move(rayDirection, distance);
object._zoomingOnVector = true;
} else {
camera.zoomIn(distance);
}
if (!object._cameraUnderground) {
camera.setView(scratchZoomViewOptions);
}
}
const translate2DStart = new Ray();
const translate2DEnd = new Ray();
const scratchTranslateP0 = new Cartesian3();
function translate2D(controller, startPosition, movement) {
const scene = controller._scene;
const camera = scene.camera;
let start = camera.getPickRay(movement.startPosition, translate2DStart)
.origin;
let end = camera.getPickRay(movement.endPosition, translate2DEnd).origin;
start = Cartesian3.fromElements(start.y, start.z, start.x, start);
end = Cartesian3.fromElements(end.y, end.z, end.x, end);
const direction = Cartesian3.subtract(start, end, scratchTranslateP0);
const distance = Cartesian3.magnitude(direction);
if (distance > 0.0) {
Cartesian3.normalize(direction, direction);
camera.move(direction, distance);
}
}
function zoom2D(controller, startPosition, movement) {
if (defined(movement.distance)) {
movement = movement.distance;
}
const scene = controller._scene;
const camera = scene.camera;
handleZoom(
controller,
startPosition,
movement,
controller._zoomFactor,
camera.getMagnitude()
);
}
const twist2DStart = new Cartesian2();
const twist2DEnd = new Cartesian2();
function twist2D(controller, startPosition, movement) {
if (defined(movement.angleAndHeight)) {
singleAxisTwist2D(controller, startPosition, movement.angleAndHeight);
return;
}
const scene = controller._scene;
const camera = scene.camera;
const canvas = scene.canvas;
const width = canvas.clientWidth;
const height = canvas.clientHeight;
let start = twist2DStart;
start.x = (2.0 / width) * movement.startPosition.x - 1.0;
start.y = (2.0 / height) * (height - movement.startPosition.y) - 1.0;
start = Cartesian2.normalize(start, start);
let end = twist2DEnd;
end.x = (2.0 / width) * movement.endPosition.x - 1.0;
end.y = (2.0 / height) * (height - movement.endPosition.y) - 1.0;
end = Cartesian2.normalize(end, end);
let startTheta = CesiumMath.acosClamped(start.x);
if (start.y < 0) {
startTheta = CesiumMath.TWO_PI - startTheta;
}
let endTheta = CesiumMath.acosClamped(end.x);
if (end.y < 0) {
endTheta = CesiumMath.TWO_PI - endTheta;
}
const theta = endTheta - startTheta;
camera.twistRight(theta);
}
function singleAxisTwist2D(controller, startPosition, movement) {
let rotateRate =
controller._rotateFactor * controller._rotateRateRangeAdjustment;
if (rotateRate > controller._maximumRotateRate) {
rotateRate = controller._maximumRotateRate;
}
if (rotateRate < controller._minimumRotateRate) {
rotateRate = controller._minimumRotateRate;
}
const scene = controller._scene;
const camera = scene.camera;
const canvas = scene.canvas;
let phiWindowRatio =
(movement.endPosition.x - movement.startPosition.x) / canvas.clientWidth;
phiWindowRatio = Math.min(phiWindowRatio, controller.maximumMovementRatio);
const deltaPhi = rotateRate * phiWindowRatio * Math.PI * 4.0;
camera.twistRight(deltaPhi);
}
function update2D(controller) {
const rotatable2D = controller._scene.mapMode2D === MapMode2D.ROTATE;
if (!Matrix4.equals(Matrix4.IDENTITY, controller._scene.camera.transform)) {
reactToInput(
controller,
controller.enableZoom,
controller.zoomEventTypes,
zoom2D,
controller.inertiaZoom,
"_lastInertiaZoomMovement"
);
if (rotatable2D) {
reactToInput(
controller,
controller.enableRotate,
controller.translateEventTypes,
twist2D,
controller.inertiaSpin,
"_lastInertiaSpinMovement"
);
}
} else {
reactToInput(
controller,
controller.enableTranslate,
controller.translateEventTypes,
translate2D,
controller.inertiaTranslate,
"_lastInertiaTranslateMovement"
);
reactToInput(
controller,
controller.enableZoom,
controller.zoomEventTypes,
zoom2D,
controller.inertiaZoom,
"_lastInertiaZoomMovement"
);
if (rotatable2D) {
reactToInput(
controller,
controller.enableRotate,
controller.tiltEventTypes,
twist2D,
controller.inertiaSpin,
"_lastInertiaTiltMovement"
);
}
}
}
const pickGlobeScratchRay = new Ray();
const scratchDepthIntersection = new Cartesian3();
const scratchRayIntersection = new Cartesian3();
function pickGlobe(controller, mousePosition, result) {
const scene = controller._scene;
const globe = controller._globe;
const camera = scene.camera;
if (!defined(globe)) {
return undefined;
}
const cullBackFaces = !controller._cameraUnderground;
let depthIntersection;
if (scene.pickPositionSupported) {
depthIntersection = scene.pickPositionWorldCoordinates(
mousePosition,
scratchDepthIntersection
);
}
const ray = camera.getPickRay(mousePosition, pickGlobeScratchRay);
const rayIntersection = globe.pickWorldCoordinates(
ray,
scene,
cullBackFaces,
scratchRayIntersection
);
const pickDistance = defined(depthIntersection)
? Cartesian3.distance(depthIntersection, camera.positionWC)
: Number.POSITIVE_INFINITY;
const rayDistance = defined(rayIntersection)
? Cartesian3.distance(rayIntersection, camera.positionWC)
: Number.POSITIVE_INFINITY;
if (pickDistance < rayDistance) {
return Cartesian3.clone(depthIntersection, result);
}
return Cartesian3.clone(rayIntersection, result);
}
const scratchDistanceCartographic = new Cartographic();
function getDistanceFromSurface(controller) {
const ellipsoid = controller._ellipsoid;
const scene = controller._scene;
const camera = scene.camera;
const mode = scene.mode;
let height = 0.0;
if (mode === SceneMode.SCENE3D) {
const cartographic = ellipsoid.cartesianToCartographic(
camera.position,
scratchDistanceCartographic
);
if (defined(cartographic)) {
height = cartographic.height;
}
} else {
height = camera.position.z;
}
const globeHeight = defaultValue(controller._scene.globeHeight, 0.0);
const distanceFromSurface = Math.abs(globeHeight - height);
return distanceFromSurface;
}
const scratchSurfaceNormal = new Cartesian3();
function getZoomDistanceUnderground(controller, ray) {
const origin = ray.origin;
const direction = ray.direction;
const distanceFromSurface = getDistanceFromSurface(controller);
// Weight zoom distance based on how strongly the pick ray is pointing inward.
// Geocentric normal is accurate enough for these purposes
const surfaceNormal = Cartesian3.normalize(origin, scratchSurfaceNormal);
let strength = Math.abs(Cartesian3.dot(surfaceNormal, direction));
strength = Math.max(strength, 0.5) * 2.0;
return distanceFromSurface * strength;
}
function getTiltCenterUnderground(controller, ray, pickedPosition, result) {
let distance = Cartesian3.distance(ray.origin, pickedPosition);
const distanceFromSurface = getDistanceFromSurface(controller);
const maximumDistance = CesiumMath.clamp(
distanceFromSurface * 5.0,
controller._minimumUndergroundPickDistance,
controller._maximumUndergroundPickDistance
);
if (distance > maximumDistance) {
// Simulate look-at behavior by tilting around a small invisible sphere
distance = Math.min(distance, distanceFromSurface / 5.0);
distance = Math.max(distance, 100.0);
}
return Ray.getPoint(ray, distance, result);
}
function getStrafeStartPositionUnderground(
controller,
ray,
pickedPosition,
result
) {
let distance;
if (!defined(pickedPosition)) {
distance = getDistanceFromSurface(controller);
} else {
distance = Cartesian3.distance(ray.origin, pickedPosition);
if (distance > controller._maximumUndergroundPickDistance) {
// If the picked position is too far away set the strafe speed based on the
// camera's height from the globe surface
distance = getDistanceFromSurface(controller);
}
}
return Ray.getPoint(ray, distance, result);
}
const scratchInertialDelta = new Cartesian2();
function continueStrafing(controller, movement) {
// Update the end position continually based on the inertial delta
const originalEndPosition = movement.endPosition;
const inertialDelta = Cartesian2.subtract(
movement.endPosition,
movement.startPosition,
scratchInertialDelta
);
const endPosition = controller._strafeEndMousePosition;
Cartesian2.add(endPosition, inertialDelta, endPosition);
movement.endPosition = endPosition;
strafe(controller, movement, controller._strafeStartPosition);
movement.endPosition = originalEndPosition;
}
const translateCVStartRay = new Ray();
const translateCVEndRay = new Ray();
const translateCVStartPos = new Cartesian3();
const translateCVEndPos = new Cartesian3();
const translateCVDifference = new Cartesian3();
const translateCVOrigin = new Cartesian3();
const translateCVPlane = new Plane(Cartesian3.UNIT_X, 0.0);
const translateCVStartMouse = new Cartesian2();
const translateCVEndMouse = new Cartesian2();
function translateCV(controller, startPosition, movement) {
if (!Cartesian3.equals(startPosition, controller._translateMousePosition)) {
controller._looking = false;
}
if (!Cartesian3.equals(startPosition, controller._strafeMousePosition)) {
controller._strafing = false;
}
if (controller._looking) {
look3D(controller, startPosition, movement);
return;
}
if (controller._strafing) {
continueStrafing(controller, movement);
return;
}
const scene = controller._scene;
const camera = scene.camera;
const cameraUnderground = controller._cameraUnderground;
const startMouse = Cartesian2.clone(
movement.startPosition,
translateCVStartMouse
);
const endMouse = Cartesian2.clone(movement.endPosition, translateCVEndMouse);
let startRay = camera.getPickRay(startMouse, translateCVStartRay);
const origin = Cartesian3.clone(Cartesian3.ZERO, translateCVOrigin);
const normal = Cartesian3.UNIT_X;
let globePos;
if (camera.position.z < controller._minimumPickingTerrainHeight) {
globePos = pickGlobe(controller, startMouse, translateCVStartPos);
if (defined(globePos)) {
origin.x = globePos.x;
}
}
if (
cameraUnderground ||
(origin.x > camera.position.z && defined(globePos))
) {
let pickPosition = globePos;
if (cameraUnderground) {
pickPosition = getStrafeStartPositionUnderground(
controller,
startRay,
globePos,
translateCVStartPos
);
}
Cartesian2.clone(startPosition, controller._strafeMousePosition);
Cartesian2.clone(startPosition, controller._strafeEndMousePosition);
Cartesian3.clone(pickPosition, controller._strafeStartPosition);
controller._strafing = true;
strafe(controller, movement, controller._strafeStartPosition);
return;
}
const plane = Plane.fromPointNormal(origin, normal, translateCVPlane);
startRay = camera.getPickRay(startMouse, translateCVStartRay);
const startPlanePos = IntersectionTests.rayPlane(
startRay,
plane,
translateCVStartPos
);
const endRay = camera.getPickRay(endMouse, translateCVEndRay);
const endPlanePos = IntersectionTests.rayPlane(
endRay,
plane,
translateCVEndPos
);
if (!defined(startPlanePos) || !defined(endPlanePos)) {
controller._looking = true;
look3D(controller, startPosition, movement);
Cartesian2.clone(startPosition, controller._translateMousePosition);
return;
}
const diff = Cartesian3.subtract(
startPlanePos,
endPlanePos,
translateCVDifference
);
const temp = diff.x;
diff.x = diff.y;
diff.y = diff.z;
diff.z = temp;
const mag = Cartesian3.magnitude(diff);
if (mag > CesiumMath.EPSILON6) {
Cartesian3.normalize(diff, diff);
camera.move(diff, mag);
}
}
const rotateCVWindowPos = new Cartesian2();
const rotateCVWindowRay = new Ray();
const rotateCVCenter = new Cartesian3();
const rotateCVVerticalCenter = new Cartesian3();
const rotateCVTransform = new Matrix4();
const rotateCVVerticalTransform = new Matrix4();
const rotateCVOrigin = new Cartesian3();
const rotateCVPlane = new Plane(Cartesian3.UNIT_X, 0.0);
const rotateCVCartesian3 = new Cartesian3();
const rotateCVCart = new Cartographic();
const rotateCVOldTransform = new Matrix4();
const rotateCVQuaternion = new Quaternion();
const rotateCVMatrix = new Matrix3();
const tilt3DCartesian3 = new Cartesian3();
function rotateCV(controller, startPosition, movement) {
if (defined(movement.angleAndHeight)) {
movement = movement.angleAndHeight;
}
if (!Cartesian2.equals(startPosition, controller._tiltCenterMousePosition)) {
controller._tiltCVOffMap = false;
controller._looking = false;
}
if (controller._looking) {
look3D(controller, startPosition, movement);
return;
}
const scene = controller._scene;
const camera = scene.camera;
if (
controller._tiltCVOffMap ||
!controller.onMap() ||
Math.abs(camera.position.z) > controller._minimumPickingTerrainHeight
) {
controller._tiltCVOffMap = true;
rotateCVOnPlane(controller, startPosition, movement);
} else {
rotateCVOnTerrain(controller, startPosition, movement);
}
}
function rotateCVOnPlane(controller, startPosition, movement) {
const scene = controller._scene;
const camera = scene.camera;
const canvas = scene.canvas;
const windowPosition = rotateCVWindowPos;
windowPosition.x = canvas.clientWidth / 2;
windowPosition.y = canvas.clientHeight / 2;
const ray = camera.getPickRay(windowPosition, rotateCVWindowRay);
const normal = Cartesian3.UNIT_X;
const position = ray.origin;
const direction = ray.direction;
let scalar;
const normalDotDirection = Cartesian3.dot(normal, direction);
if (Math.abs(normalDotDirection) > CesiumMath.EPSILON6) {
scalar = -Cartesian3.dot(normal, position) / normalDotDirection;
}
if (!defined(scalar) || scalar <= 0.0) {
controller._looking = true;
look3D(controller, startPosition, movement);
Cartesian2.clone(startPosition, controller._tiltCenterMousePosition);
return;
}
const center = Cartesian3.multiplyByScalar(direction, scalar, rotateCVCenter);
Cartesian3.add(position, center, center);
const projection = scene.mapProjection;
const ellipsoid = projection.ellipsoid;
Cartesian3.fromElements(center.y, center.z, center.x, center);
const cart = projection.unproject(center, rotateCVCart);
ellipsoid.cartographicToCartesian(cart, center);
const transform = Transforms.eastNorthUpToFixedFrame(
center,
ellipsoid,
rotateCVTransform
);
const oldGlobe = controller._globe;
const oldEllipsoid = controller._ellipsoid;
controller._globe = undefined;
controller._ellipsoid = Ellipsoid.UNIT_SPHERE;
controller._rotateFactor = 1.0;
controller._rotateRateRangeAdjustment = 1.0;
const oldTransform = Matrix4.clone(camera.transform, rotateCVOldTransform);
camera._setTransform(transform);
rotate3D(controller, startPosition, movement, Cartesian3.UNIT_Z);
camera._setTransform(oldTransform);
controller._globe = oldGlobe;
controller._ellipsoid = oldEllipsoid;
const radius = oldEllipsoid.maximumRadius;
controller._rotateFactor = 1.0 / radius;
controller._rotateRateRangeAdjustment = radius;
}
function rotateCVOnTerrain(controller, startPosition, movement) {
const scene = controller._scene;
const camera = scene.camera;
const cameraUnderground = controller._cameraUnderground;
let center;
let ray;
const normal = Cartesian3.UNIT_X;
if (Cartesian2.equals(startPosition, controller._tiltCenterMousePosition)) {
center = Cartesian3.clone(controller._tiltCenter, rotateCVCenter);
} else {
if (camera.position.z < controller._minimumPickingTerrainHeight) {
center = pickGlobe(controller, startPosition, rotateCVCenter);
}
if (!defined(center)) {
ray = camera.getPickRay(startPosition, rotateCVWindowRay);
const position = ray.origin;
const direction = ray.direction;
let scalar;
const normalDotDirection = Cartesian3.dot(normal, direction);
if (Math.abs(normalDotDirection) > CesiumMath.EPSILON6) {
scalar = -Cartesian3.dot(normal, position) / normalDotDirection;
}
if (!defined(scalar) || scalar <= 0.0) {
controller._looking = true;
look3D(controller, startPosition, movement);
Cartesian2.clone(startPosition, controller._tiltCenterMousePosition);
return;
}
center = Cartesian3.multiplyByScalar(direction, scalar, rotateCVCenter);
Cartesian3.add(position, center, center);
}
if (cameraUnderground) {
if (!defined(ray)) {
ray = camera.getPickRay(startPosition, rotateCVWindowRay);
}
getTiltCenterUnderground(controller, ray, center, center);
}
Cartesian2.clone(startPosition, controller._tiltCenterMousePosition);
Cartesian3.clone(center, controller._tiltCenter);
}
const canvas = scene.canvas;
const windowPosition = rotateCVWindowPos;
windowPosition.x = canvas.clientWidth / 2;
windowPosition.y = controller._tiltCenterMousePosition.y;
ray = camera.getPickRay(windowPosition, rotateCVWindowRay);
const origin = Cartesian3.clone(Cartesian3.ZERO, rotateCVOrigin);
origin.x = center.x;
const plane = Plane.fromPointNormal(origin, normal, rotateCVPlane);
const verticalCenter = IntersectionTests.rayPlane(
ray,
plane,
rotateCVVerticalCenter
);
const projection = camera._projection;
const ellipsoid = projection.ellipsoid;
Cartesian3.fromElements(center.y, center.z, center.x, center);
let cart = projection.unproject(center, rotateCVCart);
ellipsoid.cartographicToCartesian(cart, center);
const transform = Transforms.eastNorthUpToFixedFrame(
center,
ellipsoid,
rotateCVTransform
);
let verticalTransform;
if (defined(verticalCenter)) {
Cartesian3.fromElements(
verticalCenter.y,
verticalCenter.z,
verticalCenter.x,
verticalCenter
);
cart = projection.unproject(verticalCenter, rotateCVCart);
ellipsoid.cartographicToCartesian(cart, verticalCenter);
verticalTransform = Transforms.eastNorthUpToFixedFrame(
verticalCenter,
ellipsoid,
rotateCVVerticalTransform
);
} else {
verticalTransform = transform;
}
const oldGlobe = controller._globe;
const oldEllipsoid = controller._ellipsoid;
controller._globe = undefined;
controller._ellipsoid = Ellipsoid.UNIT_SPHERE;
controller._rotateFactor = 1.0;
controller._rotateRateRangeAdjustment = 1.0;
let constrainedAxis = Cartesian3.UNIT_Z;
const oldTransform = Matrix4.clone(camera.transform, rotateCVOldTransform);
camera._setTransform(transform);
const tangent = Cartesian3.cross(
Cartesian3.UNIT_Z,
Cartesian3.normalize(camera.position, rotateCVCartesian3),
rotateCVCartesian3
);
const dot = Cartesian3.dot(camera.right, tangent);
rotate3D(controller, startPosition, movement, constrainedAxis, false, true);
camera._setTransform(verticalTransform);
if (dot < 0.0) {
const movementDelta = movement.startPosition.y - movement.endPosition.y;
if (
(cameraUnderground && movementDelta < 0.0) ||
(!cameraUnderground && movementDelta > 0.0)
) {
// Prevent camera from flipping past the up axis
constrainedAxis = undefined;
}
const oldConstrainedAxis = camera.constrainedAxis;
camera.constrainedAxis = undefined;
rotate3D(controller, startPosition, movement, constrainedAxis, true, false);
camera.constrainedAxis = oldConstrainedAxis;
} else {
rotate3D(controller, startPosition, movement, constrainedAxis, true, false);
}
if (defined(camera.constrainedAxis)) {
const right = Cartesian3.cross(
camera.direction,
camera.constrainedAxis,
tilt3DCartesian3
);
if (
!Cartesian3.equalsEpsilon(right, Cartesian3.ZERO, CesiumMath.EPSILON6)
) {
if (Cartesian3.dot(right, camera.right) < 0.0) {
Cartesian3.negate(right, right);
}
Cartesian3.cross(right, camera.direction, camera.up);
Cartesian3.cross(camera.direction, camera.up, camera.right);
Cartesian3.normalize(camera.up, camera.up);
Cartesian3.normalize(camera.right, camera.right);
}
}
camera._setTransform(oldTransform);
controller._globe = oldGlobe;
controller._ellipsoid = oldEllipsoid;
const radius = oldEllipsoid.maximumRadius;
controller._rotateFactor = 1.0 / radius;
controller._rotateRateRangeAdjustment = radius;
const originalPosition = Cartesian3.clone(
camera.positionWC,
rotateCVCartesian3
);
if (controller.enableCollisionDetection) {
adjustHeightForTerrain(controller);
}
if (!Cartesian3.equals(camera.positionWC, originalPosition)) {
camera._setTransform(verticalTransform);
camera.worldToCameraCoordinatesPoint(originalPosition, originalPosition);
const magSqrd = Cartesian3.magnitudeSquared(originalPosition);
if (Cartesian3.magnitudeSquared(camera.position) > magSqrd) {
Cartesian3.normalize(camera.position, camera.position);
Cartesian3.multiplyByScalar(
camera.position,
Math.sqrt(magSqrd),
camera.position
);
}
const angle = Cartesian3.angleBetween(originalPosition, camera.position);
const axis = Cartesian3.cross(
originalPosition,
camera.position,
originalPosition
);
Cartesian3.normalize(axis, axis);
const quaternion = Quaternion.fromAxisAngle(
axis,
angle,
rotateCVQuaternion
);
const rotation = Matrix3.fromQuaternion(quaternion, rotateCVMatrix);
Matrix3.multiplyByVector(rotation, camera.direction, camera.direction);
Matrix3.multiplyByVector(rotation, camera.up, camera.up);
Cartesian3.cross(camera.direction, camera.up, camera.right);
Cartesian3.cross(camera.right, camera.direction, camera.up);
camera._setTransform(oldTransform);
}
}
const zoomCVWindowPos = new Cartesian2();
const zoomCVWindowRay = new Ray();
const zoomCVIntersection = new Cartesian3();
function zoomCV(controller, startPosition, movement) {
if (defined(movement.distance)) {
movement = movement.distance;
}
const scene = controller._scene;
const camera = scene.camera;
const canvas = scene.canvas;
const cameraUnderground = controller._cameraUnderground;
let windowPosition;
if (cameraUnderground) {
windowPosition = startPosition;
} else {
windowPosition = zoomCVWindowPos;
windowPosition.x = canvas.clientWidth / 2;
windowPosition.y = canvas.clientHeight / 2;
}
const ray = camera.getPickRay(windowPosition, zoomCVWindowRay);
const position = ray.origin;
const direction = ray.direction;
const height = camera.position.z;
let intersection;
if (height < controller._minimumPickingTerrainHeight) {
intersection = pickGlobe(controller, windowPosition, zoomCVIntersection);
}
let distance;
if (defined(intersection)) {
distance = Cartesian3.distance(position, intersection);
}
if (cameraUnderground) {
const distanceUnderground = getZoomDistanceUnderground(
controller,
ray,
height
);
if (defined(distance)) {
distance = Math.min(distance, distanceUnderground);
} else {
distance = distanceUnderground;
}
}
if (!defined(distance)) {
const normal = Cartesian3.UNIT_X;
distance =
-Cartesian3.dot(normal, position) / Cartesian3.dot(normal, direction);
}
handleZoom(
controller,
startPosition,
movement,
controller._zoomFactor,
distance
);
}
function updateCV(controller) {
const scene = controller._scene;
const camera = scene.camera;
if (!Matrix4.equals(Matrix4.IDENTITY, camera.transform)) {
reactToInput(
controller,
controller.enableRotate,
controller.rotateEventTypes,
rotate3D,
controller.inertiaSpin,
"_lastInertiaSpinMovement"
);
reactToInput(
controller,
controller.enableZoom,
controller.zoomEventTypes,
zoom3D,
controller.inertiaZoom,
"_lastInertiaZoomMovement"
);
} else {
const tweens = controller._tweens;
if (controller._aggregator.anyButtonDown) {
tweens.removeAll();
}
reactToInput(
controller,
controller.enableTilt,
controller.tiltEventTypes,
rotateCV,
controller.inertiaSpin,
"_lastInertiaTiltMovement"
);
reactToInput(
controller,
controller.enableTranslate,
controller.translateEventTypes,
translateCV,
controller.inertiaTranslate,
"_lastInertiaTranslateMovement"
);
reactToInput(
controller,
controller.enableZoom,
controller.zoomEventTypes,
zoomCV,
controller.inertiaZoom,
"_lastInertiaZoomMovement"
);
reactToInput(
controller,
controller.enableLook,
controller.lookEventTypes,
look3D
);
if (
!controller._aggregator.anyButtonDown &&
!tweens.contains(controller._tween)
) {
const tween = camera.createCorrectPositionTween(
controller.bounceAnimationTime
);
if (defined(tween)) {
controller._tween = tweens.add(tween);
}
}
tweens.update();
}
}
const scratchStrafeRay = new Ray();
const scratchStrafePlane = new Plane(Cartesian3.UNIT_X, 0.0);
const scratchStrafeIntersection = new Cartesian3();
const scratchStrafeDirection = new Cartesian3();
const scratchMousePos = new Cartesian3();
function strafe(controller, movement, strafeStartPosition) {
const scene = controller._scene;
const camera = scene.camera;
const ray = camera.getPickRay(movement.endPosition, scratchStrafeRay);
let direction = Cartesian3.clone(camera.direction, scratchStrafeDirection);
if (scene.mode === SceneMode.COLUMBUS_VIEW) {
Cartesian3.fromElements(direction.z, direction.x, direction.y, direction);
}
const plane = Plane.fromPointNormal(
strafeStartPosition,
direction,
scratchStrafePlane
);
const intersection = IntersectionTests.rayPlane(
ray,
plane,
scratchStrafeIntersection
);
if (!defined(intersection)) {
return;
}
direction = Cartesian3.subtract(strafeStartPosition, intersection, direction);
if (scene.mode === SceneMode.COLUMBUS_VIEW) {
Cartesian3.fromElements(direction.y, direction.z, direction.x, direction);
}
Cartesian3.add(camera.position, direction, camera.position);
}
const spin3DPick = new Cartesian3();
const scratchCartographic = new Cartographic();
const scratchRadii = new Cartesian3();
const scratchEllipsoid = new Ellipsoid();
const scratchLookUp = new Cartesian3();
const scratchNormal = new Cartesian3();
function spin3D(controller, startPosition, movement) {
const scene = controller._scene;
const camera = scene.camera;
const cameraUnderground = controller._cameraUnderground;
let ellipsoid = controller._ellipsoid;
if (!Matrix4.equals(camera.transform, Matrix4.IDENTITY)) {
rotate3D(controller, startPosition, movement);
return;
}
let magnitude;
let radii;
const up = ellipsoid.geodeticSurfaceNormal(camera.position, scratchLookUp);
if (Cartesian2.equals(startPosition, controller._rotateMousePosition)) {
if (controller._looking) {
look3D(controller, startPosition, movement, up);
} else if (controller._rotating) {
rotate3D(controller, startPosition, movement);
} else if (controller._strafing) {
continueStrafing(controller, movement);
} else {
if (
Cartesian3.magnitude(camera.position) <
Cartesian3.magnitude(controller._rotateStartPosition)
) {
// Pan action is no longer valid if camera moves below the pan ellipsoid
return;
}
magnitude = Cartesian3.magnitude(controller._rotateStartPosition);
radii = scratchRadii;
radii.x = radii.y = radii.z = magnitude;
ellipsoid = Ellipsoid.fromCartesian3(radii, scratchEllipsoid);
pan3D(controller, startPosition, movement, ellipsoid);
}
return;
}
controller._looking = false;
controller._rotating = false;
controller._strafing = false;
const height = ellipsoid.cartesianToCartographic(
camera.positionWC,
scratchCartographic
).height;
const globe = controller._globe;
if (defined(globe) && height < controller._minimumPickingTerrainHeight) {
const mousePos = pickGlobe(
controller,
movement.startPosition,
scratchMousePos
);
if (defined(mousePos)) {
let strafing = false;
const ray = camera.getPickRay(
movement.startPosition,
pickGlobeScratchRay
);
if (cameraUnderground) {
strafing = true;
getStrafeStartPositionUnderground(controller, ray, mousePos, mousePos);
} else {
const normal = ellipsoid.geodeticSurfaceNormal(mousePos, scratchNormal);
const tangentPick =
Math.abs(Cartesian3.dot(ray.direction, normal)) < 0.05;
if (tangentPick) {
strafing = true;
} else {
strafing =
Cartesian3.magnitude(camera.position) <
Cartesian3.magnitude(mousePos);
}
}
if (strafing) {
Cartesian2.clone(startPosition, controller._strafeEndMousePosition);
Cartesian3.clone(mousePos, controller._strafeStartPosition);
controller._strafing = true;
strafe(controller, movement, controller._strafeStartPosition);
} else {
magnitude = Cartesian3.magnitude(mousePos);
radii = scratchRadii;
radii.x = radii.y = radii.z = magnitude;
ellipsoid = Ellipsoid.fromCartesian3(radii, scratchEllipsoid);
pan3D(controller, startPosition, movement, ellipsoid);
Cartesian3.clone(mousePos, controller._rotateStartPosition);
}
} else {
controller._looking = true;
look3D(controller, startPosition, movement, up);
}
} else if (
defined(
camera.pickEllipsoid(
movement.startPosition,
controller._ellipsoid,
spin3DPick
)
)
) {
pan3D(controller, startPosition, movement, controller._ellipsoid);
Cartesian3.clone(spin3DPick, controller._rotateStartPosition);
} else if (height > controller._minimumTrackBallHeight) {
controller._rotating = true;
rotate3D(controller, startPosition, movement);
} else {
controller._looking = true;
look3D(controller, startPosition, movement, up);
}
Cartesian2.clone(startPosition, controller._rotateMousePosition);
}
function rotate3D(
controller,
startPosition,
movement,
constrainedAxis,
rotateOnlyVertical,
rotateOnlyHorizontal
) {
rotateOnlyVertical = defaultValue(rotateOnlyVertical, false);
rotateOnlyHorizontal = defaultValue(rotateOnlyHorizontal, false);
const scene = controller._scene;
const camera = scene.camera;
const canvas = scene.canvas;
const oldAxis = camera.constrainedAxis;
if (defined(constrainedAxis)) {
camera.constrainedAxis = constrainedAxis;
}
const rho = Cartesian3.magnitude(camera.position);
let rotateRate =
controller._rotateFactor * (rho - controller._rotateRateRangeAdjustment);
if (rotateRate > controller._maximumRotateRate) {
rotateRate = controller._maximumRotateRate;
}
if (rotateRate < controller._minimumRotateRate) {
rotateRate = controller._minimumRotateRate;
}
let phiWindowRatio =
(movement.startPosition.x - movement.endPosition.x) / canvas.clientWidth;
let thetaWindowRatio =
(movement.startPosition.y - movement.endPosition.y) / canvas.clientHeight;
phiWindowRatio = Math.min(phiWindowRatio, controller.maximumMovementRatio);
thetaWindowRatio = Math.min(
thetaWindowRatio,
controller.maximumMovementRatio
);
const deltaPhi = rotateRate * phiWindowRatio * Math.PI * 2.0;
const deltaTheta = rotateRate * thetaWindowRatio * Math.PI;
if (!rotateOnlyVertical) {
camera.rotateRight(deltaPhi);
}
if (!rotateOnlyHorizontal) {
camera.rotateUp(deltaTheta);
}
camera.constrainedAxis = oldAxis;
}
const pan3DP0 = Cartesian4.clone(Cartesian4.UNIT_W);
const pan3DP1 = Cartesian4.clone(Cartesian4.UNIT_W);
const pan3DTemp0 = new Cartesian3();
const pan3DTemp1 = new Cartesian3();
const pan3DTemp2 = new Cartesian3();
const pan3DTemp3 = new Cartesian3();
const pan3DStartMousePosition = new Cartesian2();
const pan3DEndMousePosition = new Cartesian2();
function pan3D(controller, startPosition, movement, ellipsoid) {
const scene = controller._scene;
const camera = scene.camera;
const startMousePosition = Cartesian2.clone(
movement.startPosition,
pan3DStartMousePosition
);
const endMousePosition = Cartesian2.clone(
movement.endPosition,
pan3DEndMousePosition
);
let p0 = camera.pickEllipsoid(startMousePosition, ellipsoid, pan3DP0);
let p1 = camera.pickEllipsoid(endMousePosition, ellipsoid, pan3DP1);
if (!defined(p0) || !defined(p1)) {
controller._rotating = true;
rotate3D(controller, startPosition, movement);
return;
}
p0 = camera.worldToCameraCoordinates(p0, p0);
p1 = camera.worldToCameraCoordinates(p1, p1);
if (!defined(camera.constrainedAxis)) {
Cartesian3.normalize(p0, p0);
Cartesian3.normalize(p1, p1);
const dot = Cartesian3.dot(p0, p1);
const axis = Cartesian3.cross(p0, p1, pan3DTemp0);
if (
dot < 1.0 &&
!Cartesian3.equalsEpsilon(axis, Cartesian3.ZERO, CesiumMath.EPSILON14)
) {
// dot is in [0, 1]
const angle = Math.acos(dot);
camera.rotate(axis, angle);
}
} else {
const basis0 = camera.constrainedAxis;
const basis1 = Cartesian3.mostOrthogonalAxis(basis0, pan3DTemp0);
Cartesian3.cross(basis1, basis0, basis1);
Cartesian3.normalize(basis1, basis1);
const basis2 = Cartesian3.cross(basis0, basis1, pan3DTemp1);
const startRho = Cartesian3.magnitude(p0);
const startDot = Cartesian3.dot(basis0, p0);
const startTheta = Math.acos(startDot / startRho);
const startRej = Cartesian3.multiplyByScalar(basis0, startDot, pan3DTemp2);
Cartesian3.subtract(p0, startRej, startRej);
Cartesian3.normalize(startRej, startRej);
const endRho = Cartesian3.magnitude(p1);
const endDot = Cartesian3.dot(basis0, p1);
const endTheta = Math.acos(endDot / endRho);
const endRej = Cartesian3.multiplyByScalar(basis0, endDot, pan3DTemp3);
Cartesian3.subtract(p1, endRej, endRej);
Cartesian3.normalize(endRej, endRej);
let startPhi = Math.acos(Cartesian3.dot(startRej, basis1));
if (Cartesian3.dot(startRej, basis2) < 0) {
startPhi = CesiumMath.TWO_PI - startPhi;
}
let endPhi = Math.acos(Cartesian3.dot(endRej, basis1));
if (Cartesian3.dot(endRej, basis2) < 0) {
endPhi = CesiumMath.TWO_PI - endPhi;
}
const deltaPhi = startPhi - endPhi;
let east;
if (
Cartesian3.equalsEpsilon(basis0, camera.position, CesiumMath.EPSILON2)
) {
east = camera.right;
} else {
east = Cartesian3.cross(basis0, camera.position, pan3DTemp0);
}
const planeNormal = Cartesian3.cross(basis0, east, pan3DTemp0);
const side0 = Cartesian3.dot(
planeNormal,
Cartesian3.subtract(p0, basis0, pan3DTemp1)
);
const side1 = Cartesian3.dot(
planeNormal,
Cartesian3.subtract(p1, basis0, pan3DTemp1)
);
let deltaTheta;
if (side0 > 0 && side1 > 0) {
deltaTheta = endTheta - startTheta;
} else if (side0 > 0 && side1 <= 0) {
if (Cartesian3.dot(camera.position, basis0) > 0) {
deltaTheta = -startTheta - endTheta;
} else {
deltaTheta = startTheta + endTheta;
}
} else {
deltaTheta = startTheta - endTheta;
}
camera.rotateRight(deltaPhi);
camera.rotateUp(deltaTheta);
}
}
const zoom3DUnitPosition = new Cartesian3();
const zoom3DCartographic = new Cartographic();
function zoom3D(controller, startPosition, movement) {
if (defined(movement.distance)) {
movement = movement.distance;
}
const ellipsoid = controller._ellipsoid;
const scene = controller._scene;
const camera = scene.camera;
const canvas = scene.canvas;
const cameraUnderground = controller._cameraUnderground;
let windowPosition;
if (cameraUnderground) {
windowPosition = startPosition;
} else {
windowPosition = zoomCVWindowPos;
windowPosition.x = canvas.clientWidth / 2;
windowPosition.y = canvas.clientHeight / 2;
}
const ray = camera.getPickRay(windowPosition, zoomCVWindowRay);
let intersection;
const height = ellipsoid.cartesianToCartographic(
camera.position,
zoom3DCartographic
).height;
if (height < controller._minimumPickingTerrainHeight) {
intersection = pickGlobe(controller, windowPosition, zoomCVIntersection);
}
let distance;
if (defined(intersection)) {
distance = Cartesian3.distance(ray.origin, intersection);
}
if (cameraUnderground) {
const distanceUnderground = getZoomDistanceUnderground(
controller,
ray,
height
);
if (defined(distance)) {
distance = Math.min(distance, distanceUnderground);
} else {
distance = distanceUnderground;
}
}
if (!defined(distance)) {
distance = height;
}
const unitPosition = Cartesian3.normalize(
camera.position,
zoom3DUnitPosition
);
handleZoom(
controller,
startPosition,
movement,
controller._zoomFactor,
distance,
Cartesian3.dot(unitPosition, camera.direction)
);
}
const tilt3DWindowPos = new Cartesian2();
const tilt3DRay = new Ray();
const tilt3DCenter = new Cartesian3();
const tilt3DVerticalCenter = new Cartesian3();
const tilt3DTransform = new Matrix4();
const tilt3DVerticalTransform = new Matrix4();
const tilt3DOldTransform = new Matrix4();
const tilt3DQuaternion = new Quaternion();
const tilt3DMatrix = new Matrix3();
const tilt3DCart = new Cartographic();
const tilt3DLookUp = new Cartesian3();
function tilt3D(controller, startPosition, movement) {
const scene = controller._scene;
const camera = scene.camera;
if (!Matrix4.equals(camera.transform, Matrix4.IDENTITY)) {
return;
}
if (defined(movement.angleAndHeight)) {
movement = movement.angleAndHeight;
}
if (!Cartesian2.equals(startPosition, controller._tiltCenterMousePosition)) {
controller._tiltOnEllipsoid = false;
controller._looking = false;
}
if (controller._looking) {
const up = controller._ellipsoid.geodeticSurfaceNormal(
camera.position,
tilt3DLookUp
);
look3D(controller, startPosition, movement, up);
return;
}
const ellipsoid = controller._ellipsoid;
const cartographic = ellipsoid.cartesianToCartographic(
camera.position,
tilt3DCart
);
if (
controller._tiltOnEllipsoid ||
cartographic.height > controller._minimumCollisionTerrainHeight
) {
controller._tiltOnEllipsoid = true;
tilt3DOnEllipsoid(controller, startPosition, movement);
} else {
tilt3DOnTerrain(controller, startPosition, movement);
}
}
const tilt3DOnEllipsoidCartographic = new Cartographic();
function tilt3DOnEllipsoid(controller, startPosition, movement) {
const ellipsoid = controller._ellipsoid;
const scene = controller._scene;
const camera = scene.camera;
const minHeight = controller.minimumZoomDistance * 0.25;
const height = ellipsoid.cartesianToCartographic(
camera.positionWC,
tilt3DOnEllipsoidCartographic
).height;
if (
height - minHeight - 1.0 < CesiumMath.EPSILON3 &&
movement.endPosition.y - movement.startPosition.y < 0
) {
return;
}
const canvas = scene.canvas;
const windowPosition = tilt3DWindowPos;
windowPosition.x = canvas.clientWidth / 2;
windowPosition.y = canvas.clientHeight / 2;
const ray = camera.getPickRay(windowPosition, tilt3DRay);
let center;
const intersection = IntersectionTests.rayEllipsoid(ray, ellipsoid);
if (defined(intersection)) {
center = Ray.getPoint(ray, intersection.start, tilt3DCenter);
} else if (height > controller._minimumTrackBallHeight) {
const grazingAltitudeLocation = IntersectionTests.grazingAltitudeLocation(
ray,
ellipsoid
);
if (!defined(grazingAltitudeLocation)) {
return;
}
const grazingAltitudeCart = ellipsoid.cartesianToCartographic(
grazingAltitudeLocation,
tilt3DCart
);
grazingAltitudeCart.height = 0.0;
center = ellipsoid.cartographicToCartesian(
grazingAltitudeCart,
tilt3DCenter
);
} else {
controller._looking = true;
const up = controller._ellipsoid.geodeticSurfaceNormal(
camera.position,
tilt3DLookUp
);
look3D(controller, startPosition, movement, up);
Cartesian2.clone(startPosition, controller._tiltCenterMousePosition);
return;
}
const transform = Transforms.eastNorthUpToFixedFrame(
center,
ellipsoid,
tilt3DTransform
);
const oldGlobe = controller._globe;
const oldEllipsoid = controller._ellipsoid;
controller._globe = undefined;
controller._ellipsoid = Ellipsoid.UNIT_SPHERE;
controller._rotateFactor = 1.0;
controller._rotateRateRangeAdjustment = 1.0;
const oldTransform = Matrix4.clone(camera.transform, tilt3DOldTransform);
camera._setTransform(transform);
rotate3D(controller, startPosition, movement, Cartesian3.UNIT_Z);
camera._setTransform(oldTransform);
controller._globe = oldGlobe;
controller._ellipsoid = oldEllipsoid;
const radius = oldEllipsoid.maximumRadius;
controller._rotateFactor = 1.0 / radius;
controller._rotateRateRangeAdjustment = radius;
}
function tilt3DOnTerrain(controller, startPosition, movement) {
const ellipsoid = controller._ellipsoid;
const scene = controller._scene;
const camera = scene.camera;
const cameraUnderground = controller._cameraUnderground;
let center;
let ray;
let intersection;
if (Cartesian2.equals(startPosition, controller._tiltCenterMousePosition)) {
center = Cartesian3.clone(controller._tiltCenter, tilt3DCenter);
} else {
center = pickGlobe(controller, startPosition, tilt3DCenter);
if (!defined(center)) {
ray = camera.getPickRay(startPosition, tilt3DRay);
intersection = IntersectionTests.rayEllipsoid(ray, ellipsoid);
if (!defined(intersection)) {
const cartographic = ellipsoid.cartesianToCartographic(
camera.position,
tilt3DCart
);
if (cartographic.height <= controller._minimumTrackBallHeight) {
controller._looking = true;
const up = controller._ellipsoid.geodeticSurfaceNormal(
camera.position,
tilt3DLookUp
);
look3D(controller, startPosition, movement, up);
Cartesian2.clone(startPosition, controller._tiltCenterMousePosition);
}
return;
}
center = Ray.getPoint(ray, intersection.start, tilt3DCenter);
}
if (cameraUnderground) {
if (!defined(ray)) {
ray = camera.getPickRay(startPosition, tilt3DRay);
}
getTiltCenterUnderground(controller, ray, center, center);
}
Cartesian2.clone(startPosition, controller._tiltCenterMousePosition);
Cartesian3.clone(center, controller._tiltCenter);
}
const canvas = scene.canvas;
const windowPosition = tilt3DWindowPos;
windowPosition.x = canvas.clientWidth / 2;
windowPosition.y = controller._tiltCenterMousePosition.y;
ray = camera.getPickRay(windowPosition, tilt3DRay);
const mag = Cartesian3.magnitude(center);
const radii = Cartesian3.fromElements(mag, mag, mag, scratchRadii);
const newEllipsoid = Ellipsoid.fromCartesian3(radii, scratchEllipsoid);
intersection = IntersectionTests.rayEllipsoid(ray, newEllipsoid);
if (!defined(intersection)) {
return;
}
const t =
Cartesian3.magnitude(ray.origin) > mag
? intersection.start
: intersection.stop;
const verticalCenter = Ray.getPoint(ray, t, tilt3DVerticalCenter);
const transform = Transforms.eastNorthUpToFixedFrame(
center,
ellipsoid,
tilt3DTransform
);
const verticalTransform = Transforms.eastNorthUpToFixedFrame(
verticalCenter,
newEllipsoid,
tilt3DVerticalTransform
);
const oldGlobe = controller._globe;
const oldEllipsoid = controller._ellipsoid;
controller._globe = undefined;
controller._ellipsoid = Ellipsoid.UNIT_SPHERE;
controller._rotateFactor = 1.0;
controller._rotateRateRangeAdjustment = 1.0;
let constrainedAxis = Cartesian3.UNIT_Z;
const oldTransform = Matrix4.clone(camera.transform, tilt3DOldTransform);
camera._setTransform(verticalTransform);
const tangent = Cartesian3.cross(
verticalCenter,
camera.positionWC,
tilt3DCartesian3
);
const dot = Cartesian3.dot(camera.rightWC, tangent);
if (dot < 0.0) {
const movementDelta = movement.startPosition.y - movement.endPosition.y;
if (
(cameraUnderground && movementDelta < 0.0) ||
(!cameraUnderground && movementDelta > 0.0)
) {
// Prevent camera from flipping past the up axis
constrainedAxis = undefined;
}
const oldConstrainedAxis = camera.constrainedAxis;
camera.constrainedAxis = undefined;
rotate3D(controller, startPosition, movement, constrainedAxis, true, false);
camera.constrainedAxis = oldConstrainedAxis;
} else {
rotate3D(controller, startPosition, movement, constrainedAxis, true, false);
}
camera._setTransform(transform);
rotate3D(controller, startPosition, movement, constrainedAxis, false, true);
if (defined(camera.constrainedAxis)) {
const right = Cartesian3.cross(
camera.direction,
camera.constrainedAxis,
tilt3DCartesian3
);
if (
!Cartesian3.equalsEpsilon(right, Cartesian3.ZERO, CesiumMath.EPSILON6)
) {
if (Cartesian3.dot(right, camera.right) < 0.0) {
Cartesian3.negate(right, right);
}
Cartesian3.cross(right, camera.direction, camera.up);
Cartesian3.cross(camera.direction, camera.up, camera.right);
Cartesian3.normalize(camera.up, camera.up);
Cartesian3.normalize(camera.right, camera.right);
}
}
camera._setTransform(oldTransform);
controller._globe = oldGlobe;
controller._ellipsoid = oldEllipsoid;
const radius = oldEllipsoid.maximumRadius;
controller._rotateFactor = 1.0 / radius;
controller._rotateRateRangeAdjustment = radius;
const originalPosition = Cartesian3.clone(
camera.positionWC,
tilt3DCartesian3
);
if (controller.enableCollisionDetection) {
adjustHeightForTerrain(controller);
}
if (!Cartesian3.equals(camera.positionWC, originalPosition)) {
camera._setTransform(verticalTransform);
camera.worldToCameraCoordinatesPoint(originalPosition, originalPosition);
const magSqrd = Cartesian3.magnitudeSquared(originalPosition);
if (Cartesian3.magnitudeSquared(camera.position) > magSqrd) {
Cartesian3.normalize(camera.position, camera.position);
Cartesian3.multiplyByScalar(
camera.position,
Math.sqrt(magSqrd),
camera.position
);
}
const angle = Cartesian3.angleBetween(originalPosition, camera.position);
const axis = Cartesian3.cross(
originalPosition,
camera.position,
originalPosition
);
Cartesian3.normalize(axis, axis);
const quaternion = Quaternion.fromAxisAngle(axis, angle, tilt3DQuaternion);
const rotation = Matrix3.fromQuaternion(quaternion, tilt3DMatrix);
Matrix3.multiplyByVector(rotation, camera.direction, camera.direction);
Matrix3.multiplyByVector(rotation, camera.up, camera.up);
Cartesian3.cross(camera.direction, camera.up, camera.right);
Cartesian3.cross(camera.right, camera.direction, camera.up);
camera._setTransform(oldTransform);
}
}
const look3DStartPos = new Cartesian2();
const look3DEndPos = new Cartesian2();
const look3DStartRay = new Ray();
const look3DEndRay = new Ray();
const look3DNegativeRot = new Cartesian3();
const look3DTan = new Cartesian3();
function look3D(controller, startPosition, movement, rotationAxis) {
const scene = controller._scene;
const camera = scene.camera;
const startPos = look3DStartPos;
startPos.x = movement.startPosition.x;
startPos.y = 0.0;
const endPos = look3DEndPos;
endPos.x = movement.endPosition.x;
endPos.y = 0.0;
let startRay = camera.getPickRay(startPos, look3DStartRay);
let endRay = camera.getPickRay(endPos, look3DEndRay);
let angle = 0.0;
let start;
let end;
if (camera.frustum instanceof OrthographicFrustum) {
start = startRay.origin;
end = endRay.origin;
Cartesian3.add(camera.direction, start, start);
Cartesian3.add(camera.direction, end, end);
Cartesian3.subtract(start, camera.position, start);
Cartesian3.subtract(end, camera.position, end);
Cartesian3.normalize(start, start);
Cartesian3.normalize(end, end);
} else {
start = startRay.direction;
end = endRay.direction;
}
let dot = Cartesian3.dot(start, end);
if (dot < 1.0) {
// dot is in [0, 1]
angle = Math.acos(dot);
}
angle = movement.startPosition.x > movement.endPosition.x ? -angle : angle;
const horizontalRotationAxis = controller._horizontalRotationAxis;
if (defined(rotationAxis)) {
camera.look(rotationAxis, -angle);
} else if (defined(horizontalRotationAxis)) {
camera.look(horizontalRotationAxis, -angle);
} else {
camera.lookLeft(angle);
}
startPos.x = 0.0;
startPos.y = movement.startPosition.y;
endPos.x = 0.0;
endPos.y = movement.endPosition.y;
startRay = camera.getPickRay(startPos, look3DStartRay);
endRay = camera.getPickRay(endPos, look3DEndRay);
angle = 0.0;
if (camera.frustum instanceof OrthographicFrustum) {
start = startRay.origin;
end = endRay.origin;
Cartesian3.add(camera.direction, start, start);
Cartesian3.add(camera.direction, end, end);
Cartesian3.subtract(start, camera.position, start);
Cartesian3.subtract(end, camera.position, end);
Cartesian3.normalize(start, start);
Cartesian3.normalize(end, end);
} else {
start = startRay.direction;
end = endRay.direction;
}
dot = Cartesian3.dot(start, end);
if (dot < 1.0) {
// dot is in [0, 1]
angle = Math.acos(dot);
}
angle = movement.startPosition.y > movement.endPosition.y ? -angle : angle;
rotationAxis = defaultValue(rotationAxis, horizontalRotationAxis);
if (defined(rotationAxis)) {
const direction = camera.direction;
const negativeRotationAxis = Cartesian3.negate(
rotationAxis,
look3DNegativeRot
);
const northParallel = Cartesian3.equalsEpsilon(
direction,
rotationAxis,
CesiumMath.EPSILON2
);
const southParallel = Cartesian3.equalsEpsilon(
direction,
negativeRotationAxis,
CesiumMath.EPSILON2
);
if (!northParallel && !southParallel) {
dot = Cartesian3.dot(direction, rotationAxis);
let angleToAxis = CesiumMath.acosClamped(dot);
if (angle > 0 && angle > angleToAxis) {
angle = angleToAxis - CesiumMath.EPSILON4;
}
dot = Cartesian3.dot(direction, negativeRotationAxis);
angleToAxis = CesiumMath.acosClamped(dot);
if (angle < 0 && -angle > angleToAxis) {
angle = -angleToAxis + CesiumMath.EPSILON4;
}
const tangent = Cartesian3.cross(rotationAxis, direction, look3DTan);
camera.look(tangent, angle);
} else if ((northParallel && angle < 0) || (southParallel && angle > 0)) {
camera.look(camera.right, -angle);
}
} else {
camera.lookUp(angle);
}
}
function update3D(controller) {
reactToInput(
controller,
controller.enableRotate,
controller.rotateEventTypes,
spin3D,
controller.inertiaSpin,
"_lastInertiaSpinMovement"
);
reactToInput(
controller,
controller.enableZoom,
controller.zoomEventTypes,
zoom3D,
controller.inertiaZoom,
"_lastInertiaZoomMovement"
);
reactToInput(
controller,
controller.enableTilt,
controller.tiltEventTypes,
tilt3D,
controller.inertiaSpin,
"_lastInertiaTiltMovement"
);
reactToInput(
controller,
controller.enableLook,
controller.lookEventTypes,
look3D
);
}
const scratchAdjustHeightTransform = new Matrix4();
const scratchAdjustHeightCartographic = new Cartographic();
function adjustHeightForTerrain(controller) {
controller._adjustedHeightForTerrain = true;
const scene = controller._scene;
const mode = scene.mode;
const globe = scene.globe;
if (
!defined(globe) ||
mode === SceneMode.SCENE2D ||
mode === SceneMode.MORPHING
) {
return;
}
const camera = scene.camera;
const ellipsoid = globe.ellipsoid;
const projection = scene.mapProjection;
let transform;
let mag;
if (!Matrix4.equals(camera.transform, Matrix4.IDENTITY)) {
transform = Matrix4.clone(camera.transform, scratchAdjustHeightTransform);
mag = Cartesian3.magnitude(camera.position);
camera._setTransform(Matrix4.IDENTITY);
}
const cartographic = scratchAdjustHeightCartographic;
if (mode === SceneMode.SCENE3D) {
ellipsoid.cartesianToCartographic(camera.position, cartographic);
} else {
projection.unproject(camera.position, cartographic);
}
let heightUpdated = false;
if (cartographic.height < controller._minimumCollisionTerrainHeight) {
const globeHeight = controller._scene.globeHeight;
if (defined(globeHeight)) {
const height = globeHeight + controller.minimumZoomDistance;
if (cartographic.height < height) {
cartographic.height = height;
if (mode === SceneMode.SCENE3D) {
ellipsoid.cartographicToCartesian(cartographic, camera.position);
} else {
projection.project(cartographic, camera.position);
}
heightUpdated = true;
}
}
}
if (defined(transform)) {
camera._setTransform(transform);
if (heightUpdated) {
Cartesian3.normalize(camera.position, camera.position);
Cartesian3.negate(camera.position, camera.direction);
Cartesian3.multiplyByScalar(
camera.position,
Math.max(mag, controller.minimumZoomDistance),
camera.position
);
Cartesian3.normalize(camera.direction, camera.direction);
Cartesian3.cross(camera.direction, camera.up, camera.right);
Cartesian3.cross(camera.right, camera.direction, camera.up);
}
}
}
/**
* @private
*/
ScreenSpaceCameraController.prototype.onMap = function () {
const scene = this._scene;
const mode = scene.mode;
const camera = scene.camera;
if (mode === SceneMode.COLUMBUS_VIEW) {
return (
Math.abs(camera.position.x) - this._maxCoord.x < 0 &&
Math.abs(camera.position.y) - this._maxCoord.y < 0
);
}
return true;
};
const scratchPreviousPosition = new Cartesian3();
const scratchPreviousDirection = new Cartesian3();
/**
* @private
*/
ScreenSpaceCameraController.prototype.update = function () {
const scene = this._scene;
const camera = scene.camera;
const globe = scene.globe;
const mode = scene.mode;
if (!Matrix4.equals(camera.transform, Matrix4.IDENTITY)) {
this._globe = undefined;
this._ellipsoid = Ellipsoid.UNIT_SPHERE;
} else {
this._globe = globe;
this._ellipsoid = defined(this._globe)
? this._globe.ellipsoid
: scene.mapProjection.ellipsoid;
}
const exaggeration = defined(this._globe)
? this._globe.terrainExaggeration
: 1.0;
const exaggerationRelativeHeight = defined(this._globe)
? this._globe.terrainExaggerationRelativeHeight
: 0.0;
this._minimumCollisionTerrainHeight = TerrainExaggeration.getHeight(
this.minimumCollisionTerrainHeight,
exaggeration,
exaggerationRelativeHeight
);
this._minimumPickingTerrainHeight = TerrainExaggeration.getHeight(
this.minimumPickingTerrainHeight,
exaggeration,
exaggerationRelativeHeight
);
this._minimumTrackBallHeight = TerrainExaggeration.getHeight(
this.minimumTrackBallHeight,
exaggeration,
exaggerationRelativeHeight
);
this._cameraUnderground = scene.cameraUnderground && defined(this._globe);
const radius = this._ellipsoid.maximumRadius;
this._rotateFactor = 1.0 / radius;
this._rotateRateRangeAdjustment = radius;
this._adjustedHeightForTerrain = false;
const previousPosition = Cartesian3.clone(
camera.positionWC,
scratchPreviousPosition
);
const previousDirection = Cartesian3.clone(
camera.directionWC,
scratchPreviousDirection
);
if (mode === SceneMode.SCENE2D) {
update2D(this);
} else if (mode === SceneMode.COLUMBUS_VIEW) {
this._horizontalRotationAxis = Cartesian3.UNIT_Z;
updateCV(this);
} else if (mode === SceneMode.SCENE3D) {
this._horizontalRotationAxis = undefined;
update3D(this);
}
if (this.enableCollisionDetection && !this._adjustedHeightForTerrain) {
// Adjust the camera height if the camera moved at all (user input or inertia) and an action didn't already adjust the camera height
const cameraChanged =
!Cartesian3.equals(previousPosition, camera.positionWC) ||
!Cartesian3.equals(previousDirection, camera.directionWC);
if (cameraChanged) {
adjustHeightForTerrain(this);
}
}
this._aggregator.reset();
};
/**
* Returns true if this object was destroyed; otherwise, false.
*
* If this object was destroyed, it should not be used; calling any function other than
* isDestroyed
will result in a {@link DeveloperError} exception.
*
* @returns {Boolean} true
if this object was destroyed; otherwise, false
.
*
* @see ScreenSpaceCameraController#destroy
*/
ScreenSpaceCameraController.prototype.isDestroyed = function () {
return false;
};
/**
* Removes mouse listeners held by this object.
*
* Once an object is destroyed, it should not be used; calling any function other than
* isDestroyed
will result in a {@link DeveloperError} exception. Therefore,
* assign the return value (undefined
) to the object as done in the example.
*
* @exception {DeveloperError} This object was destroyed, i.e., destroy() was called.
*
*
* @example
* controller = controller && controller.destroy();
*
* @see ScreenSpaceCameraController#isDestroyed
*/
ScreenSpaceCameraController.prototype.destroy = function () {
this._tweens.removeAll();
this._aggregator = this._aggregator && this._aggregator.destroy();
return destroyObject(this);
};
export default ScreenSpaceCameraController;