true if they are equal, false otherwise.
   *
   * @param {Cartesian3} [left] The first Cartesian.
   * @param {Cartesian3} [right] The second Cartesian.
   * @returns {Boolean} true if left and right are equal, false otherwise.
   */
  Cartesian3.equals = function (left, right) {
    return (
      left === right ||
      (defaultValue.defined(left) &&
        defaultValue.defined(right) &&
        left.x === right.x &&
        left.y === right.y &&
        left.z === right.z)
    );
  };
  /**
   * @private
   */
  Cartesian3.equalsArray = function (cartesian, array, offset) {
    return (
      cartesian.x === array[offset] &&
      cartesian.y === array[offset + 1] &&
      cartesian.z === array[offset + 2]
    );
  };
  /**
   * Compares the provided Cartesians componentwise and returns
   * true if they pass an absolute or relative tolerance test,
   * false otherwise.
   *
   * @param {Cartesian3} [left] The first Cartesian.
   * @param {Cartesian3} [right] The second Cartesian.
   * @param {Number} [relativeEpsilon=0] The relative epsilon tolerance to use for equality testing.
   * @param {Number} [absoluteEpsilon=relativeEpsilon] The absolute epsilon tolerance to use for equality testing.
   * @returns {Boolean} true if left and right are within the provided epsilon, false otherwise.
   */
  Cartesian3.equalsEpsilon = function (
    left,
    right,
    relativeEpsilon,
    absoluteEpsilon
  ) {
    return (
      left === right ||
      (defaultValue.defined(left) &&
        defaultValue.defined(right) &&
        ComponentDatatype.CesiumMath.equalsEpsilon(
          left.x,
          right.x,
          relativeEpsilon,
          absoluteEpsilon
        ) &&
        ComponentDatatype.CesiumMath.equalsEpsilon(
          left.y,
          right.y,
          relativeEpsilon,
          absoluteEpsilon
        ) &&
        ComponentDatatype.CesiumMath.equalsEpsilon(
          left.z,
          right.z,
          relativeEpsilon,
          absoluteEpsilon
        ))
    );
  };
  /**
   * Computes the cross (outer) product of two Cartesians.
   *
   * @param {Cartesian3} left The first Cartesian.
   * @param {Cartesian3} right The second Cartesian.
   * @param {Cartesian3} result The object onto which to store the result.
   * @returns {Cartesian3} The cross product.
   */
  Cartesian3.cross = function (left, right, result) {
    //>>includeStart('debug', pragmas.debug);
    RuntimeError.Check.typeOf.object("left", left);
    RuntimeError.Check.typeOf.object("right", right);
    RuntimeError.Check.typeOf.object("result", result);
    //>>includeEnd('debug');
    const leftX = left.x;
    const leftY = left.y;
    const leftZ = left.z;
    const rightX = right.x;
    const rightY = right.y;
    const rightZ = right.z;
    const x = leftY * rightZ - leftZ * rightY;
    const y = leftZ * rightX - leftX * rightZ;
    const z = leftX * rightY - leftY * rightX;
    result.x = x;
    result.y = y;
    result.z = z;
    return result;
  };
  /**
   * Computes the midpoint between the right and left Cartesian.
   * @param {Cartesian3} left The first Cartesian.
   * @param {Cartesian3} right The second Cartesian.
   * @param {Cartesian3} result The object onto which to store the result.
   * @returns {Cartesian3} The midpoint.
   */
  Cartesian3.midpoint = function (left, right, result) {
    //>>includeStart('debug', pragmas.debug);
    RuntimeError.Check.typeOf.object("left", left);
    RuntimeError.Check.typeOf.object("right", right);
    RuntimeError.Check.typeOf.object("result", result);
    //>>includeEnd('debug');
    result.x = (left.x + right.x) * 0.5;
    result.y = (left.y + right.y) * 0.5;
    result.z = (left.z + right.z) * 0.5;
    return result;
  };
  /**
   * Returns a Cartesian3 position from longitude and latitude values given in degrees.
   *
   * @param {Number} longitude The longitude, in degrees
   * @param {Number} latitude The latitude, in degrees
   * @param {Number} [height=0.0] The height, in meters, above the ellipsoid.
   * @param {Ellipsoid} [ellipsoid=Ellipsoid.WGS84] The ellipsoid on which the position lies.
   * @param {Cartesian3} [result] The object onto which to store the result.
   * @returns {Cartesian3} The position
   *
   * @example
   * const position = Cesium.Cartesian3.fromDegrees(-115.0, 37.0);
   */
  Cartesian3.fromDegrees = function (
    longitude,
    latitude,
    height,
    ellipsoid,
    result
  ) {
    //>>includeStart('debug', pragmas.debug);
    RuntimeError.Check.typeOf.number("longitude", longitude);
    RuntimeError.Check.typeOf.number("latitude", latitude);
    //>>includeEnd('debug');
    longitude = ComponentDatatype.CesiumMath.toRadians(longitude);
    latitude = ComponentDatatype.CesiumMath.toRadians(latitude);
    return Cartesian3.fromRadians(longitude, latitude, height, ellipsoid, result);
  };
  let scratchN = new Cartesian3();
  let scratchK = new Cartesian3();
  const wgs84RadiiSquared = new Cartesian3(
    6378137.0 * 6378137.0,
    6378137.0 * 6378137.0,
    6356752.3142451793 * 6356752.3142451793
  );
  /**
   * Returns a Cartesian3 position from longitude and latitude values given in radians.
   *
   * @param {Number} longitude The longitude, in radians
   * @param {Number} latitude The latitude, in radians
   * @param {Number} [height=0.0] The height, in meters, above the ellipsoid.
   * @param {Ellipsoid} [ellipsoid=Ellipsoid.WGS84] The ellipsoid on which the position lies.
   * @param {Cartesian3} [result] The object onto which to store the result.
   * @returns {Cartesian3} The position
   *
   * @example
   * const position = Cesium.Cartesian3.fromRadians(-2.007, 0.645);
   */
  Cartesian3.fromRadians = function (
    longitude,
    latitude,
    height,
    ellipsoid,
    result
  ) {
    //>>includeStart('debug', pragmas.debug);
    RuntimeError.Check.typeOf.number("longitude", longitude);
    RuntimeError.Check.typeOf.number("latitude", latitude);
    //>>includeEnd('debug');
    height = defaultValue.defaultValue(height, 0.0);
    const radiiSquared = defaultValue.defined(ellipsoid)
      ? ellipsoid.radiiSquared
      : wgs84RadiiSquared;
    const cosLatitude = Math.cos(latitude);
    scratchN.x = cosLatitude * Math.cos(longitude);
    scratchN.y = cosLatitude * Math.sin(longitude);
    scratchN.z = Math.sin(latitude);
    scratchN = Cartesian3.normalize(scratchN, scratchN);
    Cartesian3.multiplyComponents(radiiSquared, scratchN, scratchK);
    const gamma = Math.sqrt(Cartesian3.dot(scratchN, scratchK));
    scratchK = Cartesian3.divideByScalar(scratchK, gamma, scratchK);
    scratchN = Cartesian3.multiplyByScalar(scratchN, height, scratchN);
    if (!defaultValue.defined(result)) {
      result = new Cartesian3();
    }
    return Cartesian3.add(scratchK, scratchN, result);
  };
  /**
   * Returns an array of Cartesian3 positions given an array of longitude and latitude values given in degrees.
   *
   * @param {Number[]} coordinates A list of longitude and latitude values. Values alternate [longitude, latitude, longitude, latitude...].
   * @param {Ellipsoid} [ellipsoid=Ellipsoid.WGS84] The ellipsoid on which the coordinates lie.
   * @param {Cartesian3[]} [result] An array of Cartesian3 objects to store the result.
   * @returns {Cartesian3[]} The array of positions.
   *
   * @example
   * const positions = Cesium.Cartesian3.fromDegreesArray([-115.0, 37.0, -107.0, 33.0]);
   */
  Cartesian3.fromDegreesArray = function (coordinates, ellipsoid, result) {
    //>>includeStart('debug', pragmas.debug);
    RuntimeError.Check.defined("coordinates", coordinates);
    if (coordinates.length < 2 || coordinates.length % 2 !== 0) {
      throw new RuntimeError.DeveloperError(
        "the number of coordinates must be a multiple of 2 and at least 2"
      );
    }
    //>>includeEnd('debug');
    const length = coordinates.length;
    if (!defaultValue.defined(result)) {
      result = new Array(length / 2);
    } else {
      result.length = length / 2;
    }
    for (let i = 0; i < length; i += 2) {
      const longitude = coordinates[i];
      const latitude = coordinates[i + 1];
      const index = i / 2;
      result[index] = Cartesian3.fromDegrees(
        longitude,
        latitude,
        0,
        ellipsoid,
        result[index]
      );
    }
    return result;
  };
  /**
   * Returns an array of Cartesian3 positions given an array of longitude and latitude values given in radians.
   *
   * @param {Number[]} coordinates A list of longitude and latitude values. Values alternate [longitude, latitude, longitude, latitude...].
   * @param {Ellipsoid} [ellipsoid=Ellipsoid.WGS84] The ellipsoid on which the coordinates lie.
   * @param {Cartesian3[]} [result] An array of Cartesian3 objects to store the result.
   * @returns {Cartesian3[]} The array of positions.
   *
   * @example
   * const positions = Cesium.Cartesian3.fromRadiansArray([-2.007, 0.645, -1.867, .575]);
   */
  Cartesian3.fromRadiansArray = function (coordinates, ellipsoid, result) {
    //>>includeStart('debug', pragmas.debug);
    RuntimeError.Check.defined("coordinates", coordinates);
    if (coordinates.length < 2 || coordinates.length % 2 !== 0) {
      throw new RuntimeError.DeveloperError(
        "the number of coordinates must be a multiple of 2 and at least 2"
      );
    }
    //>>includeEnd('debug');
    const length = coordinates.length;
    if (!defaultValue.defined(result)) {
      result = new Array(length / 2);
    } else {
      result.length = length / 2;
    }
    for (let i = 0; i < length; i += 2) {
      const longitude = coordinates[i];
      const latitude = coordinates[i + 1];
      const index = i / 2;
      result[index] = Cartesian3.fromRadians(
        longitude,
        latitude,
        0,
        ellipsoid,
        result[index]
      );
    }
    return result;
  };
  /**
   * Returns an array of Cartesian3 positions given an array of longitude, latitude and height values where longitude and latitude are given in degrees.
   *
   * @param {Number[]} coordinates A list of longitude, latitude and height values. Values alternate [longitude, latitude, height, longitude, latitude, height...].
   * @param {Ellipsoid} [ellipsoid=Ellipsoid.WGS84] The ellipsoid on which the position lies.
   * @param {Cartesian3[]} [result] An array of Cartesian3 objects to store the result.
   * @returns {Cartesian3[]} The array of positions.
   *
   * @example
   * const positions = Cesium.Cartesian3.fromDegreesArrayHeights([-115.0, 37.0, 100000.0, -107.0, 33.0, 150000.0]);
   */
  Cartesian3.fromDegreesArrayHeights = function (coordinates, ellipsoid, result) {
    //>>includeStart('debug', pragmas.debug);
    RuntimeError.Check.defined("coordinates", coordinates);
    if (coordinates.length < 3 || coordinates.length % 3 !== 0) {
      throw new RuntimeError.DeveloperError(
        "the number of coordinates must be a multiple of 3 and at least 3"
      );
    }
    //>>includeEnd('debug');
    const length = coordinates.length;
    if (!defaultValue.defined(result)) {
      result = new Array(length / 3);
    } else {
      result.length = length / 3;
    }
    for (let i = 0; i < length; i += 3) {
      const longitude = coordinates[i];
      const latitude = coordinates[i + 1];
      const height = coordinates[i + 2];
      const index = i / 3;
      result[index] = Cartesian3.fromDegrees(
        longitude,
        latitude,
        height,
        ellipsoid,
        result[index]
      );
    }
    return result;
  };
  /**
   * Returns an array of Cartesian3 positions given an array of longitude, latitude and height values where longitude and latitude are given in radians.
   *
   * @param {Number[]} coordinates A list of longitude, latitude and height values. Values alternate [longitude, latitude, height, longitude, latitude, height...].
   * @param {Ellipsoid} [ellipsoid=Ellipsoid.WGS84] The ellipsoid on which the position lies.
   * @param {Cartesian3[]} [result] An array of Cartesian3 objects to store the result.
   * @returns {Cartesian3[]} The array of positions.
   *
   * @example
   * const positions = Cesium.Cartesian3.fromRadiansArrayHeights([-2.007, 0.645, 100000.0, -1.867, .575, 150000.0]);
   */
  Cartesian3.fromRadiansArrayHeights = function (coordinates, ellipsoid, result) {
    //>>includeStart('debug', pragmas.debug);
    RuntimeError.Check.defined("coordinates", coordinates);
    if (coordinates.length < 3 || coordinates.length % 3 !== 0) {
      throw new RuntimeError.DeveloperError(
        "the number of coordinates must be a multiple of 3 and at least 3"
      );
    }
    //>>includeEnd('debug');
    const length = coordinates.length;
    if (!defaultValue.defined(result)) {
      result = new Array(length / 3);
    } else {
      result.length = length / 3;
    }
    for (let i = 0; i < length; i += 3) {
      const longitude = coordinates[i];
      const latitude = coordinates[i + 1];
      const height = coordinates[i + 2];
      const index = i / 3;
      result[index] = Cartesian3.fromRadians(
        longitude,
        latitude,
        height,
        ellipsoid,
        result[index]
      );
    }
    return result;
  };
  /**
   * An immutable Cartesian3 instance initialized to (0.0, 0.0, 0.0).
   *
   * @type {Cartesian3}
   * @constant
   */
  Cartesian3.ZERO = Object.freeze(new Cartesian3(0.0, 0.0, 0.0));
  /**
   * An immutable Cartesian3 instance initialized to (1.0, 1.0, 1.0).
   *
   * @type {Cartesian3}
   * @constant
   */
  Cartesian3.ONE = Object.freeze(new Cartesian3(1.0, 1.0, 1.0));
  /**
   * An immutable Cartesian3 instance initialized to (1.0, 0.0, 0.0).
   *
   * @type {Cartesian3}
   * @constant
   */
  Cartesian3.UNIT_X = Object.freeze(new Cartesian3(1.0, 0.0, 0.0));
  /**
   * An immutable Cartesian3 instance initialized to (0.0, 1.0, 0.0).
   *
   * @type {Cartesian3}
   * @constant
   */
  Cartesian3.UNIT_Y = Object.freeze(new Cartesian3(0.0, 1.0, 0.0));
  /**
   * An immutable Cartesian3 instance initialized to (0.0, 0.0, 1.0).
   *
   * @type {Cartesian3}
   * @constant
   */
  Cartesian3.UNIT_Z = Object.freeze(new Cartesian3(0.0, 0.0, 1.0));
  /**
   * Duplicates this Cartesian3 instance.
   *
   * @param {Cartesian3} [result] The object onto which to store the result.
   * @returns {Cartesian3} The modified result parameter or a new Cartesian3 instance if one was not provided.
   */
  Cartesian3.prototype.clone = function (result) {
    return Cartesian3.clone(this, result);
  };
  /**
   * Compares this Cartesian against the provided Cartesian componentwise and returns
   * true if they are equal, false otherwise.
   *
   * @param {Cartesian3} [right] The right hand side Cartesian.
   * @returns {Boolean} true if they are equal, false otherwise.
   */
  Cartesian3.prototype.equals = function (right) {
    return Cartesian3.equals(this, right);
  };
  /**
   * Compares this Cartesian against the provided Cartesian componentwise and returns
   * true if they pass an absolute or relative tolerance test,
   * false otherwise.
   *
   * @param {Cartesian3} [right] The right hand side Cartesian.
   * @param {Number} [relativeEpsilon=0] The relative epsilon tolerance to use for equality testing.
   * @param {Number} [absoluteEpsilon=relativeEpsilon] The absolute epsilon tolerance to use for equality testing.
   * @returns {Boolean} true if they are within the provided epsilon, false otherwise.
   */
  Cartesian3.prototype.equalsEpsilon = function (
    right,
    relativeEpsilon,
    absoluteEpsilon
  ) {
    return Cartesian3.equalsEpsilon(
      this,
      right,
      relativeEpsilon,
      absoluteEpsilon
    );
  };
  /**
   * Creates a string representing this Cartesian in the format '(x, y, z)'.
   *
   * @returns {String} A string representing this Cartesian in the format '(x, y, z)'.
   */
  Cartesian3.prototype.toString = function () {
    return `(${this.x}, ${this.y}, ${this.z})`;
  };
  const scaleToGeodeticSurfaceIntersection = new Cartesian3();
  const scaleToGeodeticSurfaceGradient = new Cartesian3();
  /**
   * Scales the provided Cartesian position along the geodetic surface normal
   * so that it is on the surface of this ellipsoid.  If the position is
   * at the center of the ellipsoid, this function returns undefined.
   *
   * @param {Cartesian3} cartesian The Cartesian position to scale.
   * @param {Cartesian3} oneOverRadii One over radii of the ellipsoid.
   * @param {Cartesian3} oneOverRadiiSquared One over radii squared of the ellipsoid.
   * @param {Number} centerToleranceSquared Tolerance for closeness to the center.
   * @param {Cartesian3} [result] The object onto which to store the result.
   * @returns {Cartesian3} The modified result parameter, a new Cartesian3 instance if none was provided, or undefined if the position is at the center.
   *
   * @function scaleToGeodeticSurface
   *
   * @private
   */
  function scaleToGeodeticSurface(
    cartesian,
    oneOverRadii,
    oneOverRadiiSquared,
    centerToleranceSquared,
    result
  ) {
    //>>includeStart('debug', pragmas.debug);
    if (!defaultValue.defined(cartesian)) {
      throw new RuntimeError.DeveloperError("cartesian is required.");
    }
    if (!defaultValue.defined(oneOverRadii)) {
      throw new RuntimeError.DeveloperError("oneOverRadii is required.");
    }
    if (!defaultValue.defined(oneOverRadiiSquared)) {
      throw new RuntimeError.DeveloperError("oneOverRadiiSquared is required.");
    }
    if (!defaultValue.defined(centerToleranceSquared)) {
      throw new RuntimeError.DeveloperError("centerToleranceSquared is required.");
    }
    //>>includeEnd('debug');
    const positionX = cartesian.x;
    const positionY = cartesian.y;
    const positionZ = cartesian.z;
    const oneOverRadiiX = oneOverRadii.x;
    const oneOverRadiiY = oneOverRadii.y;
    const oneOverRadiiZ = oneOverRadii.z;
    const x2 = positionX * positionX * oneOverRadiiX * oneOverRadiiX;
    const y2 = positionY * positionY * oneOverRadiiY * oneOverRadiiY;
    const z2 = positionZ * positionZ * oneOverRadiiZ * oneOverRadiiZ;
    // Compute the squared ellipsoid norm.
    const squaredNorm = x2 + y2 + z2;
    const ratio = Math.sqrt(1.0 / squaredNorm);
    // As an initial approximation, assume that the radial intersection is the projection point.
    const intersection = Cartesian3.multiplyByScalar(
      cartesian,
      ratio,
      scaleToGeodeticSurfaceIntersection
    );
    // If the position is near the center, the iteration will not converge.
    if (squaredNorm < centerToleranceSquared) {
      return !isFinite(ratio)
        ? undefined
        : Cartesian3.clone(intersection, result);
    }
    const oneOverRadiiSquaredX = oneOverRadiiSquared.x;
    const oneOverRadiiSquaredY = oneOverRadiiSquared.y;
    const oneOverRadiiSquaredZ = oneOverRadiiSquared.z;
    // Use the gradient at the intersection point in place of the true unit normal.
    // The difference in magnitude will be absorbed in the multiplier.
    const gradient = scaleToGeodeticSurfaceGradient;
    gradient.x = intersection.x * oneOverRadiiSquaredX * 2.0;
    gradient.y = intersection.y * oneOverRadiiSquaredY * 2.0;
    gradient.z = intersection.z * oneOverRadiiSquaredZ * 2.0;
    // Compute the initial guess at the normal vector multiplier, lambda.
    let lambda =
      ((1.0 - ratio) * Cartesian3.magnitude(cartesian)) /
      (0.5 * Cartesian3.magnitude(gradient));
    let correction = 0.0;
    let func;
    let denominator;
    let xMultiplier;
    let yMultiplier;
    let zMultiplier;
    let xMultiplier2;
    let yMultiplier2;
    let zMultiplier2;
    let xMultiplier3;
    let yMultiplier3;
    let zMultiplier3;
    do {
      lambda -= correction;
      xMultiplier = 1.0 / (1.0 + lambda * oneOverRadiiSquaredX);
      yMultiplier = 1.0 / (1.0 + lambda * oneOverRadiiSquaredY);
      zMultiplier = 1.0 / (1.0 + lambda * oneOverRadiiSquaredZ);
      xMultiplier2 = xMultiplier * xMultiplier;
      yMultiplier2 = yMultiplier * yMultiplier;
      zMultiplier2 = zMultiplier * zMultiplier;
      xMultiplier3 = xMultiplier2 * xMultiplier;
      yMultiplier3 = yMultiplier2 * yMultiplier;
      zMultiplier3 = zMultiplier2 * zMultiplier;
      func = x2 * xMultiplier2 + y2 * yMultiplier2 + z2 * zMultiplier2 - 1.0;
      // "denominator" here refers to the use of this expression in the velocity and acceleration
      // computations in the sections to follow.
      denominator =
        x2 * xMultiplier3 * oneOverRadiiSquaredX +
        y2 * yMultiplier3 * oneOverRadiiSquaredY +
        z2 * zMultiplier3 * oneOverRadiiSquaredZ;
      const derivative = -2.0 * denominator;
      correction = func / derivative;
    } while (Math.abs(func) > ComponentDatatype.CesiumMath.EPSILON12);
    if (!defaultValue.defined(result)) {
      return new Cartesian3(
        positionX * xMultiplier,
        positionY * yMultiplier,
        positionZ * zMultiplier
      );
    }
    result.x = positionX * xMultiplier;
    result.y = positionY * yMultiplier;
    result.z = positionZ * zMultiplier;
    return result;
  }
  /**
   * A position defined by longitude, latitude, and height.
   * @alias Cartographic
   * @constructor
   *
   * @param {Number} [longitude=0.0] The longitude, in radians.
   * @param {Number} [latitude=0.0] The latitude, in radians.
   * @param {Number} [height=0.0] The height, in meters, above the ellipsoid.
   *
   * @see Ellipsoid
   */
  function Cartographic(longitude, latitude, height) {
    /**
     * The longitude, in radians.
     * @type {Number}
     * @default 0.0
     */
    this.longitude = defaultValue.defaultValue(longitude, 0.0);
    /**
     * The latitude, in radians.
     * @type {Number}
     * @default 0.0
     */
    this.latitude = defaultValue.defaultValue(latitude, 0.0);
    /**
     * The height, in meters, above the ellipsoid.
     * @type {Number}
     * @default 0.0
     */
    this.height = defaultValue.defaultValue(height, 0.0);
  }
  /**
   * Creates a new Cartographic instance from longitude and latitude
   * specified in radians.
   *
   * @param {Number} longitude The longitude, in radians.
   * @param {Number} latitude The latitude, in radians.
   * @param {Number} [height=0.0] The height, in meters, above the ellipsoid.
   * @param {Cartographic} [result] The object onto which to store the result.
   * @returns {Cartographic} The modified result parameter or a new Cartographic instance if one was not provided.
   */
  Cartographic.fromRadians = function (longitude, latitude, height, result) {
    //>>includeStart('debug', pragmas.debug);
    RuntimeError.Check.typeOf.number("longitude", longitude);
    RuntimeError.Check.typeOf.number("latitude", latitude);
    //>>includeEnd('debug');
    height = defaultValue.defaultValue(height, 0.0);
    if (!defaultValue.defined(result)) {
      return new Cartographic(longitude, latitude, height);
    }
    result.longitude = longitude;
    result.latitude = latitude;
    result.height = height;
    return result;
  };
  /**
   * Creates a new Cartographic instance from longitude and latitude
   * specified in degrees.  The values in the resulting object will
   * be in radians.
   *
   * @param {Number} longitude The longitude, in degrees.
   * @param {Number} latitude The latitude, in degrees.
   * @param {Number} [height=0.0] The height, in meters, above the ellipsoid.
   * @param {Cartographic} [result] The object onto which to store the result.
   * @returns {Cartographic} The modified result parameter or a new Cartographic instance if one was not provided.
   */
  Cartographic.fromDegrees = function (longitude, latitude, height, result) {
    //>>includeStart('debug', pragmas.debug);
    RuntimeError.Check.typeOf.number("longitude", longitude);
    RuntimeError.Check.typeOf.number("latitude", latitude);
    //>>includeEnd('debug');
    longitude = ComponentDatatype.CesiumMath.toRadians(longitude);
    latitude = ComponentDatatype.CesiumMath.toRadians(latitude);
    return Cartographic.fromRadians(longitude, latitude, height, result);
  };
  const cartesianToCartographicN$1 = new Cartesian3();
  const cartesianToCartographicP$1 = new Cartesian3();
  const cartesianToCartographicH$1 = new Cartesian3();
  const wgs84OneOverRadii = new Cartesian3(
    1.0 / 6378137.0,
    1.0 / 6378137.0,
    1.0 / 6356752.3142451793
  );
  const wgs84OneOverRadiiSquared = new Cartesian3(
    1.0 / (6378137.0 * 6378137.0),
    1.0 / (6378137.0 * 6378137.0),
    1.0 / (6356752.3142451793 * 6356752.3142451793)
  );
  const wgs84CenterToleranceSquared = ComponentDatatype.CesiumMath.EPSILON1;
  /**
   * Creates a new Cartographic instance from a Cartesian position. The values in the
   * resulting object will be in radians.
   *
   * @param {Cartesian3} cartesian The Cartesian position to convert to cartographic representation.
   * @param {Ellipsoid} [ellipsoid=Ellipsoid.WGS84] The ellipsoid on which the position lies.
   * @param {Cartographic} [result] The object onto which to store the result.
   * @returns {Cartographic} The modified result parameter, new Cartographic instance if none was provided, or undefined if the cartesian is at the center of the ellipsoid.
   */
  Cartographic.fromCartesian = function (cartesian, ellipsoid, result) {
    const oneOverRadii = defaultValue.defined(ellipsoid)
      ? ellipsoid.oneOverRadii
      : wgs84OneOverRadii;
    const oneOverRadiiSquared = defaultValue.defined(ellipsoid)
      ? ellipsoid.oneOverRadiiSquared
      : wgs84OneOverRadiiSquared;
    const centerToleranceSquared = defaultValue.defined(ellipsoid)
      ? ellipsoid._centerToleranceSquared
      : wgs84CenterToleranceSquared;
    //`cartesian is required.` is thrown from scaleToGeodeticSurface
    const p = scaleToGeodeticSurface(
      cartesian,
      oneOverRadii,
      oneOverRadiiSquared,
      centerToleranceSquared,
      cartesianToCartographicP$1
    );
    if (!defaultValue.defined(p)) {
      return undefined;
    }
    let n = Cartesian3.multiplyComponents(
      p,
      oneOverRadiiSquared,
      cartesianToCartographicN$1
    );
    n = Cartesian3.normalize(n, n);
    const h = Cartesian3.subtract(cartesian, p, cartesianToCartographicH$1);
    const longitude = Math.atan2(n.y, n.x);
    const latitude = Math.asin(n.z);
    const height =
      ComponentDatatype.CesiumMath.sign(Cartesian3.dot(h, cartesian)) * Cartesian3.magnitude(h);
    if (!defaultValue.defined(result)) {
      return new Cartographic(longitude, latitude, height);
    }
    result.longitude = longitude;
    result.latitude = latitude;
    result.height = height;
    return result;
  };
  /**
   * Creates a new Cartesian3 instance from a Cartographic input. The values in the inputted
   * object should be in radians.
   *
   * @param {Cartographic} cartographic Input to be converted into a Cartesian3 output.
   * @param {Ellipsoid} [ellipsoid=Ellipsoid.WGS84] The ellipsoid on which the position lies.
   * @param {Cartesian3} [result] The object onto which to store the result.
   * @returns {Cartesian3} The position
   */
  Cartographic.toCartesian = function (cartographic, ellipsoid, result) {
    //>>includeStart('debug', pragmas.debug);
    RuntimeError.Check.defined("cartographic", cartographic);
    //>>includeEnd('debug');
    return Cartesian3.fromRadians(
      cartographic.longitude,
      cartographic.latitude,
      cartographic.height,
      ellipsoid,
      result
    );
  };
  /**
   * Duplicates a Cartographic instance.
   *
   * @param {Cartographic} cartographic The cartographic to duplicate.
   * @param {Cartographic} [result] The object onto which to store the result.
   * @returns {Cartographic} The modified result parameter or a new Cartographic instance if one was not provided. (Returns undefined if cartographic is undefined)
   */
  Cartographic.clone = function (cartographic, result) {
    if (!defaultValue.defined(cartographic)) {
      return undefined;
    }
    if (!defaultValue.defined(result)) {
      return new Cartographic(
        cartographic.longitude,
        cartographic.latitude,
        cartographic.height
      );
    }
    result.longitude = cartographic.longitude;
    result.latitude = cartographic.latitude;
    result.height = cartographic.height;
    return result;
  };
  /**
   * Compares the provided cartographics componentwise and returns
   * true if they are equal, false otherwise.
   *
   * @param {Cartographic} [left] The first cartographic.
   * @param {Cartographic} [right] The second cartographic.
   * @returns {Boolean} true if left and right are equal, false otherwise.
   */
  Cartographic.equals = function (left, right) {
    return (
      left === right ||
      (defaultValue.defined(left) &&
        defaultValue.defined(right) &&
        left.longitude === right.longitude &&
        left.latitude === right.latitude &&
        left.height === right.height)
    );
  };
  /**
   * Compares the provided cartographics componentwise and returns
   * true if they are within the provided epsilon,
   * false otherwise.
   *
   * @param {Cartographic} [left] The first cartographic.
   * @param {Cartographic} [right] The second cartographic.
   * @param {Number} [epsilon=0] The epsilon to use for equality testing.
   * @returns {Boolean} true if left and right are within the provided epsilon, false otherwise.
   */
  Cartographic.equalsEpsilon = function (left, right, epsilon) {
    epsilon = defaultValue.defaultValue(epsilon, 0);
    return (
      left === right ||
      (defaultValue.defined(left) &&
        defaultValue.defined(right) &&
        Math.abs(left.longitude - right.longitude) <= epsilon &&
        Math.abs(left.latitude - right.latitude) <= epsilon &&
        Math.abs(left.height - right.height) <= epsilon)
    );
  };
  /**
   * An immutable Cartographic instance initialized to (0.0, 0.0, 0.0).
   *
   * @type {Cartographic}
   * @constant
   */
  Cartographic.ZERO = Object.freeze(new Cartographic(0.0, 0.0, 0.0));
  /**
   * Duplicates this instance.
   *
   * @param {Cartographic} [result] The object onto which to store the result.
   * @returns {Cartographic} The modified result parameter or a new Cartographic instance if one was not provided.
   */
  Cartographic.prototype.clone = function (result) {
    return Cartographic.clone(this, result);
  };
  /**
   * Compares the provided against this cartographic componentwise and returns
   * true if they are equal, false otherwise.
   *
   * @param {Cartographic} [right] The second cartographic.
   * @returns {Boolean} true if left and right are equal, false otherwise.
   */
  Cartographic.prototype.equals = function (right) {
    return Cartographic.equals(this, right);
  };
  /**
   * Compares the provided against this cartographic componentwise and returns
   * true if they are within the provided epsilon,
   * false otherwise.
   *
   * @param {Cartographic} [right] The second cartographic.
   * @param {Number} [epsilon=0] The epsilon to use for equality testing.
   * @returns {Boolean} true if left and right are within the provided epsilon, false otherwise.
   */
  Cartographic.prototype.equalsEpsilon = function (right, epsilon) {
    return Cartographic.equalsEpsilon(this, right, epsilon);
  };
  /**
   * Creates a string representing this cartographic in the format '(longitude, latitude, height)'.
   *
   * @returns {String} A string representing the provided cartographic in the format '(longitude, latitude, height)'.
   */
  Cartographic.prototype.toString = function () {
    return `(${this.longitude}, ${this.latitude}, ${this.height})`;
  };
  function initialize(ellipsoid, x, y, z) {
    x = defaultValue.defaultValue(x, 0.0);
    y = defaultValue.defaultValue(y, 0.0);
    z = defaultValue.defaultValue(z, 0.0);
    //>>includeStart('debug', pragmas.debug);
    RuntimeError.Check.typeOf.number.greaterThanOrEquals("x", x, 0.0);
    RuntimeError.Check.typeOf.number.greaterThanOrEquals("y", y, 0.0);
    RuntimeError.Check.typeOf.number.greaterThanOrEquals("z", z, 0.0);
    //>>includeEnd('debug');
    ellipsoid._radii = new Cartesian3(x, y, z);
    ellipsoid._radiiSquared = new Cartesian3(x * x, y * y, z * z);
    ellipsoid._radiiToTheFourth = new Cartesian3(
      x * x * x * x,
      y * y * y * y,
      z * z * z * z
    );
    ellipsoid._oneOverRadii = new Cartesian3(
      x === 0.0 ? 0.0 : 1.0 / x,
      y === 0.0 ? 0.0 : 1.0 / y,
      z === 0.0 ? 0.0 : 1.0 / z
    );
    ellipsoid._oneOverRadiiSquared = new Cartesian3(
      x === 0.0 ? 0.0 : 1.0 / (x * x),
      y === 0.0 ? 0.0 : 1.0 / (y * y),
      z === 0.0 ? 0.0 : 1.0 / (z * z)
    );
    ellipsoid._minimumRadius = Math.min(x, y, z);
    ellipsoid._maximumRadius = Math.max(x, y, z);
    ellipsoid._centerToleranceSquared = ComponentDatatype.CesiumMath.EPSILON1;
    if (ellipsoid._radiiSquared.z !== 0) {
      ellipsoid._squaredXOverSquaredZ =
        ellipsoid._radiiSquared.x / ellipsoid._radiiSquared.z;
    }
  }
  /**
   * A quadratic surface defined in Cartesian coordinates by the equation
   * (x / a)^2 + (y / b)^2 + (z / c)^2 = 1.  Primarily used
   * by Cesium to represent the shape of planetary bodies.
   *
   * Rather than constructing this object directly, one of the provided
   * constants is normally used.
   * @alias Ellipsoid
   * @constructor
   *
   * @param {Number} [x=0] The radius in the x direction.
   * @param {Number} [y=0] The radius in the y direction.
   * @param {Number} [z=0] The radius in the z direction.
   *
   * @exception {DeveloperError} All radii components must be greater than or equal to zero.
   *
   * @see Ellipsoid.fromCartesian3
   * @see Ellipsoid.WGS84
   * @see Ellipsoid.UNIT_SPHERE
   */
  function Ellipsoid(x, y, z) {
    this._radii = undefined;
    this._radiiSquared = undefined;
    this._radiiToTheFourth = undefined;
    this._oneOverRadii = undefined;
    this._oneOverRadiiSquared = undefined;
    this._minimumRadius = undefined;
    this._maximumRadius = undefined;
    this._centerToleranceSquared = undefined;
    this._squaredXOverSquaredZ = undefined;
    initialize(this, x, y, z);
  }
  Object.defineProperties(Ellipsoid.prototype, {
    /**
     * Gets the radii of the ellipsoid.
     * @memberof Ellipsoid.prototype
     * @type {Cartesian3}
     * @readonly
     */
    radii: {
      get: function () {
        return this._radii;
      },
    },
    /**
     * Gets the squared radii of the ellipsoid.
     * @memberof Ellipsoid.prototype
     * @type {Cartesian3}
     * @readonly
     */
    radiiSquared: {
      get: function () {
        return this._radiiSquared;
      },
    },
    /**
     * Gets the radii of the ellipsoid raise to the fourth power.
     * @memberof Ellipsoid.prototype
     * @type {Cartesian3}
     * @readonly
     */
    radiiToTheFourth: {
      get: function () {
        return this._radiiToTheFourth;
      },
    },
    /**
     * Gets one over the radii of the ellipsoid.
     * @memberof Ellipsoid.prototype
     * @type {Cartesian3}
     * @readonly
     */
    oneOverRadii: {
      get: function () {
        return this._oneOverRadii;
      },
    },
    /**
     * Gets one over the squared radii of the ellipsoid.
     * @memberof Ellipsoid.prototype
     * @type {Cartesian3}
     * @readonly
     */
    oneOverRadiiSquared: {
      get: function () {
        return this._oneOverRadiiSquared;
      },
    },
    /**
     * Gets the minimum radius of the ellipsoid.
     * @memberof Ellipsoid.prototype
     * @type {Number}
     * @readonly
     */
    minimumRadius: {
      get: function () {
        return this._minimumRadius;
      },
    },
    /**
     * Gets the maximum radius of the ellipsoid.
     * @memberof Ellipsoid.prototype
     * @type {Number}
     * @readonly
     */
    maximumRadius: {
      get: function () {
        return this._maximumRadius;
      },
    },
  });
  /**
   * Duplicates an Ellipsoid instance.
   *
   * @param {Ellipsoid} ellipsoid The ellipsoid to duplicate.
   * @param {Ellipsoid} [result] The object onto which to store the result, or undefined if a new
   *                    instance should be created.
   * @returns {Ellipsoid} The cloned Ellipsoid. (Returns undefined if ellipsoid is undefined)
   */
  Ellipsoid.clone = function (ellipsoid, result) {
    if (!defaultValue.defined(ellipsoid)) {
      return undefined;
    }
    const radii = ellipsoid._radii;
    if (!defaultValue.defined(result)) {
      return new Ellipsoid(radii.x, radii.y, radii.z);
    }
    Cartesian3.clone(radii, result._radii);
    Cartesian3.clone(ellipsoid._radiiSquared, result._radiiSquared);
    Cartesian3.clone(ellipsoid._radiiToTheFourth, result._radiiToTheFourth);
    Cartesian3.clone(ellipsoid._oneOverRadii, result._oneOverRadii);
    Cartesian3.clone(ellipsoid._oneOverRadiiSquared, result._oneOverRadiiSquared);
    result._minimumRadius = ellipsoid._minimumRadius;
    result._maximumRadius = ellipsoid._maximumRadius;
    result._centerToleranceSquared = ellipsoid._centerToleranceSquared;
    return result;
  };
  /**
   * Computes an Ellipsoid from a Cartesian specifying the radii in x, y, and z directions.
   *
   * @param {Cartesian3} [cartesian=Cartesian3.ZERO] The ellipsoid's radius in the x, y, and z directions.
   * @param {Ellipsoid} [result] The object onto which to store the result, or undefined if a new
   *                    instance should be created.
   * @returns {Ellipsoid} A new Ellipsoid instance.
   *
   * @exception {DeveloperError} All radii components must be greater than or equal to zero.
   *
   * @see Ellipsoid.WGS84
   * @see Ellipsoid.UNIT_SPHERE
   */
  Ellipsoid.fromCartesian3 = function (cartesian, result) {
    if (!defaultValue.defined(result)) {
      result = new Ellipsoid();
    }
    if (!defaultValue.defined(cartesian)) {
      return result;
    }
    initialize(result, cartesian.x, cartesian.y, cartesian.z);
    return result;
  };
  /**
   * An Ellipsoid instance initialized to the WGS84 standard.
   *
   * @type {Ellipsoid}
   * @constant
   */
  Ellipsoid.WGS84 = Object.freeze(
    new Ellipsoid(6378137.0, 6378137.0, 6356752.3142451793)
  );
  /**
   * An Ellipsoid instance initialized to radii of (1.0, 1.0, 1.0).
   *
   * @type {Ellipsoid}
   * @constant
   */
  Ellipsoid.UNIT_SPHERE = Object.freeze(new Ellipsoid(1.0, 1.0, 1.0));
  /**
   * An Ellipsoid instance initialized to a sphere with the lunar radius.
   *
   * @type {Ellipsoid}
   * @constant
   */
  Ellipsoid.MOON = Object.freeze(
    new Ellipsoid(
      ComponentDatatype.CesiumMath.LUNAR_RADIUS,
      ComponentDatatype.CesiumMath.LUNAR_RADIUS,
      ComponentDatatype.CesiumMath.LUNAR_RADIUS
    )
  );
  /**
   * Duplicates an Ellipsoid instance.
   *
   * @param {Ellipsoid} [result] The object onto which to store the result, or undefined if a new
   *                    instance should be created.
   * @returns {Ellipsoid} The cloned Ellipsoid.
   */
  Ellipsoid.prototype.clone = function (result) {
    return Ellipsoid.clone(this, result);
  };
  /**
   * The number of elements used to pack the object into an array.
   * @type {Number}
   */
  Ellipsoid.packedLength = Cartesian3.packedLength;
  /**
   * Stores the provided instance into the provided array.
   *
   * @param {Ellipsoid} value The value to pack.
   * @param {Number[]} array The array to pack into.
   * @param {Number} [startingIndex=0] The index into the array at which to start packing the elements.
   *
   * @returns {Number[]} The array that was packed into
   */
  Ellipsoid.pack = function (value, array, startingIndex) {
    //>>includeStart('debug', pragmas.debug);
    RuntimeError.Check.typeOf.object("value", value);
    RuntimeError.Check.defined("array", array);
    //>>includeEnd('debug');
    startingIndex = defaultValue.defaultValue(startingIndex, 0);
    Cartesian3.pack(value._radii, array, startingIndex);
    return array;
  };
  /**
   * Retrieves an instance from a packed array.
   *
   * @param {Number[]} array The packed array.
   * @param {Number} [startingIndex=0] The starting index of the element to be unpacked.
   * @param {Ellipsoid} [result] The object into which to store the result.
   * @returns {Ellipsoid} The modified result parameter or a new Ellipsoid instance if one was not provided.
   */
  Ellipsoid.unpack = function (array, startingIndex, result) {
    //>>includeStart('debug', pragmas.debug);
    RuntimeError.Check.defined("array", array);
    //>>includeEnd('debug');
    startingIndex = defaultValue.defaultValue(startingIndex, 0);
    const radii = Cartesian3.unpack(array, startingIndex);
    return Ellipsoid.fromCartesian3(radii, result);
  };
  /**
   * Computes the unit vector directed from the center of this ellipsoid toward the provided Cartesian position.
   * @function
   *
   * @param {Cartesian3} cartesian The Cartesian for which to to determine the geocentric normal.
   * @param {Cartesian3} [result] The object onto which to store the result.
   * @returns {Cartesian3} The modified result parameter or a new Cartesian3 instance if none was provided.
   */
  Ellipsoid.prototype.geocentricSurfaceNormal = Cartesian3.normalize;
  /**
   * Computes the normal of the plane tangent to the surface of the ellipsoid at the provided position.
   *
   * @param {Cartographic} cartographic The cartographic position for which to to determine the geodetic normal.
   * @param {Cartesian3} [result] The object onto which to store the result.
   * @returns {Cartesian3} The modified result parameter or a new Cartesian3 instance if none was provided.
   */
  Ellipsoid.prototype.geodeticSurfaceNormalCartographic = function (
    cartographic,
    result
  ) {
    //>>includeStart('debug', pragmas.debug);
    RuntimeError.Check.typeOf.object("cartographic", cartographic);
    //>>includeEnd('debug');
    const longitude = cartographic.longitude;
    const latitude = cartographic.latitude;
    const cosLatitude = Math.cos(latitude);
    const x = cosLatitude * Math.cos(longitude);
    const y = cosLatitude * Math.sin(longitude);
    const z = Math.sin(latitude);
    if (!defaultValue.defined(result)) {
      result = new Cartesian3();
    }
    result.x = x;
    result.y = y;
    result.z = z;
    return Cartesian3.normalize(result, result);
  };
  /**
   * Computes the normal of the plane tangent to the surface of the ellipsoid at the provided position.
   *
   * @param {Cartesian3} cartesian The Cartesian position for which to to determine the surface normal.
   * @param {Cartesian3} [result] The object onto which to store the result.
   * @returns {Cartesian3} The modified result parameter or a new Cartesian3 instance if none was provided, or undefined if a normal cannot be found.
   */
  Ellipsoid.prototype.geodeticSurfaceNormal = function (cartesian, result) {
    if (
      Cartesian3.equalsEpsilon(cartesian, Cartesian3.ZERO, ComponentDatatype.CesiumMath.EPSILON14)
    ) {
      return undefined;
    }
    if (!defaultValue.defined(result)) {
      result = new Cartesian3();
    }
    result = Cartesian3.multiplyComponents(
      cartesian,
      this._oneOverRadiiSquared,
      result
    );
    return Cartesian3.normalize(result, result);
  };
  const cartographicToCartesianNormal = new Cartesian3();
  const cartographicToCartesianK = new Cartesian3();
  /**
   * Converts the provided cartographic to Cartesian representation.
   *
   * @param {Cartographic} cartographic The cartographic position.
   * @param {Cartesian3} [result] The object onto which to store the result.
   * @returns {Cartesian3} The modified result parameter or a new Cartesian3 instance if none was provided.
   *
   * @example
   * //Create a Cartographic and determine it's Cartesian representation on a WGS84 ellipsoid.
   * const position = new Cesium.Cartographic(Cesium.Math.toRadians(21), Cesium.Math.toRadians(78), 5000);
   * const cartesianPosition = Cesium.Ellipsoid.WGS84.cartographicToCartesian(position);
   */
  Ellipsoid.prototype.cartographicToCartesian = function (cartographic, result) {
    //`cartographic is required` is thrown from geodeticSurfaceNormalCartographic.
    const n = cartographicToCartesianNormal;
    const k = cartographicToCartesianK;
    this.geodeticSurfaceNormalCartographic(cartographic, n);
    Cartesian3.multiplyComponents(this._radiiSquared, n, k);
    const gamma = Math.sqrt(Cartesian3.dot(n, k));
    Cartesian3.divideByScalar(k, gamma, k);
    Cartesian3.multiplyByScalar(n, cartographic.height, n);
    if (!defaultValue.defined(result)) {
      result = new Cartesian3();
    }
    return Cartesian3.add(k, n, result);
  };
  /**
   * Converts the provided array of cartographics to an array of Cartesians.
   *
   * @param {Cartographic[]} cartographics An array of cartographic positions.
   * @param {Cartesian3[]} [result] The object onto which to store the result.
   * @returns {Cartesian3[]} The modified result parameter or a new Array instance if none was provided.
   *
   * @example
   * //Convert an array of Cartographics and determine their Cartesian representation on a WGS84 ellipsoid.
   * const positions = [new Cesium.Cartographic(Cesium.Math.toRadians(21), Cesium.Math.toRadians(78), 0),
   *                  new Cesium.Cartographic(Cesium.Math.toRadians(21.321), Cesium.Math.toRadians(78.123), 100),
   *                  new Cesium.Cartographic(Cesium.Math.toRadians(21.645), Cesium.Math.toRadians(78.456), 250)];
   * const cartesianPositions = Cesium.Ellipsoid.WGS84.cartographicArrayToCartesianArray(positions);
   */
  Ellipsoid.prototype.cartographicArrayToCartesianArray = function (
    cartographics,
    result
  ) {
    //>>includeStart('debug', pragmas.debug);
    RuntimeError.Check.defined("cartographics", cartographics);
    //>>includeEnd('debug')
    const length = cartographics.length;
    if (!defaultValue.defined(result)) {
      result = new Array(length);
    } else {
      result.length = length;
    }
    for (let i = 0; i < length; i++) {
      result[i] = this.cartographicToCartesian(cartographics[i], result[i]);
    }
    return result;
  };
  const cartesianToCartographicN = new Cartesian3();
  const cartesianToCartographicP = new Cartesian3();
  const cartesianToCartographicH = new Cartesian3();
  /**
   * Converts the provided cartesian to cartographic representation.
   * The cartesian is undefined at the center of the ellipsoid.
   *
   * @param {Cartesian3} cartesian The Cartesian position to convert to cartographic representation.
   * @param {Cartographic} [result] The object onto which to store the result.
   * @returns {Cartographic} The modified result parameter, new Cartographic instance if none was provided, or undefined if the cartesian is at the center of the ellipsoid.
   *
   * @example
   * //Create a Cartesian and determine it's Cartographic representation on a WGS84 ellipsoid.
   * const position = new Cesium.Cartesian3(17832.12, 83234.52, 952313.73);
   * const cartographicPosition = Cesium.Ellipsoid.WGS84.cartesianToCartographic(position);
   */
  Ellipsoid.prototype.cartesianToCartographic = function (cartesian, result) {
    //`cartesian is required.` is thrown from scaleToGeodeticSurface
    const p = this.scaleToGeodeticSurface(cartesian, cartesianToCartographicP);
    if (!defaultValue.defined(p)) {
      return undefined;
    }
    const n = this.geodeticSurfaceNormal(p, cartesianToCartographicN);
    const h = Cartesian3.subtract(cartesian, p, cartesianToCartographicH);
    const longitude = Math.atan2(n.y, n.x);
    const latitude = Math.asin(n.z);
    const height =
      ComponentDatatype.CesiumMath.sign(Cartesian3.dot(h, cartesian)) * Cartesian3.magnitude(h);
    if (!defaultValue.defined(result)) {
      return new Cartographic(longitude, latitude, height);
    }
    result.longitude = longitude;
    result.latitude = latitude;
    result.height = height;
    return result;
  };
  /**
   * Converts the provided array of cartesians to an array of cartographics.
   *
   * @param {Cartesian3[]} cartesians An array of Cartesian positions.
   * @param {Cartographic[]} [result] The object onto which to store the result.
   * @returns {Cartographic[]} The modified result parameter or a new Array instance if none was provided.
   *
   * @example
   * //Create an array of Cartesians and determine their Cartographic representation on a WGS84 ellipsoid.
   * const positions = [new Cesium.Cartesian3(17832.12, 83234.52, 952313.73),
   *                  new Cesium.Cartesian3(17832.13, 83234.53, 952313.73),
   *                  new Cesium.Cartesian3(17832.14, 83234.54, 952313.73)]
   * const cartographicPositions = Cesium.Ellipsoid.WGS84.cartesianArrayToCartographicArray(positions);
   */
  Ellipsoid.prototype.cartesianArrayToCartographicArray = function (
    cartesians,
    result
  ) {
    //>>includeStart('debug', pragmas.debug);
    RuntimeError.Check.defined("cartesians", cartesians);
    //>>includeEnd('debug');
    const length = cartesians.length;
    if (!defaultValue.defined(result)) {
      result = new Array(length);
    } else {
      result.length = length;
    }
    for (let i = 0; i < length; ++i) {
      result[i] = this.cartesianToCartographic(cartesians[i], result[i]);
    }
    return result;
  };
  /**
   * Scales the provided Cartesian position along the geodetic surface normal
   * so that it is on the surface of this ellipsoid.  If the position is
   * at the center of the ellipsoid, this function returns undefined.
   *
   * @param {Cartesian3} cartesian The Cartesian position to scale.
   * @param {Cartesian3} [result] The object onto which to store the result.
   * @returns {Cartesian3} The modified result parameter, a new Cartesian3 instance if none was provided, or undefined if the position is at the center.
   */
  Ellipsoid.prototype.scaleToGeodeticSurface = function (cartesian, result) {
    return scaleToGeodeticSurface(
      cartesian,
      this._oneOverRadii,
      this._oneOverRadiiSquared,
      this._centerToleranceSquared,
      result
    );
  };
  /**
   * Scales the provided Cartesian position along the geocentric surface normal
   * so that it is on the surface of this ellipsoid.
   *
   * @param {Cartesian3} cartesian The Cartesian position to scale.
   * @param {Cartesian3} [result] The object onto which to store the result.
   * @returns {Cartesian3} The modified result parameter or a new Cartesian3 instance if none was provided.
   */
  Ellipsoid.prototype.scaleToGeocentricSurface = function (cartesian, result) {
    //>>includeStart('debug', pragmas.debug);
    RuntimeError.Check.typeOf.object("cartesian", cartesian);
    //>>includeEnd('debug');
    if (!defaultValue.defined(result)) {
      result = new Cartesian3();
    }
    const positionX = cartesian.x;
    const positionY = cartesian.y;
    const positionZ = cartesian.z;
    const oneOverRadiiSquared = this._oneOverRadiiSquared;
    const beta =
      1.0 /
      Math.sqrt(
        positionX * positionX * oneOverRadiiSquared.x +
          positionY * positionY * oneOverRadiiSquared.y +
          positionZ * positionZ * oneOverRadiiSquared.z
      );
    return Cartesian3.multiplyByScalar(cartesian, beta, result);
  };
  /**
   * Transforms a Cartesian X, Y, Z position to the ellipsoid-scaled space by multiplying
   * its components by the result of {@link Ellipsoid#oneOverRadii}.
   *
   * @param {Cartesian3} position The position to transform.
   * @param {Cartesian3} [result] The position to which to copy the result, or undefined to create and
   *        return a new instance.
   * @returns {Cartesian3} The position expressed in the scaled space.  The returned instance is the
   *          one passed as the result parameter if it is not undefined, or a new instance of it is.
   */
  Ellipsoid.prototype.transformPositionToScaledSpace = function (
    position,
    result
  ) {
    if (!defaultValue.defined(result)) {
      result = new Cartesian3();
    }
    return Cartesian3.multiplyComponents(position, this._oneOverRadii, result);
  };
  /**
   * Transforms a Cartesian X, Y, Z position from the ellipsoid-scaled space by multiplying
   * its components by the result of {@link Ellipsoid#radii}.
   *
   * @param {Cartesian3} position The position to transform.
   * @param {Cartesian3} [result] The position to which to copy the result, or undefined to create and
   *        return a new instance.
   * @returns {Cartesian3} The position expressed in the unscaled space.  The returned instance is the
   *          one passed as the result parameter if it is not undefined, or a new instance of it is.
   */
  Ellipsoid.prototype.transformPositionFromScaledSpace = function (
    position,
    result
  ) {
    if (!defaultValue.defined(result)) {
      result = new Cartesian3();
    }
    return Cartesian3.multiplyComponents(position, this._radii, result);
  };
  /**
   * Compares this Ellipsoid against the provided Ellipsoid componentwise and returns
   * true if they are equal, false otherwise.
   *
   * @param {Ellipsoid} [right] The other Ellipsoid.
   * @returns {Boolean} true if they are equal, false otherwise.
   */
  Ellipsoid.prototype.equals = function (right) {
    return (
      this === right ||
      (defaultValue.defined(right) && Cartesian3.equals(this._radii, right._radii))
    );
  };
  /**
   * Creates a string representing this Ellipsoid in the format '(radii.x, radii.y, radii.z)'.
   *
   * @returns {String} A string representing this ellipsoid in the format '(radii.x, radii.y, radii.z)'.
   */
  Ellipsoid.prototype.toString = function () {
    return this._radii.toString();
  };
  /**
   * Computes a point which is the intersection of the surface normal with the z-axis.
   *
   * @param {Cartesian3} position the position. must be on the surface of the ellipsoid.
   * @param {Number} [buffer = 0.0] A buffer to subtract from the ellipsoid size when checking if the point is inside the ellipsoid.
   *                                In earth case, with common earth datums, there is no need for this buffer since the intersection point is always (relatively) very close to the center.
   *                                In WGS84 datum, intersection point is at max z = +-42841.31151331382 (0.673% of z-axis).
   *                                Intersection point could be outside the ellipsoid if the ratio of MajorAxis / AxisOfRotation is bigger than the square root of 2
   * @param {Cartesian3} [result] The cartesian to which to copy the result, or undefined to create and
   *        return a new instance.
   * @returns {Cartesian3 | undefined} the intersection point if it's inside the ellipsoid, undefined otherwise
   *
   * @exception {DeveloperError} position is required.
   * @exception {DeveloperError} Ellipsoid must be an ellipsoid of revolution (radii.x == radii.y).
   * @exception {DeveloperError} Ellipsoid.radii.z must be greater than 0.
   */
  Ellipsoid.prototype.getSurfaceNormalIntersectionWithZAxis = function (
    position,
    buffer,
    result
  ) {
    //>>includeStart('debug', pragmas.debug);
    RuntimeError.Check.typeOf.object("position", position);
    if (
      !ComponentDatatype.CesiumMath.equalsEpsilon(
        this._radii.x,
        this._radii.y,
        ComponentDatatype.CesiumMath.EPSILON15
      )
    ) {
      throw new RuntimeError.DeveloperError(
        "Ellipsoid must be an ellipsoid of revolution (radii.x == radii.y)"
      );
    }
    RuntimeError.Check.typeOf.number.greaterThan("Ellipsoid.radii.z", this._radii.z, 0);
    //>>includeEnd('debug');
    buffer = defaultValue.defaultValue(buffer, 0.0);
    const squaredXOverSquaredZ = this._squaredXOverSquaredZ;
    if (!defaultValue.defined(result)) {
      result = new Cartesian3();
    }
    result.x = 0.0;
    result.y = 0.0;
    result.z = position.z * (1 - squaredXOverSquaredZ);
    if (Math.abs(result.z) >= this._radii.z - buffer) {
      return undefined;
    }
    return result;
  };
  const abscissas = [
    0.14887433898163,
    0.43339539412925,
    0.67940956829902,
    0.86506336668898,
    0.97390652851717,
    0.0,
  ];
  const weights = [
    0.29552422471475,
    0.26926671930999,
    0.21908636251598,
    0.14945134915058,
    0.066671344308684,
    0.0,
  ];
  /**
   * Compute the 10th order Gauss-Legendre Quadrature of the given definite integral.
   *
   * @param {Number} a The lower bound for the integration.
   * @param {Number} b The upper bound for the integration.
   * @param {Ellipsoid~RealValuedScalarFunction} func The function to integrate.
   * @returns {Number} The value of the integral of the given function over the given domain.
   *
   * @private
   */
  function gaussLegendreQuadrature(a, b, func) {
    //>>includeStart('debug', pragmas.debug);
    RuntimeError.Check.typeOf.number("a", a);
    RuntimeError.Check.typeOf.number("b", b);
    RuntimeError.Check.typeOf.func("func", func);
    //>>includeEnd('debug');
    // The range is half of the normal range since the five weights add to one (ten weights add to two).
    // The values of the abscissas are multiplied by two to account for this.
    const xMean = 0.5 * (b + a);
    const xRange = 0.5 * (b - a);
    let sum = 0.0;
    for (let i = 0; i < 5; i++) {
      const dx = xRange * abscissas[i];
      sum += weights[i] * (func(xMean + dx) + func(xMean - dx));
    }
    // Scale the sum to the range of x.
    sum *= xRange;
    return sum;
  }
  /**
   * A real valued scalar function.
   * @callback Ellipsoid~RealValuedScalarFunction
   *
   * @param {Number} x The value used to evaluate the function.
   * @returns {Number} The value of the function at x.
   *
   * @private
   */
  /**
   * Computes an approximation of the surface area of a rectangle on the surface of an ellipsoid using
   * Gauss-Legendre 10th order quadrature.
   *
   * @param {Rectangle} rectangle The rectangle used for computing the surface area.
   * @returns {Number} The approximate area of the rectangle on the surface of this ellipsoid.
   */
  Ellipsoid.prototype.surfaceArea = function (rectangle) {
    //>>includeStart('debug', pragmas.debug);
    RuntimeError.Check.typeOf.object("rectangle", rectangle);
    //>>includeEnd('debug');
    const minLongitude = rectangle.west;
    let maxLongitude = rectangle.east;
    const minLatitude = rectangle.south;
    const maxLatitude = rectangle.north;
    while (maxLongitude < minLongitude) {
      maxLongitude += ComponentDatatype.CesiumMath.TWO_PI;
    }
    const radiiSquared = this._radiiSquared;
    const a2 = radiiSquared.x;
    const b2 = radiiSquared.y;
    const c2 = radiiSquared.z;
    const a2b2 = a2 * b2;
    return gaussLegendreQuadrature(minLatitude, maxLatitude, function (lat) {
      // phi represents the angle measured from the north pole
      // sin(phi) = sin(pi / 2 - lat) = cos(lat), cos(phi) is similar
      const sinPhi = Math.cos(lat);
      const cosPhi = Math.sin(lat);
      return (
        Math.cos(lat) *
        gaussLegendreQuadrature(minLongitude, maxLongitude, function (lon) {
          const cosTheta = Math.cos(lon);
          const sinTheta = Math.sin(lon);
          return Math.sqrt(
            a2b2 * cosPhi * cosPhi +
              c2 *
                (b2 * cosTheta * cosTheta + a2 * sinTheta * sinTheta) *
                sinPhi *
                sinPhi
          );
        })
      );
    });
  };
  /**
   * A 3x3 matrix, indexable as a column-major order array.
   * Constructor parameters are in row-major order for code readability.
   * @alias Matrix3
   * @constructor
   * @implements {ArrayLike
   * Returns a diagonal matrix and unitary matrix such that:
   * matrix = unitary matrix * diagonal matrix * transpose(unitary matrix)
   * 
* The values along the diagonal of the diagonal matrix are the eigenvalues. The columns * of the unitary matrix are the corresponding eigenvectors. *
* * @param {Matrix3} matrix The matrix to decompose into diagonal and unitary matrix. Expected to be symmetric. * @param {Object} [result] An object with unitary and diagonal properties which are matrices onto which to store the result. * @returns {Object} An object with unitary and diagonal properties which are the unitary and diagonal matrices, respectively. * * @example * const a = //... symetric matrix * const result = { * unitary : new Cesium.Matrix3(), * diagonal : new Cesium.Matrix3() * }; * Cesium.Matrix3.computeEigenDecomposition(a, result); * * const unitaryTranspose = Cesium.Matrix3.transpose(result.unitary, new Cesium.Matrix3()); * const b = Cesium.Matrix3.multiply(result.unitary, result.diagonal, new Cesium.Matrix3()); * Cesium.Matrix3.multiply(b, unitaryTranspose, b); // b is now equal to a * * const lambda = Cesium.Matrix3.getColumn(result.diagonal, 0, new Cesium.Cartesian3()).x; // first eigenvalue * const v = Cesium.Matrix3.getColumn(result.unitary, 0, new Cesium.Cartesian3()); // first eigenvector * const c = Cesium.Cartesian3.multiplyByScalar(v, lambda, new Cesium.Cartesian3()); // equal to Cesium.Matrix3.multiplyByVector(a, v) */ Matrix3.computeEigenDecomposition = function (matrix, result) { //>>includeStart('debug', pragmas.debug); RuntimeError.Check.typeOf.object("matrix", matrix); //>>includeEnd('debug'); // This routine was created based upon Matrix Computations, 3rd ed., by Golub and Van Loan, // section 8.4.3 The Classical Jacobi Algorithm const tolerance = ComponentDatatype.CesiumMath.EPSILON20; const maxSweeps = 10; let count = 0; let sweep = 0; if (!defaultValue.defined(result)) { result = {}; } const unitaryMatrix = (result.unitary = Matrix3.clone( Matrix3.IDENTITY, result.unitary )); const diagMatrix = (result.diagonal = Matrix3.clone(matrix, result.diagonal)); const epsilon = tolerance * computeFrobeniusNorm(diagMatrix); while (sweep < maxSweeps && offDiagonalFrobeniusNorm(diagMatrix) > epsilon) { shurDecomposition(diagMatrix, jMatrix); Matrix3.transpose(jMatrix, jMatrixTranspose); Matrix3.multiply(diagMatrix, jMatrix, diagMatrix); Matrix3.multiply(jMatrixTranspose, diagMatrix, diagMatrix); Matrix3.multiply(unitaryMatrix, jMatrix, unitaryMatrix); if (++count > 2) { ++sweep; count = 0; } } return result; }; /** * Computes a matrix, which contains the absolute (unsigned) values of the provided matrix's elements. * * @param {Matrix3} matrix The matrix with signed elements. * @param {Matrix3} result The object onto which to store the result. * @returns {Matrix3} The modified result parameter. */ Matrix3.abs = function (matrix, result) { //>>includeStart('debug', pragmas.debug); RuntimeError.Check.typeOf.object("matrix", matrix); RuntimeError.Check.typeOf.object("result", result); //>>includeEnd('debug'); result[0] = Math.abs(matrix[0]); result[1] = Math.abs(matrix[1]); result[2] = Math.abs(matrix[2]); result[3] = Math.abs(matrix[3]); result[4] = Math.abs(matrix[4]); result[5] = Math.abs(matrix[5]); result[6] = Math.abs(matrix[6]); result[7] = Math.abs(matrix[7]); result[8] = Math.abs(matrix[8]); return result; }; /** * Computes the determinant of the provided matrix. * * @param {Matrix3} matrix The matrix to use. * @returns {Number} The value of the determinant of the matrix. */ Matrix3.determinant = function (matrix) { //>>includeStart('debug', pragmas.debug); RuntimeError.Check.typeOf.object("matrix", matrix); //>>includeEnd('debug'); const m11 = matrix[0]; const m21 = matrix[3]; const m31 = matrix[6]; const m12 = matrix[1]; const m22 = matrix[4]; const m32 = matrix[7]; const m13 = matrix[2]; const m23 = matrix[5]; const m33 = matrix[8]; return ( m11 * (m22 * m33 - m23 * m32) + m12 * (m23 * m31 - m21 * m33) + m13 * (m21 * m32 - m22 * m31) ); }; /** * Computes the inverse of the provided matrix. * * @param {Matrix3} matrix The matrix to invert. * @param {Matrix3} result The object onto which to store the result. * @returns {Matrix3} The modified result parameter. * * @exception {DeveloperError} matrix is not invertible. */ Matrix3.inverse = function (matrix, result) { //>>includeStart('debug', pragmas.debug); RuntimeError.Check.typeOf.object("matrix", matrix); RuntimeError.Check.typeOf.object("result", result); //>>includeEnd('debug'); const m11 = matrix[0]; const m21 = matrix[1]; const m31 = matrix[2]; const m12 = matrix[3]; const m22 = matrix[4]; const m32 = matrix[5]; const m13 = matrix[6]; const m23 = matrix[7]; const m33 = matrix[8]; const determinant = Matrix3.determinant(matrix); //>>includeStart('debug', pragmas.debug); if (Math.abs(determinant) <= ComponentDatatype.CesiumMath.EPSILON15) { throw new RuntimeError.DeveloperError("matrix is not invertible"); } //>>includeEnd('debug'); result[0] = m22 * m33 - m23 * m32; result[1] = m23 * m31 - m21 * m33; result[2] = m21 * m32 - m22 * m31; result[3] = m13 * m32 - m12 * m33; result[4] = m11 * m33 - m13 * m31; result[5] = m12 * m31 - m11 * m32; result[6] = m12 * m23 - m13 * m22; result[7] = m13 * m21 - m11 * m23; result[8] = m11 * m22 - m12 * m21; const scale = 1.0 / determinant; return Matrix3.multiplyByScalar(result, scale, result); }; const scratchTransposeMatrix$1 = new Matrix3(); /** * Computes the inverse transpose of a matrix. * * @param {Matrix3} matrix The matrix to transpose and invert. * @param {Matrix3} result The object onto which to store the result. * @returns {Matrix3} The modified result parameter. */ Matrix3.inverseTranspose = function (matrix, result) { //>>includeStart('debug', pragmas.debug); RuntimeError.Check.typeOf.object("matrix", matrix); RuntimeError.Check.typeOf.object("result", result); //>>includeEnd('debug'); return Matrix3.inverse( Matrix3.transpose(matrix, scratchTransposeMatrix$1), result ); }; /** * Compares the provided matrices componentwise and returns *true if they are equal, false otherwise.
   *
   * @param {Matrix3} [left] The first matrix.
   * @param {Matrix3} [right] The second matrix.
   * @returns {Boolean} true if left and right are equal, false otherwise.
   */
  Matrix3.equals = function (left, right) {
    return (
      left === right ||
      (defaultValue.defined(left) &&
        defaultValue.defined(right) &&
        left[0] === right[0] &&
        left[1] === right[1] &&
        left[2] === right[2] &&
        left[3] === right[3] &&
        left[4] === right[4] &&
        left[5] === right[5] &&
        left[6] === right[6] &&
        left[7] === right[7] &&
        left[8] === right[8])
    );
  };
  /**
   * Compares the provided matrices componentwise and returns
   * true if they are within the provided epsilon,
   * false otherwise.
   *
   * @param {Matrix3} [left] The first matrix.
   * @param {Matrix3} [right] The second matrix.
   * @param {Number} [epsilon=0] The epsilon to use for equality testing.
   * @returns {Boolean} true if left and right are within the provided epsilon, false otherwise.
   */
  Matrix3.equalsEpsilon = function (left, right, epsilon) {
    epsilon = defaultValue.defaultValue(epsilon, 0);
    return (
      left === right ||
      (defaultValue.defined(left) &&
        defaultValue.defined(right) &&
        Math.abs(left[0] - right[0]) <= epsilon &&
        Math.abs(left[1] - right[1]) <= epsilon &&
        Math.abs(left[2] - right[2]) <= epsilon &&
        Math.abs(left[3] - right[3]) <= epsilon &&
        Math.abs(left[4] - right[4]) <= epsilon &&
        Math.abs(left[5] - right[5]) <= epsilon &&
        Math.abs(left[6] - right[6]) <= epsilon &&
        Math.abs(left[7] - right[7]) <= epsilon &&
        Math.abs(left[8] - right[8]) <= epsilon)
    );
  };
  /**
   * An immutable Matrix3 instance initialized to the identity matrix.
   *
   * @type {Matrix3}
   * @constant
   */
  Matrix3.IDENTITY = Object.freeze(
    new Matrix3(1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 1.0)
  );
  /**
   * An immutable Matrix3 instance initialized to the zero matrix.
   *
   * @type {Matrix3}
   * @constant
   */
  Matrix3.ZERO = Object.freeze(
    new Matrix3(0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
  );
  /**
   * The index into Matrix3 for column 0, row 0.
   *
   * @type {Number}
   * @constant
   */
  Matrix3.COLUMN0ROW0 = 0;
  /**
   * The index into Matrix3 for column 0, row 1.
   *
   * @type {Number}
   * @constant
   */
  Matrix3.COLUMN0ROW1 = 1;
  /**
   * The index into Matrix3 for column 0, row 2.
   *
   * @type {Number}
   * @constant
   */
  Matrix3.COLUMN0ROW2 = 2;
  /**
   * The index into Matrix3 for column 1, row 0.
   *
   * @type {Number}
   * @constant
   */
  Matrix3.COLUMN1ROW0 = 3;
  /**
   * The index into Matrix3 for column 1, row 1.
   *
   * @type {Number}
   * @constant
   */
  Matrix3.COLUMN1ROW1 = 4;
  /**
   * The index into Matrix3 for column 1, row 2.
   *
   * @type {Number}
   * @constant
   */
  Matrix3.COLUMN1ROW2 = 5;
  /**
   * The index into Matrix3 for column 2, row 0.
   *
   * @type {Number}
   * @constant
   */
  Matrix3.COLUMN2ROW0 = 6;
  /**
   * The index into Matrix3 for column 2, row 1.
   *
   * @type {Number}
   * @constant
   */
  Matrix3.COLUMN2ROW1 = 7;
  /**
   * The index into Matrix3 for column 2, row 2.
   *
   * @type {Number}
   * @constant
   */
  Matrix3.COLUMN2ROW2 = 8;
  Object.defineProperties(Matrix3.prototype, {
    /**
     * Gets the number of items in the collection.
     * @memberof Matrix3.prototype
     *
     * @type {Number}
     */
    length: {
      get: function () {
        return Matrix3.packedLength;
      },
    },
  });
  /**
   * Duplicates the provided Matrix3 instance.
   *
   * @param {Matrix3} [result] The object onto which to store the result.
   * @returns {Matrix3} The modified result parameter or a new Matrix3 instance if one was not provided.
   */
  Matrix3.prototype.clone = function (result) {
    return Matrix3.clone(this, result);
  };
  /**
   * Compares this matrix to the provided matrix componentwise and returns
   * true if they are equal, false otherwise.
   *
   * @param {Matrix3} [right] The right hand side matrix.
   * @returns {Boolean} true if they are equal, false otherwise.
   */
  Matrix3.prototype.equals = function (right) {
    return Matrix3.equals(this, right);
  };
  /**
   * @private
   */
  Matrix3.equalsArray = function (matrix, array, offset) {
    return (
      matrix[0] === array[offset] &&
      matrix[1] === array[offset + 1] &&
      matrix[2] === array[offset + 2] &&
      matrix[3] === array[offset + 3] &&
      matrix[4] === array[offset + 4] &&
      matrix[5] === array[offset + 5] &&
      matrix[6] === array[offset + 6] &&
      matrix[7] === array[offset + 7] &&
      matrix[8] === array[offset + 8]
    );
  };
  /**
   * Compares this matrix to the provided matrix componentwise and returns
   * true if they are within the provided epsilon,
   * false otherwise.
   *
   * @param {Matrix3} [right] The right hand side matrix.
   * @param {Number} [epsilon=0] The epsilon to use for equality testing.
   * @returns {Boolean} true if they are within the provided epsilon, false otherwise.
   */
  Matrix3.prototype.equalsEpsilon = function (right, epsilon) {
    return Matrix3.equalsEpsilon(this, right, epsilon);
  };
  /**
   * Creates a string representing this Matrix with each row being
   * on a separate line and in the format '(column0, column1, column2)'.
   *
   * @returns {String} A string representing the provided Matrix with each row being on a separate line and in the format '(column0, column1, column2)'.
   */
  Matrix3.prototype.toString = function () {
    return (
      `(${this[0]}, ${this[3]}, ${this[6]})\n` +
      `(${this[1]}, ${this[4]}, ${this[7]})\n` +
      `(${this[2]}, ${this[5]}, ${this[8]})`
    );
  };
  /**
   * A 4D Cartesian point.
   * @alias Cartesian4
   * @constructor
   *
   * @param {Number} [x=0.0] The X component.
   * @param {Number} [y=0.0] The Y component.
   * @param {Number} [z=0.0] The Z component.
   * @param {Number} [w=0.0] The W component.
   *
   * @see Cartesian2
   * @see Cartesian3
   * @see Packable
   */
  function Cartesian4(x, y, z, w) {
    /**
     * The X component.
     * @type {Number}
     * @default 0.0
     */
    this.x = defaultValue.defaultValue(x, 0.0);
    /**
     * The Y component.
     * @type {Number}
     * @default 0.0
     */
    this.y = defaultValue.defaultValue(y, 0.0);
    /**
     * The Z component.
     * @type {Number}
     * @default 0.0
     */
    this.z = defaultValue.defaultValue(z, 0.0);
    /**
     * The W component.
     * @type {Number}
     * @default 0.0
     */
    this.w = defaultValue.defaultValue(w, 0.0);
  }
  /**
   * Creates a Cartesian4 instance from x, y, z and w coordinates.
   *
   * @param {Number} x The x coordinate.
   * @param {Number} y The y coordinate.
   * @param {Number} z The z coordinate.
   * @param {Number} w The w coordinate.
   * @param {Cartesian4} [result] The object onto which to store the result.
   * @returns {Cartesian4} The modified result parameter or a new Cartesian4 instance if one was not provided.
   */
  Cartesian4.fromElements = function (x, y, z, w, result) {
    if (!defaultValue.defined(result)) {
      return new Cartesian4(x, y, z, w);
    }
    result.x = x;
    result.y = y;
    result.z = z;
    result.w = w;
    return result;
  };
  /**
   * Creates a Cartesian4 instance from a {@link Color}. red, green, blue,
   * and alpha map to x, y, z, and w, respectively.
   *
   * @param {Color} color The source color.
   * @param {Cartesian4} [result] The object onto which to store the result.
   * @returns {Cartesian4} The modified result parameter or a new Cartesian4 instance if one was not provided.
   */
  Cartesian4.fromColor = function (color, result) {
    //>>includeStart('debug', pragmas.debug);
    RuntimeError.Check.typeOf.object("color", color);
    //>>includeEnd('debug');
    if (!defaultValue.defined(result)) {
      return new Cartesian4(color.red, color.green, color.blue, color.alpha);
    }
    result.x = color.red;
    result.y = color.green;
    result.z = color.blue;
    result.w = color.alpha;
    return result;
  };
  /**
   * Duplicates a Cartesian4 instance.
   *
   * @param {Cartesian4} cartesian The Cartesian to duplicate.
   * @param {Cartesian4} [result] The object onto which to store the result.
   * @returns {Cartesian4} The modified result parameter or a new Cartesian4 instance if one was not provided. (Returns undefined if cartesian is undefined)
   */
  Cartesian4.clone = function (cartesian, result) {
    if (!defaultValue.defined(cartesian)) {
      return undefined;
    }
    if (!defaultValue.defined(result)) {
      return new Cartesian4(cartesian.x, cartesian.y, cartesian.z, cartesian.w);
    }
    result.x = cartesian.x;
    result.y = cartesian.y;
    result.z = cartesian.z;
    result.w = cartesian.w;
    return result;
  };
  /**
   * The number of elements used to pack the object into an array.
   * @type {Number}
   */
  Cartesian4.packedLength = 4;
  /**
   * Stores the provided instance into the provided array.
   *
   * @param {Cartesian4} value The value to pack.
   * @param {Number[]} array The array to pack into.
   * @param {Number} [startingIndex=0] The index into the array at which to start packing the elements.
   *
   * @returns {Number[]} The array that was packed into
   */
  Cartesian4.pack = function (value, array, startingIndex) {
    //>>includeStart('debug', pragmas.debug);
    RuntimeError.Check.typeOf.object("value", value);
    RuntimeError.Check.defined("array", array);
    //>>includeEnd('debug');
    startingIndex = defaultValue.defaultValue(startingIndex, 0);
    array[startingIndex++] = value.x;
    array[startingIndex++] = value.y;
    array[startingIndex++] = value.z;
    array[startingIndex] = value.w;
    return array;
  };
  /**
   * Retrieves an instance from a packed array.
   *
   * @param {Number[]} array The packed array.
   * @param {Number} [startingIndex=0] The starting index of the element to be unpacked.
   * @param {Cartesian4} [result] The object into which to store the result.
   * @returns {Cartesian4}  The modified result parameter or a new Cartesian4 instance if one was not provided.
   */
  Cartesian4.unpack = function (array, startingIndex, result) {
    //>>includeStart('debug', pragmas.debug);
    RuntimeError.Check.defined("array", array);
    //>>includeEnd('debug');
    startingIndex = defaultValue.defaultValue(startingIndex, 0);
    if (!defaultValue.defined(result)) {
      result = new Cartesian4();
    }
    result.x = array[startingIndex++];
    result.y = array[startingIndex++];
    result.z = array[startingIndex++];
    result.w = array[startingIndex];
    return result;
  };
  /**
   * Flattens an array of Cartesian4s into an array of components.
   *
   * @param {Cartesian4[]} array The array of cartesians to pack.
   * @param {Number[]} [result] The array onto which to store the result. If this is a typed array, it must have array.length * 4 components, else a {@link DeveloperError} will be thrown. If it is a regular array, it will be resized to have (array.length * 4) elements.
   * @returns {Number[]} The packed array.
   */
  Cartesian4.packArray = function (array, result) {
    //>>includeStart('debug', pragmas.debug);
    RuntimeError.Check.defined("array", array);
    //>>includeEnd('debug');
    const length = array.length;
    const resultLength = length * 4;
    if (!defaultValue.defined(result)) {
      result = new Array(resultLength);
    } else if (!Array.isArray(result) && result.length !== resultLength) {
      //>>includeStart('debug', pragmas.debug);
      throw new RuntimeError.DeveloperError(
        "If result is a typed array, it must have exactly array.length * 4 elements"
      );
      //>>includeEnd('debug');
    } else if (result.length !== resultLength) {
      result.length = resultLength;
    }
    for (let i = 0; i < length; ++i) {
      Cartesian4.pack(array[i], result, i * 4);
    }
    return result;
  };
  /**
   * Unpacks an array of cartesian components into an array of Cartesian4s.
   *
   * @param {Number[]} array The array of components to unpack.
   * @param {Cartesian4[]} [result] The array onto which to store the result.
   * @returns {Cartesian4[]} The unpacked array.
   */
  Cartesian4.unpackArray = function (array, result) {
    //>>includeStart('debug', pragmas.debug);
    RuntimeError.Check.defined("array", array);
    RuntimeError.Check.typeOf.number.greaterThanOrEquals("array.length", array.length, 4);
    if (array.length % 4 !== 0) {
      throw new RuntimeError.DeveloperError("array length must be a multiple of 4.");
    }
    //>>includeEnd('debug');
    const length = array.length;
    if (!defaultValue.defined(result)) {
      result = new Array(length / 4);
    } else {
      result.length = length / 4;
    }
    for (let i = 0; i < length; i += 4) {
      const index = i / 4;
      result[index] = Cartesian4.unpack(array, i, result[index]);
    }
    return result;
  };
  /**
   * Creates a Cartesian4 from four consecutive elements in an array.
   * @function
   *
   * @param {Number[]} array The array whose four consecutive elements correspond to the x, y, z, and w components, respectively.
   * @param {Number} [startingIndex=0] The offset into the array of the first element, which corresponds to the x component.
   * @param {Cartesian4} [result] The object onto which to store the result.
   * @returns {Cartesian4}  The modified result parameter or a new Cartesian4 instance if one was not provided.
   *
   * @example
   * // Create a Cartesian4 with (1.0, 2.0, 3.0, 4.0)
   * const v = [1.0, 2.0, 3.0, 4.0];
   * const p = Cesium.Cartesian4.fromArray(v);
   *
   * // Create a Cartesian4 with (1.0, 2.0, 3.0, 4.0) using an offset into an array
   * const v2 = [0.0, 0.0, 1.0, 2.0, 3.0, 4.0];
   * const p2 = Cesium.Cartesian4.fromArray(v2, 2);
   */
  Cartesian4.fromArray = Cartesian4.unpack;
  /**
   * Computes the value of the maximum component for the supplied Cartesian.
   *
   * @param {Cartesian4} cartesian The cartesian to use.
   * @returns {Number} The value of the maximum component.
   */
  Cartesian4.maximumComponent = function (cartesian) {
    //>>includeStart('debug', pragmas.debug);
    RuntimeError.Check.typeOf.object("cartesian", cartesian);
    //>>includeEnd('debug');
    return Math.max(cartesian.x, cartesian.y, cartesian.z, cartesian.w);
  };
  /**
   * Computes the value of the minimum component for the supplied Cartesian.
   *
   * @param {Cartesian4} cartesian The cartesian to use.
   * @returns {Number} The value of the minimum component.
   */
  Cartesian4.minimumComponent = function (cartesian) {
    //>>includeStart('debug', pragmas.debug);
    RuntimeError.Check.typeOf.object("cartesian", cartesian);
    //>>includeEnd('debug');
    return Math.min(cartesian.x, cartesian.y, cartesian.z, cartesian.w);
  };
  /**
   * Compares two Cartesians and computes a Cartesian which contains the minimum components of the supplied Cartesians.
   *
   * @param {Cartesian4} first A cartesian to compare.
   * @param {Cartesian4} second A cartesian to compare.
   * @param {Cartesian4} result The object into which to store the result.
   * @returns {Cartesian4} A cartesian with the minimum components.
   */
  Cartesian4.minimumByComponent = function (first, second, result) {
    //>>includeStart('debug', pragmas.debug);
    RuntimeError.Check.typeOf.object("first", first);
    RuntimeError.Check.typeOf.object("second", second);
    RuntimeError.Check.typeOf.object("result", result);
    //>>includeEnd('debug');
    result.x = Math.min(first.x, second.x);
    result.y = Math.min(first.y, second.y);
    result.z = Math.min(first.z, second.z);
    result.w = Math.min(first.w, second.w);
    return result;
  };
  /**
   * Compares two Cartesians and computes a Cartesian which contains the maximum components of the supplied Cartesians.
   *
   * @param {Cartesian4} first A cartesian to compare.
   * @param {Cartesian4} second A cartesian to compare.
   * @param {Cartesian4} result The object into which to store the result.
   * @returns {Cartesian4} A cartesian with the maximum components.
   */
  Cartesian4.maximumByComponent = function (first, second, result) {
    //>>includeStart('debug', pragmas.debug);
    RuntimeError.Check.typeOf.object("first", first);
    RuntimeError.Check.typeOf.object("second", second);
    RuntimeError.Check.typeOf.object("result", result);
    //>>includeEnd('debug');
    result.x = Math.max(first.x, second.x);
    result.y = Math.max(first.y, second.y);
    result.z = Math.max(first.z, second.z);
    result.w = Math.max(first.w, second.w);
    return result;
  };
  /**
   * Constrain a value to lie between two values.
   *
   * @param {Cartesian4} value The value to clamp.
   * @param {Cartesian4} min The minimum bound.
   * @param {Cartesian4} max The maximum bound.
   * @param {Cartesian4} result The object into which to store the result.
   * @returns {Cartesian4} The clamped value such that min <= result <= max.
   */
  Cartesian4.clamp = function (value, min, max, result) {
    //>>includeStart('debug', pragmas.debug);
    RuntimeError.Check.typeOf.object("value", value);
    RuntimeError.Check.typeOf.object("min", min);
    RuntimeError.Check.typeOf.object("max", max);
    RuntimeError.Check.typeOf.object("result", result);
    //>>includeEnd('debug');
    const x = ComponentDatatype.CesiumMath.clamp(value.x, min.x, max.x);
    const y = ComponentDatatype.CesiumMath.clamp(value.y, min.y, max.y);
    const z = ComponentDatatype.CesiumMath.clamp(value.z, min.z, max.z);
    const w = ComponentDatatype.CesiumMath.clamp(value.w, min.w, max.w);
    result.x = x;
    result.y = y;
    result.z = z;
    result.w = w;
    return result;
  };
  /**
   * Computes the provided Cartesian's squared magnitude.
   *
   * @param {Cartesian4} cartesian The Cartesian instance whose squared magnitude is to be computed.
   * @returns {Number} The squared magnitude.
   */
  Cartesian4.magnitudeSquared = function (cartesian) {
    //>>includeStart('debug', pragmas.debug);
    RuntimeError.Check.typeOf.object("cartesian", cartesian);
    //>>includeEnd('debug');
    return (
      cartesian.x * cartesian.x +
      cartesian.y * cartesian.y +
      cartesian.z * cartesian.z +
      cartesian.w * cartesian.w
    );
  };
  /**
   * Computes the Cartesian's magnitude (length).
   *
   * @param {Cartesian4} cartesian The Cartesian instance whose magnitude is to be computed.
   * @returns {Number} The magnitude.
   */
  Cartesian4.magnitude = function (cartesian) {
    return Math.sqrt(Cartesian4.magnitudeSquared(cartesian));
  };
  const distanceScratch$1 = new Cartesian4();
  /**
   * Computes the 4-space distance between two points.
   *
   * @param {Cartesian4} left The first point to compute the distance from.
   * @param {Cartesian4} right The second point to compute the distance to.
   * @returns {Number} The distance between two points.
   *
   * @example
   * // Returns 1.0
   * const d = Cesium.Cartesian4.distance(
   *   new Cesium.Cartesian4(1.0, 0.0, 0.0, 0.0),
   *   new Cesium.Cartesian4(2.0, 0.0, 0.0, 0.0));
   */
  Cartesian4.distance = function (left, right) {
    //>>includeStart('debug', pragmas.debug);
    RuntimeError.Check.typeOf.object("left", left);
    RuntimeError.Check.typeOf.object("right", right);
    //>>includeEnd('debug');
    Cartesian4.subtract(left, right, distanceScratch$1);
    return Cartesian4.magnitude(distanceScratch$1);
  };
  /**
   * Computes the squared distance between two points.  Comparing squared distances
   * using this function is more efficient than comparing distances using {@link Cartesian4#distance}.
   *
   * @param {Cartesian4} left The first point to compute the distance from.
   * @param {Cartesian4} right The second point to compute the distance to.
   * @returns {Number} The distance between two points.
   *
   * @example
   * // Returns 4.0, not 2.0
   * const d = Cesium.Cartesian4.distance(
   *   new Cesium.Cartesian4(1.0, 0.0, 0.0, 0.0),
   *   new Cesium.Cartesian4(3.0, 0.0, 0.0, 0.0));
   */
  Cartesian4.distanceSquared = function (left, right) {
    //>>includeStart('debug', pragmas.debug);
    RuntimeError.Check.typeOf.object("left", left);
    RuntimeError.Check.typeOf.object("right", right);
    //>>includeEnd('debug');
    Cartesian4.subtract(left, right, distanceScratch$1);
    return Cartesian4.magnitudeSquared(distanceScratch$1);
  };
  /**
   * Computes the normalized form of the supplied Cartesian.
   *
   * @param {Cartesian4} cartesian The Cartesian to be normalized.
   * @param {Cartesian4} result The object onto which to store the result.
   * @returns {Cartesian4} The modified result parameter.
   */
  Cartesian4.normalize = function (cartesian, result) {
    //>>includeStart('debug', pragmas.debug);
    RuntimeError.Check.typeOf.object("cartesian", cartesian);
    RuntimeError.Check.typeOf.object("result", result);
    //>>includeEnd('debug');
    const magnitude = Cartesian4.magnitude(cartesian);
    result.x = cartesian.x / magnitude;
    result.y = cartesian.y / magnitude;
    result.z = cartesian.z / magnitude;
    result.w = cartesian.w / magnitude;
    //>>includeStart('debug', pragmas.debug);
    if (
      isNaN(result.x) ||
      isNaN(result.y) ||
      isNaN(result.z) ||
      isNaN(result.w)
    ) {
      throw new RuntimeError.DeveloperError("normalized result is not a number");
    }
    //>>includeEnd('debug');
    return result;
  };
  /**
   * Computes the dot (scalar) product of two Cartesians.
   *
   * @param {Cartesian4} left The first Cartesian.
   * @param {Cartesian4} right The second Cartesian.
   * @returns {Number} The dot product.
   */
  Cartesian4.dot = function (left, right) {
    //>>includeStart('debug', pragmas.debug);
    RuntimeError.Check.typeOf.object("left", left);
    RuntimeError.Check.typeOf.object("right", right);
    //>>includeEnd('debug');
    return (
      left.x * right.x + left.y * right.y + left.z * right.z + left.w * right.w
    );
  };
  /**
   * Computes the componentwise product of two Cartesians.
   *
   * @param {Cartesian4} left The first Cartesian.
   * @param {Cartesian4} right The second Cartesian.
   * @param {Cartesian4} result The object onto which to store the result.
   * @returns {Cartesian4} The modified result parameter.
   */
  Cartesian4.multiplyComponents = function (left, right, result) {
    //>>includeStart('debug', pragmas.debug);
    RuntimeError.Check.typeOf.object("left", left);
    RuntimeError.Check.typeOf.object("right", right);
    RuntimeError.Check.typeOf.object("result", result);
    //>>includeEnd('debug');
    result.x = left.x * right.x;
    result.y = left.y * right.y;
    result.z = left.z * right.z;
    result.w = left.w * right.w;
    return result;
  };
  /**
   * Computes the componentwise quotient of two Cartesians.
   *
   * @param {Cartesian4} left The first Cartesian.
   * @param {Cartesian4} right The second Cartesian.
   * @param {Cartesian4} result The object onto which to store the result.
   * @returns {Cartesian4} The modified result parameter.
   */
  Cartesian4.divideComponents = function (left, right, result) {
    //>>includeStart('debug', pragmas.debug);
    RuntimeError.Check.typeOf.object("left", left);
    RuntimeError.Check.typeOf.object("right", right);
    RuntimeError.Check.typeOf.object("result", result);
    //>>includeEnd('debug');
    result.x = left.x / right.x;
    result.y = left.y / right.y;
    result.z = left.z / right.z;
    result.w = left.w / right.w;
    return result;
  };
  /**
   * Computes the componentwise sum of two Cartesians.
   *
   * @param {Cartesian4} left The first Cartesian.
   * @param {Cartesian4} right The second Cartesian.
   * @param {Cartesian4} result The object onto which to store the result.
   * @returns {Cartesian4} The modified result parameter.
   */
  Cartesian4.add = function (left, right, result) {
    //>>includeStart('debug', pragmas.debug);
    RuntimeError.Check.typeOf.object("left", left);
    RuntimeError.Check.typeOf.object("right", right);
    RuntimeError.Check.typeOf.object("result", result);
    //>>includeEnd('debug');
    result.x = left.x + right.x;
    result.y = left.y + right.y;
    result.z = left.z + right.z;
    result.w = left.w + right.w;
    return result;
  };
  /**
   * Computes the componentwise difference of two Cartesians.
   *
   * @param {Cartesian4} left The first Cartesian.
   * @param {Cartesian4} right The second Cartesian.
   * @param {Cartesian4} result The object onto which to store the result.
   * @returns {Cartesian4} The modified result parameter.
   */
  Cartesian4.subtract = function (left, right, result) {
    //>>includeStart('debug', pragmas.debug);
    RuntimeError.Check.typeOf.object("left", left);
    RuntimeError.Check.typeOf.object("right", right);
    RuntimeError.Check.typeOf.object("result", result);
    //>>includeEnd('debug');
    result.x = left.x - right.x;
    result.y = left.y - right.y;
    result.z = left.z - right.z;
    result.w = left.w - right.w;
    return result;
  };
  /**
   * Multiplies the provided Cartesian componentwise by the provided scalar.
   *
   * @param {Cartesian4} cartesian The Cartesian to be scaled.
   * @param {Number} scalar The scalar to multiply with.
   * @param {Cartesian4} result The object onto which to store the result.
   * @returns {Cartesian4} The modified result parameter.
   */
  Cartesian4.multiplyByScalar = function (cartesian, scalar, result) {
    //>>includeStart('debug', pragmas.debug);
    RuntimeError.Check.typeOf.object("cartesian", cartesian);
    RuntimeError.Check.typeOf.number("scalar", scalar);
    RuntimeError.Check.typeOf.object("result", result);
    //>>includeEnd('debug');
    result.x = cartesian.x * scalar;
    result.y = cartesian.y * scalar;
    result.z = cartesian.z * scalar;
    result.w = cartesian.w * scalar;
    return result;
  };
  /**
   * Divides the provided Cartesian componentwise by the provided scalar.
   *
   * @param {Cartesian4} cartesian The Cartesian to be divided.
   * @param {Number} scalar The scalar to divide by.
   * @param {Cartesian4} result The object onto which to store the result.
   * @returns {Cartesian4} The modified result parameter.
   */
  Cartesian4.divideByScalar = function (cartesian, scalar, result) {
    //>>includeStart('debug', pragmas.debug);
    RuntimeError.Check.typeOf.object("cartesian", cartesian);
    RuntimeError.Check.typeOf.number("scalar", scalar);
    RuntimeError.Check.typeOf.object("result", result);
    //>>includeEnd('debug');
    result.x = cartesian.x / scalar;
    result.y = cartesian.y / scalar;
    result.z = cartesian.z / scalar;
    result.w = cartesian.w / scalar;
    return result;
  };
  /**
   * Negates the provided Cartesian.
   *
   * @param {Cartesian4} cartesian The Cartesian to be negated.
   * @param {Cartesian4} result The object onto which to store the result.
   * @returns {Cartesian4} The modified result parameter.
   */
  Cartesian4.negate = function (cartesian, result) {
    //>>includeStart('debug', pragmas.debug);
    RuntimeError.Check.typeOf.object("cartesian", cartesian);
    RuntimeError.Check.typeOf.object("result", result);
    //>>includeEnd('debug');
    result.x = -cartesian.x;
    result.y = -cartesian.y;
    result.z = -cartesian.z;
    result.w = -cartesian.w;
    return result;
  };
  /**
   * Computes the absolute value of the provided Cartesian.
   *
   * @param {Cartesian4} cartesian The Cartesian whose absolute value is to be computed.
   * @param {Cartesian4} result The object onto which to store the result.
   * @returns {Cartesian4} The modified result parameter.
   */
  Cartesian4.abs = function (cartesian, result) {
    //>>includeStart('debug', pragmas.debug);
    RuntimeError.Check.typeOf.object("cartesian", cartesian);
    RuntimeError.Check.typeOf.object("result", result);
    //>>includeEnd('debug');
    result.x = Math.abs(cartesian.x);
    result.y = Math.abs(cartesian.y);
    result.z = Math.abs(cartesian.z);
    result.w = Math.abs(cartesian.w);
    return result;
  };
  const lerpScratch$1 = new Cartesian4();
  /**
   * Computes the linear interpolation or extrapolation at t using the provided cartesians.
   *
   * @param {Cartesian4} start The value corresponding to t at 0.0.
   * @param {Cartesian4}end The value corresponding to t at 1.0.
   * @param {Number} t The point along t at which to interpolate.
   * @param {Cartesian4} result The object onto which to store the result.
   * @returns {Cartesian4} The modified result parameter.
   */
  Cartesian4.lerp = function (start, end, t, result) {
    //>>includeStart('debug', pragmas.debug);
    RuntimeError.Check.typeOf.object("start", start);
    RuntimeError.Check.typeOf.object("end", end);
    RuntimeError.Check.typeOf.number("t", t);
    RuntimeError.Check.typeOf.object("result", result);
    //>>includeEnd('debug');
    Cartesian4.multiplyByScalar(end, t, lerpScratch$1);
    result = Cartesian4.multiplyByScalar(start, 1.0 - t, result);
    return Cartesian4.add(lerpScratch$1, result, result);
  };
  const mostOrthogonalAxisScratch$1 = new Cartesian4();
  /**
   * Returns the axis that is most orthogonal to the provided Cartesian.
   *
   * @param {Cartesian4} cartesian The Cartesian on which to find the most orthogonal axis.
   * @param {Cartesian4} result The object onto which to store the result.
   * @returns {Cartesian4} The most orthogonal axis.
   */
  Cartesian4.mostOrthogonalAxis = function (cartesian, result) {
    //>>includeStart('debug', pragmas.debug);
    RuntimeError.Check.typeOf.object("cartesian", cartesian);
    RuntimeError.Check.typeOf.object("result", result);
    //>>includeEnd('debug');
    const f = Cartesian4.normalize(cartesian, mostOrthogonalAxisScratch$1);
    Cartesian4.abs(f, f);
    if (f.x <= f.y) {
      if (f.x <= f.z) {
        if (f.x <= f.w) {
          result = Cartesian4.clone(Cartesian4.UNIT_X, result);
        } else {
          result = Cartesian4.clone(Cartesian4.UNIT_W, result);
        }
      } else if (f.z <= f.w) {
        result = Cartesian4.clone(Cartesian4.UNIT_Z, result);
      } else {
        result = Cartesian4.clone(Cartesian4.UNIT_W, result);
      }
    } else if (f.y <= f.z) {
      if (f.y <= f.w) {
        result = Cartesian4.clone(Cartesian4.UNIT_Y, result);
      } else {
        result = Cartesian4.clone(Cartesian4.UNIT_W, result);
      }
    } else if (f.z <= f.w) {
      result = Cartesian4.clone(Cartesian4.UNIT_Z, result);
    } else {
      result = Cartesian4.clone(Cartesian4.UNIT_W, result);
    }
    return result;
  };
  /**
   * Compares the provided Cartesians componentwise and returns
   * true if they are equal, false otherwise.
   *
   * @param {Cartesian4} [left] The first Cartesian.
   * @param {Cartesian4} [right] The second Cartesian.
   * @returns {Boolean} true if left and right are equal, false otherwise.
   */
  Cartesian4.equals = function (left, right) {
    return (
      left === right ||
      (defaultValue.defined(left) &&
        defaultValue.defined(right) &&
        left.x === right.x &&
        left.y === right.y &&
        left.z === right.z &&
        left.w === right.w)
    );
  };
  /**
   * @private
   */
  Cartesian4.equalsArray = function (cartesian, array, offset) {
    return (
      cartesian.x === array[offset] &&
      cartesian.y === array[offset + 1] &&
      cartesian.z === array[offset + 2] &&
      cartesian.w === array[offset + 3]
    );
  };
  /**
   * Compares the provided Cartesians componentwise and returns
   * true if they pass an absolute or relative tolerance test,
   * false otherwise.
   *
   * @param {Cartesian4} [left] The first Cartesian.
   * @param {Cartesian4} [right] The second Cartesian.
   * @param {Number} [relativeEpsilon=0] The relative epsilon tolerance to use for equality testing.
   * @param {Number} [absoluteEpsilon=relativeEpsilon] The absolute epsilon tolerance to use for equality testing.
   * @returns {Boolean} true if left and right are within the provided epsilon, false otherwise.
   */
  Cartesian4.equalsEpsilon = function (
    left,
    right,
    relativeEpsilon,
    absoluteEpsilon
  ) {
    return (
      left === right ||
      (defaultValue.defined(left) &&
        defaultValue.defined(right) &&
        ComponentDatatype.CesiumMath.equalsEpsilon(
          left.x,
          right.x,
          relativeEpsilon,
          absoluteEpsilon
        ) &&
        ComponentDatatype.CesiumMath.equalsEpsilon(
          left.y,
          right.y,
          relativeEpsilon,
          absoluteEpsilon
        ) &&
        ComponentDatatype.CesiumMath.equalsEpsilon(
          left.z,
          right.z,
          relativeEpsilon,
          absoluteEpsilon
        ) &&
        ComponentDatatype.CesiumMath.equalsEpsilon(
          left.w,
          right.w,
          relativeEpsilon,
          absoluteEpsilon
        ))
    );
  };
  /**
   * An immutable Cartesian4 instance initialized to (0.0, 0.0, 0.0, 0.0).
   *
   * @type {Cartesian4}
   * @constant
   */
  Cartesian4.ZERO = Object.freeze(new Cartesian4(0.0, 0.0, 0.0, 0.0));
  /**
   * An immutable Cartesian4 instance initialized to (1.0, 1.0, 1.0, 1.0).
   *
   * @type {Cartesian4}
   * @constant
   */
  Cartesian4.ONE = Object.freeze(new Cartesian4(1.0, 1.0, 1.0, 1.0));
  /**
   * An immutable Cartesian4 instance initialized to (1.0, 0.0, 0.0, 0.0).
   *
   * @type {Cartesian4}
   * @constant
   */
  Cartesian4.UNIT_X = Object.freeze(new Cartesian4(1.0, 0.0, 0.0, 0.0));
  /**
   * An immutable Cartesian4 instance initialized to (0.0, 1.0, 0.0, 0.0).
   *
   * @type {Cartesian4}
   * @constant
   */
  Cartesian4.UNIT_Y = Object.freeze(new Cartesian4(0.0, 1.0, 0.0, 0.0));
  /**
   * An immutable Cartesian4 instance initialized to (0.0, 0.0, 1.0, 0.0).
   *
   * @type {Cartesian4}
   * @constant
   */
  Cartesian4.UNIT_Z = Object.freeze(new Cartesian4(0.0, 0.0, 1.0, 0.0));
  /**
   * An immutable Cartesian4 instance initialized to (0.0, 0.0, 0.0, 1.0).
   *
   * @type {Cartesian4}
   * @constant
   */
  Cartesian4.UNIT_W = Object.freeze(new Cartesian4(0.0, 0.0, 0.0, 1.0));
  /**
   * Duplicates this Cartesian4 instance.
   *
   * @param {Cartesian4} [result] The object onto which to store the result.
   * @returns {Cartesian4} The modified result parameter or a new Cartesian4 instance if one was not provided.
   */
  Cartesian4.prototype.clone = function (result) {
    return Cartesian4.clone(this, result);
  };
  /**
   * Compares this Cartesian against the provided Cartesian componentwise and returns
   * true if they are equal, false otherwise.
   *
   * @param {Cartesian4} [right] The right hand side Cartesian.
   * @returns {Boolean} true if they are equal, false otherwise.
   */
  Cartesian4.prototype.equals = function (right) {
    return Cartesian4.equals(this, right);
  };
  /**
   * Compares this Cartesian against the provided Cartesian componentwise and returns
   * true if they pass an absolute or relative tolerance test,
   * false otherwise.
   *
   * @param {Cartesian4} [right] The right hand side Cartesian.
   * @param {Number} [relativeEpsilon=0] The relative epsilon tolerance to use for equality testing.
   * @param {Number} [absoluteEpsilon=relativeEpsilon] The absolute epsilon tolerance to use for equality testing.
   * @returns {Boolean} true if they are within the provided epsilon, false otherwise.
   */
  Cartesian4.prototype.equalsEpsilon = function (
    right,
    relativeEpsilon,
    absoluteEpsilon
  ) {
    return Cartesian4.equalsEpsilon(
      this,
      right,
      relativeEpsilon,
      absoluteEpsilon
    );
  };
  /**
   * Creates a string representing this Cartesian in the format '(x, y, z, w)'.
   *
   * @returns {String} A string representing the provided Cartesian in the format '(x, y, z, w)'.
   */
  Cartesian4.prototype.toString = function () {
    return `(${this.x}, ${this.y}, ${this.z}, ${this.w})`;
  };
  // scratchU8Array and scratchF32Array are views into the same buffer
  const scratchF32Array = new Float32Array(1);
  const scratchU8Array = new Uint8Array(scratchF32Array.buffer);
  const testU32 = new Uint32Array([0x11223344]);
  const testU8 = new Uint8Array(testU32.buffer);
  const littleEndian = testU8[0] === 0x44;
  /**
   * Packs an arbitrary floating point value to 4 values representable using uint8.
   *
   * @param {Number} value A floating point number.
   * @param {Cartesian4} [result] The Cartesian4 that will contain the packed float.
   * @returns {Cartesian4} A Cartesian4 representing the float packed to values in x, y, z, and w.
   */
  Cartesian4.packFloat = function (value, result) {
    //>>includeStart('debug', pragmas.debug);
    RuntimeError.Check.typeOf.number("value", value);
    //>>includeEnd('debug');
    if (!defaultValue.defined(result)) {
      result = new Cartesian4();
    }
    // scratchU8Array and scratchF32Array are views into the same buffer
    scratchF32Array[0] = value;
    if (littleEndian) {
      result.x = scratchU8Array[0];
      result.y = scratchU8Array[1];
      result.z = scratchU8Array[2];
      result.w = scratchU8Array[3];
    } else {
      // convert from big-endian to little-endian
      result.x = scratchU8Array[3];
      result.y = scratchU8Array[2];
      result.z = scratchU8Array[1];
      result.w = scratchU8Array[0];
    }
    return result;
  };
  /**
   * Unpacks a float packed using Cartesian4.packFloat.
   *
   * @param {Cartesian4} packedFloat A Cartesian4 containing a float packed to 4 values representable using uint8.
   * @returns {Number} The unpacked float.
   * @private
   */
  Cartesian4.unpackFloat = function (packedFloat) {
    //>>includeStart('debug', pragmas.debug);
    RuntimeError.Check.typeOf.object("packedFloat", packedFloat);
    //>>includeEnd('debug');
    // scratchU8Array and scratchF32Array are views into the same buffer
    if (littleEndian) {
      scratchU8Array[0] = packedFloat.x;
      scratchU8Array[1] = packedFloat.y;
      scratchU8Array[2] = packedFloat.z;
      scratchU8Array[3] = packedFloat.w;
    } else {
      // convert from little-endian to big-endian
      scratchU8Array[0] = packedFloat.w;
      scratchU8Array[1] = packedFloat.z;
      scratchU8Array[2] = packedFloat.y;
      scratchU8Array[3] = packedFloat.x;
    }
    return scratchF32Array[0];
  };
  /**
   * A 4x4 matrix, indexable as a column-major order array.
   * Constructor parameters are in row-major order for code readability.
   * @alias Matrix4
   * @constructor
   * @implements {ArrayLike[0.0, 0.0, 0.0, 1.0])
   * by a 3x3 rotation matrix.  This is an optimization
   * for Matrix4.multiply(m, Matrix4.fromRotationTranslation(rotation), m); with less allocations and arithmetic operations.
   *
   * @param {Matrix4} matrix The matrix on the left-hand side.
   * @param {Matrix3} rotation The 3x3 rotation matrix on the right-hand side.
   * @param {Matrix4} result The object onto which to store the result.
   * @returns {Matrix4} The modified result parameter.
   *
   * @example
   * // Instead of Cesium.Matrix4.multiply(m, Cesium.Matrix4.fromRotationTranslation(rotation), m);
   * Cesium.Matrix4.multiplyByMatrix3(m, rotation, m);
   */
  Matrix4.multiplyByMatrix3 = function (matrix, rotation, result) {
    //>>includeStart('debug', pragmas.debug);
    RuntimeError.Check.typeOf.object("matrix", matrix);
    RuntimeError.Check.typeOf.object("rotation", rotation);
    RuntimeError.Check.typeOf.object("result", result);
    //>>includeEnd('debug');
    const left0 = matrix[0];
    const left1 = matrix[1];
    const left2 = matrix[2];
    const left4 = matrix[4];
    const left5 = matrix[5];
    const left6 = matrix[6];
    const left8 = matrix[8];
    const left9 = matrix[9];
    const left10 = matrix[10];
    const right0 = rotation[0];
    const right1 = rotation[1];
    const right2 = rotation[2];
    const right4 = rotation[3];
    const right5 = rotation[4];
    const right6 = rotation[5];
    const right8 = rotation[6];
    const right9 = rotation[7];
    const right10 = rotation[8];
    const column0Row0 = left0 * right0 + left4 * right1 + left8 * right2;
    const column0Row1 = left1 * right0 + left5 * right1 + left9 * right2;
    const column0Row2 = left2 * right0 + left6 * right1 + left10 * right2;
    const column1Row0 = left0 * right4 + left4 * right5 + left8 * right6;
    const column1Row1 = left1 * right4 + left5 * right5 + left9 * right6;
    const column1Row2 = left2 * right4 + left6 * right5 + left10 * right6;
    const column2Row0 = left0 * right8 + left4 * right9 + left8 * right10;
    const column2Row1 = left1 * right8 + left5 * right9 + left9 * right10;
    const column2Row2 = left2 * right8 + left6 * right9 + left10 * right10;
    result[0] = column0Row0;
    result[1] = column0Row1;
    result[2] = column0Row2;
    result[3] = 0.0;
    result[4] = column1Row0;
    result[5] = column1Row1;
    result[6] = column1Row2;
    result[7] = 0.0;
    result[8] = column2Row0;
    result[9] = column2Row1;
    result[10] = column2Row2;
    result[11] = 0.0;
    result[12] = matrix[12];
    result[13] = matrix[13];
    result[14] = matrix[14];
    result[15] = matrix[15];
    return result;
  };
  /**
   * Multiplies a transformation matrix (with a bottom row of [0.0, 0.0, 0.0, 1.0])
   * by an implicit translation matrix defined by a {@link Cartesian3}.  This is an optimization
   * for Matrix4.multiply(m, Matrix4.fromTranslation(position), m); with less allocations and arithmetic operations.
   *
   * @param {Matrix4} matrix The matrix on the left-hand side.
   * @param {Cartesian3} translation The translation on the right-hand side.
   * @param {Matrix4} result The object onto which to store the result.
   * @returns {Matrix4} The modified result parameter.
   *
   * @example
   * // Instead of Cesium.Matrix4.multiply(m, Cesium.Matrix4.fromTranslation(position), m);
   * Cesium.Matrix4.multiplyByTranslation(m, position, m);
   */
  Matrix4.multiplyByTranslation = function (matrix, translation, result) {
    //>>includeStart('debug', pragmas.debug);
    RuntimeError.Check.typeOf.object("matrix", matrix);
    RuntimeError.Check.typeOf.object("translation", translation);
    RuntimeError.Check.typeOf.object("result", result);
    //>>includeEnd('debug');
    const x = translation.x;
    const y = translation.y;
    const z = translation.z;
    const tx = x * matrix[0] + y * matrix[4] + z * matrix[8] + matrix[12];
    const ty = x * matrix[1] + y * matrix[5] + z * matrix[9] + matrix[13];
    const tz = x * matrix[2] + y * matrix[6] + z * matrix[10] + matrix[14];
    result[0] = matrix[0];
    result[1] = matrix[1];
    result[2] = matrix[2];
    result[3] = matrix[3];
    result[4] = matrix[4];
    result[5] = matrix[5];
    result[6] = matrix[6];
    result[7] = matrix[7];
    result[8] = matrix[8];
    result[9] = matrix[9];
    result[10] = matrix[10];
    result[11] = matrix[11];
    result[12] = tx;
    result[13] = ty;
    result[14] = tz;
    result[15] = matrix[15];
    return result;
  };
  /**
   * Multiplies an affine transformation matrix (with a bottom row of [0.0, 0.0, 0.0, 1.0])
   * by an implicit non-uniform scale matrix. This is an optimization
   * for Matrix4.multiply(m, Matrix4.fromUniformScale(scale), m);, where
   * m must be an affine matrix.
   * This function performs fewer allocations and arithmetic operations.
   *
   * @param {Matrix4} matrix The affine matrix on the left-hand side.
   * @param {Cartesian3} scale The non-uniform scale on the right-hand side.
   * @param {Matrix4} result The object onto which to store the result.
   * @returns {Matrix4} The modified result parameter.
   *
   *
   * @example
   * // Instead of Cesium.Matrix4.multiply(m, Cesium.Matrix4.fromScale(scale), m);
   * Cesium.Matrix4.multiplyByScale(m, scale, m);
   *
   * @see Matrix4.multiplyByUniformScale
   * @see Matrix4.fromScale
   * @see Matrix4.fromUniformScale
   * @see Matrix4.setScale
   * @see Matrix4.setUniformScale
   * @see Matrix4.getScale
   */
  Matrix4.multiplyByScale = function (matrix, scale, result) {
    //>>includeStart('debug', pragmas.debug);
    RuntimeError.Check.typeOf.object("matrix", matrix);
    RuntimeError.Check.typeOf.object("scale", scale);
    RuntimeError.Check.typeOf.object("result", result);
    //>>includeEnd('debug');
    const scaleX = scale.x;
    const scaleY = scale.y;
    const scaleZ = scale.z;
    // Faster than Cartesian3.equals
    if (scaleX === 1.0 && scaleY === 1.0 && scaleZ === 1.0) {
      return Matrix4.clone(matrix, result);
    }
    result[0] = scaleX * matrix[0];
    result[1] = scaleX * matrix[1];
    result[2] = scaleX * matrix[2];
    result[3] = matrix[3];
    result[4] = scaleY * matrix[4];
    result[5] = scaleY * matrix[5];
    result[6] = scaleY * matrix[6];
    result[7] = matrix[7];
    result[8] = scaleZ * matrix[8];
    result[9] = scaleZ * matrix[9];
    result[10] = scaleZ * matrix[10];
    result[11] = matrix[11];
    result[12] = matrix[12];
    result[13] = matrix[13];
    result[14] = matrix[14];
    result[15] = matrix[15];
    return result;
  };
  /**
   * Computes the product of a matrix times a uniform scale, as if the scale were a scale matrix.
   *
   * @param {Matrix4} matrix The matrix on the left-hand side.
   * @param {Number} scale The uniform scale on the right-hand side.
   * @param {Matrix4} result The object onto which to store the result.
   * @returns {Matrix4} The modified result parameter.
   *
   * @example
   * // Instead of Cesium.Matrix4.multiply(m, Cesium.Matrix4.fromUniformScale(scale), m);
   * Cesium.Matrix4.multiplyByUniformScale(m, scale, m);
   *
   * @see Matrix4.multiplyByScale
   * @see Matrix4.fromScale
   * @see Matrix4.fromUniformScale
   * @see Matrix4.setScale
   * @see Matrix4.setUniformScale
   * @see Matrix4.getScale
   */
  Matrix4.multiplyByUniformScale = function (matrix, scale, result) {
    //>>includeStart('debug', pragmas.debug);
    RuntimeError.Check.typeOf.object("matrix", matrix);
    RuntimeError.Check.typeOf.number("scale", scale);
    RuntimeError.Check.typeOf.object("result", result);
    //>>includeEnd('debug');
    result[0] = matrix[0] * scale;
    result[1] = matrix[1] * scale;
    result[2] = matrix[2] * scale;
    result[3] = matrix[3];
    result[4] = matrix[4] * scale;
    result[5] = matrix[5] * scale;
    result[6] = matrix[6] * scale;
    result[7] = matrix[7];
    result[8] = matrix[8] * scale;
    result[9] = matrix[9] * scale;
    result[10] = matrix[10] * scale;
    result[11] = matrix[11];
    result[12] = matrix[12];
    result[13] = matrix[13];
    result[14] = matrix[14];
    result[15] = matrix[15];
    return result;
  };
  /**
   * Computes the product of a matrix and a column vector.
   *
   * @param {Matrix4} matrix The matrix.
   * @param {Cartesian4} cartesian The vector.
   * @param {Cartesian4} result The object onto which to store the result.
   * @returns {Cartesian4} The modified result parameter.
   */
  Matrix4.multiplyByVector = function (matrix, cartesian, result) {
    //>>includeStart('debug', pragmas.debug);
    RuntimeError.Check.typeOf.object("matrix", matrix);
    RuntimeError.Check.typeOf.object("cartesian", cartesian);
    RuntimeError.Check.typeOf.object("result", result);
    //>>includeEnd('debug');
    const vX = cartesian.x;
    const vY = cartesian.y;
    const vZ = cartesian.z;
    const vW = cartesian.w;
    const x = matrix[0] * vX + matrix[4] * vY + matrix[8] * vZ + matrix[12] * vW;
    const y = matrix[1] * vX + matrix[5] * vY + matrix[9] * vZ + matrix[13] * vW;
    const z = matrix[2] * vX + matrix[6] * vY + matrix[10] * vZ + matrix[14] * vW;
    const w = matrix[3] * vX + matrix[7] * vY + matrix[11] * vZ + matrix[15] * vW;
    result.x = x;
    result.y = y;
    result.z = z;
    result.w = w;
    return result;
  };
  /**
   * Computes the product of a matrix and a {@link Cartesian3}.  This is equivalent to calling {@link Matrix4.multiplyByVector}
   * with a {@link Cartesian4} with a w component of zero.
   *
   * @param {Matrix4} matrix The matrix.
   * @param {Cartesian3} cartesian The point.
   * @param {Cartesian3} result The object onto which to store the result.
   * @returns {Cartesian3} The modified result parameter.
   *
   * @example
   * const p = new Cesium.Cartesian3(1.0, 2.0, 3.0);
   * const result = Cesium.Matrix4.multiplyByPointAsVector(matrix, p, new Cesium.Cartesian3());
   * // A shortcut for
   * //   Cartesian3 p = ...
   * //   Cesium.Matrix4.multiplyByVector(matrix, new Cesium.Cartesian4(p.x, p.y, p.z, 0.0), result);
   */
  Matrix4.multiplyByPointAsVector = function (matrix, cartesian, result) {
    //>>includeStart('debug', pragmas.debug);
    RuntimeError.Check.typeOf.object("matrix", matrix);
    RuntimeError.Check.typeOf.object("cartesian", cartesian);
    RuntimeError.Check.typeOf.object("result", result);
    //>>includeEnd('debug');
    const vX = cartesian.x;
    const vY = cartesian.y;
    const vZ = cartesian.z;
    const x = matrix[0] * vX + matrix[4] * vY + matrix[8] * vZ;
    const y = matrix[1] * vX + matrix[5] * vY + matrix[9] * vZ;
    const z = matrix[2] * vX + matrix[6] * vY + matrix[10] * vZ;
    result.x = x;
    result.y = y;
    result.z = z;
    return result;
  };
  /**
   * Computes the product of a matrix and a {@link Cartesian3}. This is equivalent to calling {@link Matrix4.multiplyByVector}
   * with a {@link Cartesian4} with a w component of 1, but returns a {@link Cartesian3} instead of a {@link Cartesian4}.
   *
   * @param {Matrix4} matrix The matrix.
   * @param {Cartesian3} cartesian The point.
   * @param {Cartesian3} result The object onto which to store the result.
   * @returns {Cartesian3} The modified result parameter.
   *
   * @example
   * const p = new Cesium.Cartesian3(1.0, 2.0, 3.0);
   * const result = Cesium.Matrix4.multiplyByPoint(matrix, p, new Cesium.Cartesian3());
   */
  Matrix4.multiplyByPoint = function (matrix, cartesian, result) {
    //>>includeStart('debug', pragmas.debug);
    RuntimeError.Check.typeOf.object("matrix", matrix);
    RuntimeError.Check.typeOf.object("cartesian", cartesian);
    RuntimeError.Check.typeOf.object("result", result);
    //>>includeEnd('debug');
    const vX = cartesian.x;
    const vY = cartesian.y;
    const vZ = cartesian.z;
    const x = matrix[0] * vX + matrix[4] * vY + matrix[8] * vZ + matrix[12];
    const y = matrix[1] * vX + matrix[5] * vY + matrix[9] * vZ + matrix[13];
    const z = matrix[2] * vX + matrix[6] * vY + matrix[10] * vZ + matrix[14];
    result.x = x;
    result.y = y;
    result.z = z;
    return result;
  };
  /**
   * Computes the product of a matrix and a scalar.
   *
   * @param {Matrix4} matrix The matrix.
   * @param {Number} scalar The number to multiply by.
   * @param {Matrix4} result The object onto which to store the result.
   * @returns {Matrix4} The modified result parameter.
   *
   * @example
   * //create a Matrix4 instance which is a scaled version of the supplied Matrix4
   * // m = [10.0, 11.0, 12.0, 13.0]
   * //     [14.0, 15.0, 16.0, 17.0]
   * //     [18.0, 19.0, 20.0, 21.0]
   * //     [22.0, 23.0, 24.0, 25.0]
   *
   * const a = Cesium.Matrix4.multiplyByScalar(m, -2, new Cesium.Matrix4());
   *
   * // m remains the same
   * // a = [-20.0, -22.0, -24.0, -26.0]
   * //     [-28.0, -30.0, -32.0, -34.0]
   * //     [-36.0, -38.0, -40.0, -42.0]
   * //     [-44.0, -46.0, -48.0, -50.0]
   */
  Matrix4.multiplyByScalar = function (matrix, scalar, result) {
    //>>includeStart('debug', pragmas.debug);
    RuntimeError.Check.typeOf.object("matrix", matrix);
    RuntimeError.Check.typeOf.number("scalar", scalar);
    RuntimeError.Check.typeOf.object("result", result);
    //>>includeEnd('debug');
    result[0] = matrix[0] * scalar;
    result[1] = matrix[1] * scalar;
    result[2] = matrix[2] * scalar;
    result[3] = matrix[3] * scalar;
    result[4] = matrix[4] * scalar;
    result[5] = matrix[5] * scalar;
    result[6] = matrix[6] * scalar;
    result[7] = matrix[7] * scalar;
    result[8] = matrix[8] * scalar;
    result[9] = matrix[9] * scalar;
    result[10] = matrix[10] * scalar;
    result[11] = matrix[11] * scalar;
    result[12] = matrix[12] * scalar;
    result[13] = matrix[13] * scalar;
    result[14] = matrix[14] * scalar;
    result[15] = matrix[15] * scalar;
    return result;
  };
  /**
   * Computes a negated copy of the provided matrix.
   *
   * @param {Matrix4} matrix The matrix to negate.
   * @param {Matrix4} result The object onto which to store the result.
   * @returns {Matrix4} The modified result parameter.
   *
   * @example
   * //create a new Matrix4 instance which is a negation of a Matrix4
   * // m = [10.0, 11.0, 12.0, 13.0]
   * //     [14.0, 15.0, 16.0, 17.0]
   * //     [18.0, 19.0, 20.0, 21.0]
   * //     [22.0, 23.0, 24.0, 25.0]
   *
   * const a = Cesium.Matrix4.negate(m, new Cesium.Matrix4());
   *
   * // m remains the same
   * // a = [-10.0, -11.0, -12.0, -13.0]
   * //     [-14.0, -15.0, -16.0, -17.0]
   * //     [-18.0, -19.0, -20.0, -21.0]
   * //     [-22.0, -23.0, -24.0, -25.0]
   */
  Matrix4.negate = function (matrix, result) {
    //>>includeStart('debug', pragmas.debug);
    RuntimeError.Check.typeOf.object("matrix", matrix);
    RuntimeError.Check.typeOf.object("result", result);
    //>>includeEnd('debug');
    result[0] = -matrix[0];
    result[1] = -matrix[1];
    result[2] = -matrix[2];
    result[3] = -matrix[3];
    result[4] = -matrix[4];
    result[5] = -matrix[5];
    result[6] = -matrix[6];
    result[7] = -matrix[7];
    result[8] = -matrix[8];
    result[9] = -matrix[9];
    result[10] = -matrix[10];
    result[11] = -matrix[11];
    result[12] = -matrix[12];
    result[13] = -matrix[13];
    result[14] = -matrix[14];
    result[15] = -matrix[15];
    return result;
  };
  /**
   * Computes the transpose of the provided matrix.
   *
   * @param {Matrix4} matrix The matrix to transpose.
   * @param {Matrix4} result The object onto which to store the result.
   * @returns {Matrix4} The modified result parameter.
   *
   * @example
   * //returns transpose of a Matrix4
   * // m = [10.0, 11.0, 12.0, 13.0]
   * //     [14.0, 15.0, 16.0, 17.0]
   * //     [18.0, 19.0, 20.0, 21.0]
   * //     [22.0, 23.0, 24.0, 25.0]
   *
   * const a = Cesium.Matrix4.transpose(m, new Cesium.Matrix4());
   *
   * // m remains the same
   * // a = [10.0, 14.0, 18.0, 22.0]
   * //     [11.0, 15.0, 19.0, 23.0]
   * //     [12.0, 16.0, 20.0, 24.0]
   * //     [13.0, 17.0, 21.0, 25.0]
   */
  Matrix4.transpose = function (matrix, result) {
    //>>includeStart('debug', pragmas.debug);
    RuntimeError.Check.typeOf.object("matrix", matrix);
    RuntimeError.Check.typeOf.object("result", result);
    //>>includeEnd('debug');
    const matrix1 = matrix[1];
    const matrix2 = matrix[2];
    const matrix3 = matrix[3];
    const matrix6 = matrix[6];
    const matrix7 = matrix[7];
    const matrix11 = matrix[11];
    result[0] = matrix[0];
    result[1] = matrix[4];
    result[2] = matrix[8];
    result[3] = matrix[12];
    result[4] = matrix1;
    result[5] = matrix[5];
    result[6] = matrix[9];
    result[7] = matrix[13];
    result[8] = matrix2;
    result[9] = matrix6;
    result[10] = matrix[10];
    result[11] = matrix[14];
    result[12] = matrix3;
    result[13] = matrix7;
    result[14] = matrix11;
    result[15] = matrix[15];
    return result;
  };
  /**
   * Computes a matrix, which contains the absolute (unsigned) values of the provided matrix's elements.
   *
   * @param {Matrix4} matrix The matrix with signed elements.
   * @param {Matrix4} result The object onto which to store the result.
   * @returns {Matrix4} The modified result parameter.
   */
  Matrix4.abs = function (matrix, result) {
    //>>includeStart('debug', pragmas.debug);
    RuntimeError.Check.typeOf.object("matrix", matrix);
    RuntimeError.Check.typeOf.object("result", result);
    //>>includeEnd('debug');
    result[0] = Math.abs(matrix[0]);
    result[1] = Math.abs(matrix[1]);
    result[2] = Math.abs(matrix[2]);
    result[3] = Math.abs(matrix[3]);
    result[4] = Math.abs(matrix[4]);
    result[5] = Math.abs(matrix[5]);
    result[6] = Math.abs(matrix[6]);
    result[7] = Math.abs(matrix[7]);
    result[8] = Math.abs(matrix[8]);
    result[9] = Math.abs(matrix[9]);
    result[10] = Math.abs(matrix[10]);
    result[11] = Math.abs(matrix[11]);
    result[12] = Math.abs(matrix[12]);
    result[13] = Math.abs(matrix[13]);
    result[14] = Math.abs(matrix[14]);
    result[15] = Math.abs(matrix[15]);
    return result;
  };
  /**
   * Compares the provided matrices componentwise and returns
   * true if they are equal, false otherwise.
   *
   * @param {Matrix4} [left] The first matrix.
   * @param {Matrix4} [right] The second matrix.
   * @returns {Boolean} true if left and right are equal, false otherwise.
   *
   * @example
   * //compares two Matrix4 instances
   *
   * // a = [10.0, 14.0, 18.0, 22.0]
   * //     [11.0, 15.0, 19.0, 23.0]
   * //     [12.0, 16.0, 20.0, 24.0]
   * //     [13.0, 17.0, 21.0, 25.0]
   *
   * // b = [10.0, 14.0, 18.0, 22.0]
   * //     [11.0, 15.0, 19.0, 23.0]
   * //     [12.0, 16.0, 20.0, 24.0]
   * //     [13.0, 17.0, 21.0, 25.0]
   *
   * if(Cesium.Matrix4.equals(a,b)) {
   *      console.log("Both matrices are equal");
   * } else {
   *      console.log("They are not equal");
   * }
   *
   * //Prints "Both matrices are equal" on the console
   */
  Matrix4.equals = function (left, right) {
    // Given that most matrices will be transformation matrices, the elements
    // are tested in order such that the test is likely to fail as early
    // as possible.  I _think_ this is just as friendly to the L1 cache
    // as testing in index order.  It is certainty faster in practice.
    return (
      left === right ||
      (defaultValue.defined(left) &&
        defaultValue.defined(right) &&
        // Translation
        left[12] === right[12] &&
        left[13] === right[13] &&
        left[14] === right[14] &&
        // Rotation/scale
        left[0] === right[0] &&
        left[1] === right[1] &&
        left[2] === right[2] &&
        left[4] === right[4] &&
        left[5] === right[5] &&
        left[6] === right[6] &&
        left[8] === right[8] &&
        left[9] === right[9] &&
        left[10] === right[10] &&
        // Bottom row
        left[3] === right[3] &&
        left[7] === right[7] &&
        left[11] === right[11] &&
        left[15] === right[15])
    );
  };
  /**
   * Compares the provided matrices componentwise and returns
   * true if they are within the provided epsilon,
   * false otherwise.
   *
   * @param {Matrix4} [left] The first matrix.
   * @param {Matrix4} [right] The second matrix.
   * @param {Number} [epsilon=0] The epsilon to use for equality testing.
   * @returns {Boolean} true if left and right are within the provided epsilon, false otherwise.
   *
   * @example
   * //compares two Matrix4 instances
   *
   * // a = [10.5, 14.5, 18.5, 22.5]
   * //     [11.5, 15.5, 19.5, 23.5]
   * //     [12.5, 16.5, 20.5, 24.5]
   * //     [13.5, 17.5, 21.5, 25.5]
   *
   * // b = [10.0, 14.0, 18.0, 22.0]
   * //     [11.0, 15.0, 19.0, 23.0]
   * //     [12.0, 16.0, 20.0, 24.0]
   * //     [13.0, 17.0, 21.0, 25.0]
   *
   * if(Cesium.Matrix4.equalsEpsilon(a,b,0.1)){
   *      console.log("Difference between both the matrices is less than 0.1");
   * } else {
   *      console.log("Difference between both the matrices is not less than 0.1");
   * }
   *
   * //Prints "Difference between both the matrices is not less than 0.1" on the console
   */
  Matrix4.equalsEpsilon = function (left, right, epsilon) {
    epsilon = defaultValue.defaultValue(epsilon, 0);
    return (
      left === right ||
      (defaultValue.defined(left) &&
        defaultValue.defined(right) &&
        Math.abs(left[0] - right[0]) <= epsilon &&
        Math.abs(left[1] - right[1]) <= epsilon &&
        Math.abs(left[2] - right[2]) <= epsilon &&
        Math.abs(left[3] - right[3]) <= epsilon &&
        Math.abs(left[4] - right[4]) <= epsilon &&
        Math.abs(left[5] - right[5]) <= epsilon &&
        Math.abs(left[6] - right[6]) <= epsilon &&
        Math.abs(left[7] - right[7]) <= epsilon &&
        Math.abs(left[8] - right[8]) <= epsilon &&
        Math.abs(left[9] - right[9]) <= epsilon &&
        Math.abs(left[10] - right[10]) <= epsilon &&
        Math.abs(left[11] - right[11]) <= epsilon &&
        Math.abs(left[12] - right[12]) <= epsilon &&
        Math.abs(left[13] - right[13]) <= epsilon &&
        Math.abs(left[14] - right[14]) <= epsilon &&
        Math.abs(left[15] - right[15]) <= epsilon)
    );
  };
  /**
   * Gets the translation portion of the provided matrix, assuming the matrix is an affine transformation matrix.
   *
   * @param {Matrix4} matrix The matrix to use.
   * @param {Cartesian3} result The object onto which to store the result.
   * @returns {Cartesian3} The modified result parameter.
   */
  Matrix4.getTranslation = function (matrix, result) {
    //>>includeStart('debug', pragmas.debug);
    RuntimeError.Check.typeOf.object("matrix", matrix);
    RuntimeError.Check.typeOf.object("result", result);
    //>>includeEnd('debug');
    result.x = matrix[12];
    result.y = matrix[13];
    result.z = matrix[14];
    return result;
  };
  /**
   * Gets the upper left 3x3 matrix of the provided matrix.
   *
   * @param {Matrix4} matrix The matrix to use.
   * @param {Matrix3} result The object onto which to store the result.
   * @returns {Matrix3} The modified result parameter.
   *
   * @example
   * // returns a Matrix3 instance from a Matrix4 instance
   *
   * // m = [10.0, 14.0, 18.0, 22.0]
   * //     [11.0, 15.0, 19.0, 23.0]
   * //     [12.0, 16.0, 20.0, 24.0]
   * //     [13.0, 17.0, 21.0, 25.0]
   *
   * const b = new Cesium.Matrix3();
   * Cesium.Matrix4.getMatrix3(m,b);
   *
   * // b = [10.0, 14.0, 18.0]
   * //     [11.0, 15.0, 19.0]
   * //     [12.0, 16.0, 20.0]
   */
  Matrix4.getMatrix3 = function (matrix, result) {
    //>>includeStart('debug', pragmas.debug);
    RuntimeError.Check.typeOf.object("matrix", matrix);
    RuntimeError.Check.typeOf.object("result", result);
    //>>includeEnd('debug');
    result[0] = matrix[0];
    result[1] = matrix[1];
    result[2] = matrix[2];
    result[3] = matrix[4];
    result[4] = matrix[5];
    result[5] = matrix[6];
    result[6] = matrix[8];
    result[7] = matrix[9];
    result[8] = matrix[10];
    return result;
  };
  const scratchInverseRotation = new Matrix3();
  const scratchMatrix3Zero = new Matrix3();
  const scratchBottomRow = new Cartesian4();
  const scratchExpectedBottomRow = new Cartesian4(0.0, 0.0, 0.0, 1.0);
  /**
   * Computes the inverse of the provided matrix using Cramers Rule.
   * If the determinant is zero, the matrix can not be inverted, and an exception is thrown.
   * If the matrix is a proper rigid transformation, it is more efficient
   * to invert it with {@link Matrix4.inverseTransformation}.
   *
   * @param {Matrix4} matrix The matrix to invert.
   * @param {Matrix4} result The object onto which to store the result.
   * @returns {Matrix4} The modified result parameter.
   *
   * @exception {RuntimeError} matrix is not invertible because its determinate is zero.
   */
  Matrix4.inverse = function (matrix, result) {
    //>>includeStart('debug', pragmas.debug);
    RuntimeError.Check.typeOf.object("matrix", matrix);
    RuntimeError.Check.typeOf.object("result", result);
    //>>includeEnd('debug');
    //
    // Ported from:
    //   ftp://download.intel.com/design/PentiumIII/sml/24504301.pdf
    //
    const src0 = matrix[0];
    const src1 = matrix[4];
    const src2 = matrix[8];
    const src3 = matrix[12];
    const src4 = matrix[1];
    const src5 = matrix[5];
    const src6 = matrix[9];
    const src7 = matrix[13];
    const src8 = matrix[2];
    const src9 = matrix[6];
    const src10 = matrix[10];
    const src11 = matrix[14];
    const src12 = matrix[3];
    const src13 = matrix[7];
    const src14 = matrix[11];
    const src15 = matrix[15];
    // calculate pairs for first 8 elements (cofactors)
    let tmp0 = src10 * src15;
    let tmp1 = src11 * src14;
    let tmp2 = src9 * src15;
    let tmp3 = src11 * src13;
    let tmp4 = src9 * src14;
    let tmp5 = src10 * src13;
    let tmp6 = src8 * src15;
    let tmp7 = src11 * src12;
    let tmp8 = src8 * src14;
    let tmp9 = src10 * src12;
    let tmp10 = src8 * src13;
    let tmp11 = src9 * src12;
    // calculate first 8 elements (cofactors)
    const dst0 =
      tmp0 * src5 +
      tmp3 * src6 +
      tmp4 * src7 -
      (tmp1 * src5 + tmp2 * src6 + tmp5 * src7);
    const dst1 =
      tmp1 * src4 +
      tmp6 * src6 +
      tmp9 * src7 -
      (tmp0 * src4 + tmp7 * src6 + tmp8 * src7);
    const dst2 =
      tmp2 * src4 +
      tmp7 * src5 +
      tmp10 * src7 -
      (tmp3 * src4 + tmp6 * src5 + tmp11 * src7);
    const dst3 =
      tmp5 * src4 +
      tmp8 * src5 +
      tmp11 * src6 -
      (tmp4 * src4 + tmp9 * src5 + tmp10 * src6);
    const dst4 =
      tmp1 * src1 +
      tmp2 * src2 +
      tmp5 * src3 -
      (tmp0 * src1 + tmp3 * src2 + tmp4 * src3);
    const dst5 =
      tmp0 * src0 +
      tmp7 * src2 +
      tmp8 * src3 -
      (tmp1 * src0 + tmp6 * src2 + tmp9 * src3);
    const dst6 =
      tmp3 * src0 +
      tmp6 * src1 +
      tmp11 * src3 -
      (tmp2 * src0 + tmp7 * src1 + tmp10 * src3);
    const dst7 =
      tmp4 * src0 +
      tmp9 * src1 +
      tmp10 * src2 -
      (tmp5 * src0 + tmp8 * src1 + tmp11 * src2);
    // calculate pairs for second 8 elements (cofactors)
    tmp0 = src2 * src7;
    tmp1 = src3 * src6;
    tmp2 = src1 * src7;
    tmp3 = src3 * src5;
    tmp4 = src1 * src6;
    tmp5 = src2 * src5;
    tmp6 = src0 * src7;
    tmp7 = src3 * src4;
    tmp8 = src0 * src6;
    tmp9 = src2 * src4;
    tmp10 = src0 * src5;
    tmp11 = src1 * src4;
    // calculate second 8 elements (cofactors)
    const dst8 =
      tmp0 * src13 +
      tmp3 * src14 +
      tmp4 * src15 -
      (tmp1 * src13 + tmp2 * src14 + tmp5 * src15);
    const dst9 =
      tmp1 * src12 +
      tmp6 * src14 +
      tmp9 * src15 -
      (tmp0 * src12 + tmp7 * src14 + tmp8 * src15);
    const dst10 =
      tmp2 * src12 +
      tmp7 * src13 +
      tmp10 * src15 -
      (tmp3 * src12 + tmp6 * src13 + tmp11 * src15);
    const dst11 =
      tmp5 * src12 +
      tmp8 * src13 +
      tmp11 * src14 -
      (tmp4 * src12 + tmp9 * src13 + tmp10 * src14);
    const dst12 =
      tmp2 * src10 +
      tmp5 * src11 +
      tmp1 * src9 -
      (tmp4 * src11 + tmp0 * src9 + tmp3 * src10);
    const dst13 =
      tmp8 * src11 +
      tmp0 * src8 +
      tmp7 * src10 -
      (tmp6 * src10 + tmp9 * src11 + tmp1 * src8);
    const dst14 =
      tmp6 * src9 +
      tmp11 * src11 +
      tmp3 * src8 -
      (tmp10 * src11 + tmp2 * src8 + tmp7 * src9);
    const dst15 =
      tmp10 * src10 +
      tmp4 * src8 +
      tmp9 * src9 -
      (tmp8 * src9 + tmp11 * src10 + tmp5 * src8);
    // calculate determinant
    let det = src0 * dst0 + src1 * dst1 + src2 * dst2 + src3 * dst3;
    if (Math.abs(det) < ComponentDatatype.CesiumMath.EPSILON21) {
      // Special case for a zero scale matrix that can occur, for example,
      // when a model's node has a [0, 0, 0] scale.
      if (
        Matrix3.equalsEpsilon(
          Matrix4.getMatrix3(matrix, scratchInverseRotation),
          scratchMatrix3Zero,
          ComponentDatatype.CesiumMath.EPSILON7
        ) &&
        Cartesian4.equals(
          Matrix4.getRow(matrix, 3, scratchBottomRow),
          scratchExpectedBottomRow
        )
      ) {
        result[0] = 0.0;
        result[1] = 0.0;
        result[2] = 0.0;
        result[3] = 0.0;
        result[4] = 0.0;
        result[5] = 0.0;
        result[6] = 0.0;
        result[7] = 0.0;
        result[8] = 0.0;
        result[9] = 0.0;
        result[10] = 0.0;
        result[11] = 0.0;
        result[12] = -matrix[12];
        result[13] = -matrix[13];
        result[14] = -matrix[14];
        result[15] = 1.0;
        return result;
      }
      throw new RuntimeError.RuntimeError(
        "matrix is not invertible because its determinate is zero."
      );
    }
    // calculate matrix inverse
    det = 1.0 / det;
    result[0] = dst0 * det;
    result[1] = dst1 * det;
    result[2] = dst2 * det;
    result[3] = dst3 * det;
    result[4] = dst4 * det;
    result[5] = dst5 * det;
    result[6] = dst6 * det;
    result[7] = dst7 * det;
    result[8] = dst8 * det;
    result[9] = dst9 * det;
    result[10] = dst10 * det;
    result[11] = dst11 * det;
    result[12] = dst12 * det;
    result[13] = dst13 * det;
    result[14] = dst14 * det;
    result[15] = dst15 * det;
    return result;
  };
  /**
   * Computes the inverse of the provided matrix assuming it is a proper rigid matrix,
   * where the upper left 3x3 elements are a rotation matrix,
   * and the upper three elements in the fourth column are the translation.
   * The bottom row is assumed to be [0, 0, 0, 1].
   * The matrix is not verified to be in the proper form.
   * This method is faster than computing the inverse for a general 4x4
   * matrix using {@link Matrix4.inverse}.
   *
   * @param {Matrix4} matrix The matrix to invert.
   * @param {Matrix4} result The object onto which to store the result.
   * @returns {Matrix4} The modified result parameter.
   */
  Matrix4.inverseTransformation = function (matrix, result) {
    //>>includeStart('debug', pragmas.debug);
    RuntimeError.Check.typeOf.object("matrix", matrix);
    RuntimeError.Check.typeOf.object("result", result);
    //>>includeEnd('debug');
    //This function is an optimized version of the below 4 lines.
    //const rT = Matrix3.transpose(Matrix4.getMatrix3(matrix));
    //const rTN = Matrix3.negate(rT);
    //const rTT = Matrix3.multiplyByVector(rTN, Matrix4.getTranslation(matrix));
    //return Matrix4.fromRotationTranslation(rT, rTT, result);
    const matrix0 = matrix[0];
    const matrix1 = matrix[1];
    const matrix2 = matrix[2];
    const matrix4 = matrix[4];
    const matrix5 = matrix[5];
    const matrix6 = matrix[6];
    const matrix8 = matrix[8];
    const matrix9 = matrix[9];
    const matrix10 = matrix[10];
    const vX = matrix[12];
    const vY = matrix[13];
    const vZ = matrix[14];
    const x = -matrix0 * vX - matrix1 * vY - matrix2 * vZ;
    const y = -matrix4 * vX - matrix5 * vY - matrix6 * vZ;
    const z = -matrix8 * vX - matrix9 * vY - matrix10 * vZ;
    result[0] = matrix0;
    result[1] = matrix4;
    result[2] = matrix8;
    result[3] = 0.0;
    result[4] = matrix1;
    result[5] = matrix5;
    result[6] = matrix9;
    result[7] = 0.0;
    result[8] = matrix2;
    result[9] = matrix6;
    result[10] = matrix10;
    result[11] = 0.0;
    result[12] = x;
    result[13] = y;
    result[14] = z;
    result[15] = 1.0;
    return result;
  };
  const scratchTransposeMatrix = new Matrix4();
  /**
   * Computes the inverse transpose of a matrix.
   *
   * @param {Matrix4} matrix The matrix to transpose and invert.
   * @param {Matrix4} result The object onto which to store the result.
   * @returns {Matrix4} The modified result parameter.
   */
  Matrix4.inverseTranspose = function (matrix, result) {
    //>>includeStart('debug', pragmas.debug);
    RuntimeError.Check.typeOf.object("matrix", matrix);
    RuntimeError.Check.typeOf.object("result", result);
    //>>includeEnd('debug');
    return Matrix4.inverse(
      Matrix4.transpose(matrix, scratchTransposeMatrix),
      result
    );
  };
  /**
   * An immutable Matrix4 instance initialized to the identity matrix.
   *
   * @type {Matrix4}
   * @constant
   */
  Matrix4.IDENTITY = Object.freeze(
    new Matrix4(
      1.0,
      0.0,
      0.0,
      0.0,
      0.0,
      1.0,
      0.0,
      0.0,
      0.0,
      0.0,
      1.0,
      0.0,
      0.0,
      0.0,
      0.0,
      1.0
    )
  );
  /**
   * An immutable Matrix4 instance initialized to the zero matrix.
   *
   * @type {Matrix4}
   * @constant
   */
  Matrix4.ZERO = Object.freeze(
    new Matrix4(
      0.0,
      0.0,
      0.0,
      0.0,
      0.0,
      0.0,
      0.0,
      0.0,
      0.0,
      0.0,
      0.0,
      0.0,
      0.0,
      0.0,
      0.0,
      0.0
    )
  );
  /**
   * The index into Matrix4 for column 0, row 0.
   *
   * @type {Number}
   * @constant
   */
  Matrix4.COLUMN0ROW0 = 0;
  /**
   * The index into Matrix4 for column 0, row 1.
   *
   * @type {Number}
   * @constant
   */
  Matrix4.COLUMN0ROW1 = 1;
  /**
   * The index into Matrix4 for column 0, row 2.
   *
   * @type {Number}
   * @constant
   */
  Matrix4.COLUMN0ROW2 = 2;
  /**
   * The index into Matrix4 for column 0, row 3.
   *
   * @type {Number}
   * @constant
   */
  Matrix4.COLUMN0ROW3 = 3;
  /**
   * The index into Matrix4 for column 1, row 0.
   *
   * @type {Number}
   * @constant
   */
  Matrix4.COLUMN1ROW0 = 4;
  /**
   * The index into Matrix4 for column 1, row 1.
   *
   * @type {Number}
   * @constant
   */
  Matrix4.COLUMN1ROW1 = 5;
  /**
   * The index into Matrix4 for column 1, row 2.
   *
   * @type {Number}
   * @constant
   */
  Matrix4.COLUMN1ROW2 = 6;
  /**
   * The index into Matrix4 for column 1, row 3.
   *
   * @type {Number}
   * @constant
   */
  Matrix4.COLUMN1ROW3 = 7;
  /**
   * The index into Matrix4 for column 2, row 0.
   *
   * @type {Number}
   * @constant
   */
  Matrix4.COLUMN2ROW0 = 8;
  /**
   * The index into Matrix4 for column 2, row 1.
   *
   * @type {Number}
   * @constant
   */
  Matrix4.COLUMN2ROW1 = 9;
  /**
   * The index into Matrix4 for column 2, row 2.
   *
   * @type {Number}
   * @constant
   */
  Matrix4.COLUMN2ROW2 = 10;
  /**
   * The index into Matrix4 for column 2, row 3.
   *
   * @type {Number}
   * @constant
   */
  Matrix4.COLUMN2ROW3 = 11;
  /**
   * The index into Matrix4 for column 3, row 0.
   *
   * @type {Number}
   * @constant
   */
  Matrix4.COLUMN3ROW0 = 12;
  /**
   * The index into Matrix4 for column 3, row 1.
   *
   * @type {Number}
   * @constant
   */
  Matrix4.COLUMN3ROW1 = 13;
  /**
   * The index into Matrix4 for column 3, row 2.
   *
   * @type {Number}
   * @constant
   */
  Matrix4.COLUMN3ROW2 = 14;
  /**
   * The index into Matrix4 for column 3, row 3.
   *
   * @type {Number}
   * @constant
   */
  Matrix4.COLUMN3ROW3 = 15;
  Object.defineProperties(Matrix4.prototype, {
    /**
     * Gets the number of items in the collection.
     * @memberof Matrix4.prototype
     *
     * @type {Number}
     */
    length: {
      get: function () {
        return Matrix4.packedLength;
      },
    },
  });
  /**
   * Duplicates the provided Matrix4 instance.
   *
   * @param {Matrix4} [result] The object onto which to store the result.
   * @returns {Matrix4} The modified result parameter or a new Matrix4 instance if one was not provided.
   */
  Matrix4.prototype.clone = function (result) {
    return Matrix4.clone(this, result);
  };
  /**
   * Compares this matrix to the provided matrix componentwise and returns
   * true if they are equal, false otherwise.
   *
   * @param {Matrix4} [right] The right hand side matrix.
   * @returns {Boolean} true if they are equal, false otherwise.
   */
  Matrix4.prototype.equals = function (right) {
    return Matrix4.equals(this, right);
  };
  /**
   * @private
   */
  Matrix4.equalsArray = function (matrix, array, offset) {
    return (
      matrix[0] === array[offset] &&
      matrix[1] === array[offset + 1] &&
      matrix[2] === array[offset + 2] &&
      matrix[3] === array[offset + 3] &&
      matrix[4] === array[offset + 4] &&
      matrix[5] === array[offset + 5] &&
      matrix[6] === array[offset + 6] &&
      matrix[7] === array[offset + 7] &&
      matrix[8] === array[offset + 8] &&
      matrix[9] === array[offset + 9] &&
      matrix[10] === array[offset + 10] &&
      matrix[11] === array[offset + 11] &&
      matrix[12] === array[offset + 12] &&
      matrix[13] === array[offset + 13] &&
      matrix[14] === array[offset + 14] &&
      matrix[15] === array[offset + 15]
    );
  };
  /**
   * Compares this matrix to the provided matrix componentwise and returns
   * true if they are within the provided epsilon,
   * false otherwise.
   *
   * @param {Matrix4} [right] The right hand side matrix.
   * @param {Number} [epsilon=0] The epsilon to use for equality testing.
   * @returns {Boolean} true if they are within the provided epsilon, false otherwise.
   */
  Matrix4.prototype.equalsEpsilon = function (right, epsilon) {
    return Matrix4.equalsEpsilon(this, right, epsilon);
  };
  /**
   * Computes a string representing this Matrix with each row being
   * on a separate line and in the format '(column0, column1, column2, column3)'.
   *
   * @returns {String} A string representing the provided Matrix with each row being on a separate line and in the format '(column0, column1, column2, column3)'.
   */
  Matrix4.prototype.toString = function () {
    return (
      `(${this[0]}, ${this[4]}, ${this[8]}, ${this[12]})\n` +
      `(${this[1]}, ${this[5]}, ${this[9]}, ${this[13]})\n` +
      `(${this[2]}, ${this[6]}, ${this[10]}, ${this[14]})\n` +
      `(${this[3]}, ${this[7]}, ${this[11]}, ${this[15]})`
    );
  };
  /**
   * A two dimensional region specified as longitude and latitude coordinates.
   *
   * @alias Rectangle
   * @constructor
   *
   * @param {Number} [west=0.0] The westernmost longitude, in radians, in the range [-Pi, Pi].
   * @param {Number} [south=0.0] The southernmost latitude, in radians, in the range [-Pi/2, Pi/2].
   * @param {Number} [east=0.0] The easternmost longitude, in radians, in the range [-Pi, Pi].
   * @param {Number} [north=0.0] The northernmost latitude, in radians, in the range [-Pi/2, Pi/2].
   *
   * @see Packable
   */
  function Rectangle(west, south, east, north) {
    /**
     * The westernmost longitude in radians in the range [-Pi, Pi].
     *
     * @type {Number}
     * @default 0.0
     */
    this.west = defaultValue.defaultValue(west, 0.0);
    /**
     * The southernmost latitude in radians in the range [-Pi/2, Pi/2].
     *
     * @type {Number}
     * @default 0.0
     */
    this.south = defaultValue.defaultValue(south, 0.0);
    /**
     * The easternmost longitude in radians in the range [-Pi, Pi].
     *
     * @type {Number}
     * @default 0.0
     */
    this.east = defaultValue.defaultValue(east, 0.0);
    /**
     * The northernmost latitude in radians in the range [-Pi/2, Pi/2].
     *
     * @type {Number}
     * @default 0.0
     */
    this.north = defaultValue.defaultValue(north, 0.0);
  }
  Object.defineProperties(Rectangle.prototype, {
    /**
     * Gets the width of the rectangle in radians.
     * @memberof Rectangle.prototype
     * @type {Number}
     * @readonly
     */
    width: {
      get: function () {
        return Rectangle.computeWidth(this);
      },
    },
    /**
     * Gets the height of the rectangle in radians.
     * @memberof Rectangle.prototype
     * @type {Number}
     * @readonly
     */
    height: {
      get: function () {
        return Rectangle.computeHeight(this);
      },
    },
  });
  /**
   * The number of elements used to pack the object into an array.
   * @type {Number}
   */
  Rectangle.packedLength = 4;
  /**
   * Stores the provided instance into the provided array.
   *
   * @param {Rectangle} value The value to pack.
   * @param {Number[]} array The array to pack into.
   * @param {Number} [startingIndex=0] The index into the array at which to start packing the elements.
   *
   * @returns {Number[]} The array that was packed into
   */
  Rectangle.pack = function (value, array, startingIndex) {
    //>>includeStart('debug', pragmas.debug);
    RuntimeError.Check.typeOf.object("value", value);
    RuntimeError.Check.defined("array", array);
    //>>includeEnd('debug');
    startingIndex = defaultValue.defaultValue(startingIndex, 0);
    array[startingIndex++] = value.west;
    array[startingIndex++] = value.south;
    array[startingIndex++] = value.east;
    array[startingIndex] = value.north;
    return array;
  };
  /**
   * Retrieves an instance from a packed array.
   *
   * @param {Number[]} array The packed array.
   * @param {Number} [startingIndex=0] The starting index of the element to be unpacked.
   * @param {Rectangle} [result] The object into which to store the result.
   * @returns {Rectangle} The modified result parameter or a new Rectangle instance if one was not provided.
   */
  Rectangle.unpack = function (array, startingIndex, result) {
    //>>includeStart('debug', pragmas.debug);
    RuntimeError.Check.defined("array", array);
    //>>includeEnd('debug');
    startingIndex = defaultValue.defaultValue(startingIndex, 0);
    if (!defaultValue.defined(result)) {
      result = new Rectangle();
    }
    result.west = array[startingIndex++];
    result.south = array[startingIndex++];
    result.east = array[startingIndex++];
    result.north = array[startingIndex];
    return result;
  };
  /**
   * Computes the width of a rectangle in radians.
   * @param {Rectangle} rectangle The rectangle to compute the width of.
   * @returns {Number} The width.
   */
  Rectangle.computeWidth = function (rectangle) {
    //>>includeStart('debug', pragmas.debug);
    RuntimeError.Check.typeOf.object("rectangle", rectangle);
    //>>includeEnd('debug');
    let east = rectangle.east;
    const west = rectangle.west;
    if (east < west) {
      east += ComponentDatatype.CesiumMath.TWO_PI;
    }
    return east - west;
  };
  /**
   * Computes the height of a rectangle in radians.
   * @param {Rectangle} rectangle The rectangle to compute the height of.
   * @returns {Number} The height.
   */
  Rectangle.computeHeight = function (rectangle) {
    //>>includeStart('debug', pragmas.debug);
    RuntimeError.Check.typeOf.object("rectangle", rectangle);
    //>>includeEnd('debug');
    return rectangle.north - rectangle.south;
  };
  /**
   * Creates a rectangle given the boundary longitude and latitude in degrees.
   *
   * @param {Number} [west=0.0] The westernmost longitude in degrees in the range [-180.0, 180.0].
   * @param {Number} [south=0.0] The southernmost latitude in degrees in the range [-90.0, 90.0].
   * @param {Number} [east=0.0] The easternmost longitude in degrees in the range [-180.0, 180.0].
   * @param {Number} [north=0.0] The northernmost latitude in degrees in the range [-90.0, 90.0].
   * @param {Rectangle} [result] The object onto which to store the result, or undefined if a new instance should be created.
   * @returns {Rectangle} The modified result parameter or a new Rectangle instance if none was provided.
   *
   * @example
   * const rectangle = Cesium.Rectangle.fromDegrees(0.0, 20.0, 10.0, 30.0);
   */
  Rectangle.fromDegrees = function (west, south, east, north, result) {
    west = ComponentDatatype.CesiumMath.toRadians(defaultValue.defaultValue(west, 0.0));
    south = ComponentDatatype.CesiumMath.toRadians(defaultValue.defaultValue(south, 0.0));
    east = ComponentDatatype.CesiumMath.toRadians(defaultValue.defaultValue(east, 0.0));
    north = ComponentDatatype.CesiumMath.toRadians(defaultValue.defaultValue(north, 0.0));
    if (!defaultValue.defined(result)) {
      return new Rectangle(west, south, east, north);
    }
    result.west = west;
    result.south = south;
    result.east = east;
    result.north = north;
    return result;
  };
  /**
   * Creates a rectangle given the boundary longitude and latitude in radians.
   *
   * @param {Number} [west=0.0] The westernmost longitude in radians in the range [-Math.PI, Math.PI].
   * @param {Number} [south=0.0] The southernmost latitude in radians in the range [-Math.PI/2, Math.PI/2].
   * @param {Number} [east=0.0] The easternmost longitude in radians in the range [-Math.PI, Math.PI].
   * @param {Number} [north=0.0] The northernmost latitude in radians in the range [-Math.PI/2, Math.PI/2].
   * @param {Rectangle} [result] The object onto which to store the result, or undefined if a new instance should be created.
   * @returns {Rectangle} The modified result parameter or a new Rectangle instance if none was provided.
   *
   * @example
   * const rectangle = Cesium.Rectangle.fromRadians(0.0, Math.PI/4, Math.PI/8, 3*Math.PI/4);
   */
  Rectangle.fromRadians = function (west, south, east, north, result) {
    if (!defaultValue.defined(result)) {
      return new Rectangle(west, south, east, north);
    }
    result.west = defaultValue.defaultValue(west, 0.0);
    result.south = defaultValue.defaultValue(south, 0.0);
    result.east = defaultValue.defaultValue(east, 0.0);
    result.north = defaultValue.defaultValue(north, 0.0);
    return result;
  };
  /**
   * Creates the smallest possible Rectangle that encloses all positions in the provided array.
   *
   * @param {Cartographic[]} cartographics The list of Cartographic instances.
   * @param {Rectangle} [result] The object onto which to store the result, or undefined if a new instance should be created.
   * @returns {Rectangle} The modified result parameter or a new Rectangle instance if none was provided.
   */
  Rectangle.fromCartographicArray = function (cartographics, result) {
    //>>includeStart('debug', pragmas.debug);
    RuntimeError.Check.defined("cartographics", cartographics);
    //>>includeEnd('debug');
    let west = Number.MAX_VALUE;
    let east = -Number.MAX_VALUE;
    let westOverIDL = Number.MAX_VALUE;
    let eastOverIDL = -Number.MAX_VALUE;
    let south = Number.MAX_VALUE;
    let north = -Number.MAX_VALUE;
    for (let i = 0, len = cartographics.length; i < len; i++) {
      const position = cartographics[i];
      west = Math.min(west, position.longitude);
      east = Math.max(east, position.longitude);
      south = Math.min(south, position.latitude);
      north = Math.max(north, position.latitude);
      const lonAdjusted =
        position.longitude >= 0
          ? position.longitude
          : position.longitude + ComponentDatatype.CesiumMath.TWO_PI;
      westOverIDL = Math.min(westOverIDL, lonAdjusted);
      eastOverIDL = Math.max(eastOverIDL, lonAdjusted);
    }
    if (east - west > eastOverIDL - westOverIDL) {
      west = westOverIDL;
      east = eastOverIDL;
      if (east > ComponentDatatype.CesiumMath.PI) {
        east = east - ComponentDatatype.CesiumMath.TWO_PI;
      }
      if (west > ComponentDatatype.CesiumMath.PI) {
        west = west - ComponentDatatype.CesiumMath.TWO_PI;
      }
    }
    if (!defaultValue.defined(result)) {
      return new Rectangle(west, south, east, north);
    }
    result.west = west;
    result.south = south;
    result.east = east;
    result.north = north;
    return result;
  };
  /**
   * Creates the smallest possible Rectangle that encloses all positions in the provided array.
   *
   * @param {Cartesian3[]} cartesians The list of Cartesian instances.
   * @param {Ellipsoid} [ellipsoid=Ellipsoid.WGS84] The ellipsoid the cartesians are on.
   * @param {Rectangle} [result] The object onto which to store the result, or undefined if a new instance should be created.
   * @returns {Rectangle} The modified result parameter or a new Rectangle instance if none was provided.
   */
  Rectangle.fromCartesianArray = function (cartesians, ellipsoid, result) {
    //>>includeStart('debug', pragmas.debug);
    RuntimeError.Check.defined("cartesians", cartesians);
    //>>includeEnd('debug');
    ellipsoid = defaultValue.defaultValue(ellipsoid, Ellipsoid.WGS84);
    let west = Number.MAX_VALUE;
    let east = -Number.MAX_VALUE;
    let westOverIDL = Number.MAX_VALUE;
    let eastOverIDL = -Number.MAX_VALUE;
    let south = Number.MAX_VALUE;
    let north = -Number.MAX_VALUE;
    for (let i = 0, len = cartesians.length; i < len; i++) {
      const position = ellipsoid.cartesianToCartographic(cartesians[i]);
      west = Math.min(west, position.longitude);
      east = Math.max(east, position.longitude);
      south = Math.min(south, position.latitude);
      north = Math.max(north, position.latitude);
      const lonAdjusted =
        position.longitude >= 0
          ? position.longitude
          : position.longitude + ComponentDatatype.CesiumMath.TWO_PI;
      westOverIDL = Math.min(westOverIDL, lonAdjusted);
      eastOverIDL = Math.max(eastOverIDL, lonAdjusted);
    }
    if (east - west > eastOverIDL - westOverIDL) {
      west = westOverIDL;
      east = eastOverIDL;
      if (east > ComponentDatatype.CesiumMath.PI) {
        east = east - ComponentDatatype.CesiumMath.TWO_PI;
      }
      if (west > ComponentDatatype.CesiumMath.PI) {
        west = west - ComponentDatatype.CesiumMath.TWO_PI;
      }
    }
    if (!defaultValue.defined(result)) {
      return new Rectangle(west, south, east, north);
    }
    result.west = west;
    result.south = south;
    result.east = east;
    result.north = north;
    return result;
  };
  /**
   * Duplicates a Rectangle.
   *
   * @param {Rectangle} rectangle The rectangle to clone.
   * @param {Rectangle} [result] The object onto which to store the result, or undefined if a new instance should be created.
   * @returns {Rectangle} The modified result parameter or a new Rectangle instance if none was provided. (Returns undefined if rectangle is undefined)
   */
  Rectangle.clone = function (rectangle, result) {
    if (!defaultValue.defined(rectangle)) {
      return undefined;
    }
    if (!defaultValue.defined(result)) {
      return new Rectangle(
        rectangle.west,
        rectangle.south,
        rectangle.east,
        rectangle.north
      );
    }
    result.west = rectangle.west;
    result.south = rectangle.south;
    result.east = rectangle.east;
    result.north = rectangle.north;
    return result;
  };
  /**
   * Compares the provided Rectangles componentwise and returns
   * true if they pass an absolute or relative tolerance test,
   * false otherwise.
   *
   * @param {Rectangle} [left] The first Rectangle.
   * @param {Rectangle} [right] The second Rectangle.
   * @param {Number} [absoluteEpsilon=0] The absolute epsilon tolerance to use for equality testing.
   * @returns {Boolean} true if left and right are within the provided epsilon, false otherwise.
   */
  Rectangle.equalsEpsilon = function (left, right, absoluteEpsilon) {
    absoluteEpsilon = defaultValue.defaultValue(absoluteEpsilon, 0);
    return (
      left === right ||
      (defaultValue.defined(left) &&
        defaultValue.defined(right) &&
        Math.abs(left.west - right.west) <= absoluteEpsilon &&
        Math.abs(left.south - right.south) <= absoluteEpsilon &&
        Math.abs(left.east - right.east) <= absoluteEpsilon &&
        Math.abs(left.north - right.north) <= absoluteEpsilon)
    );
  };
  /**
   * Duplicates this Rectangle.
   *
   * @param {Rectangle} [result] The object onto which to store the result.
   * @returns {Rectangle} The modified result parameter or a new Rectangle instance if none was provided.
   */
  Rectangle.prototype.clone = function (result) {
    return Rectangle.clone(this, result);
  };
  /**
   * Compares the provided Rectangle with this Rectangle componentwise and returns
   * true if they are equal, false otherwise.
   *
   * @param {Rectangle} [other] The Rectangle to compare.
   * @returns {Boolean} true if the Rectangles are equal, false otherwise.
   */
  Rectangle.prototype.equals = function (other) {
    return Rectangle.equals(this, other);
  };
  /**
   * Compares the provided rectangles and returns true if they are equal,
   * false otherwise.
   *
   * @param {Rectangle} [left] The first Rectangle.
   * @param {Rectangle} [right] The second Rectangle.
   * @returns {Boolean} true if left and right are equal; otherwise false.
   */
  Rectangle.equals = function (left, right) {
    return (
      left === right ||
      (defaultValue.defined(left) &&
        defaultValue.defined(right) &&
        left.west === right.west &&
        left.south === right.south &&
        left.east === right.east &&
        left.north === right.north)
    );
  };
  /**
   * Compares the provided Rectangle with this Rectangle componentwise and returns
   * true if they are within the provided epsilon,
   * false otherwise.
   *
   * @param {Rectangle} [other] The Rectangle to compare.
   * @param {Number} [epsilon=0] The epsilon to use for equality testing.
   * @returns {Boolean} true if the Rectangles are within the provided epsilon, false otherwise.
   */
  Rectangle.prototype.equalsEpsilon = function (other, epsilon) {
    return Rectangle.equalsEpsilon(this, other, epsilon);
  };
  /**
   * Checks a Rectangle's properties and throws if they are not in valid ranges.
   *
   * @param {Rectangle} rectangle The rectangle to validate
   *
   * @exception {DeveloperError} north must be in the interval [-Pi/2, Pi/2].
   * @exception {DeveloperError} south must be in the interval [-Pi/2, Pi/2].
   * @exception {DeveloperError} east must be in the interval [-Pi, Pi].
   * @exception {DeveloperError} west must be in the interval [-Pi, Pi].
   */
  Rectangle.validate = function (rectangle) {
    //>>includeStart('debug', pragmas.debug);
    RuntimeError.Check.typeOf.object("rectangle", rectangle);
    const north = rectangle.north;
    RuntimeError.Check.typeOf.number.greaterThanOrEquals(
      "north",
      north,
      -ComponentDatatype.CesiumMath.PI_OVER_TWO
    );
    RuntimeError.Check.typeOf.number.lessThanOrEquals("north", north, ComponentDatatype.CesiumMath.PI_OVER_TWO);
    const south = rectangle.south;
    RuntimeError.Check.typeOf.number.greaterThanOrEquals(
      "south",
      south,
      -ComponentDatatype.CesiumMath.PI_OVER_TWO
    );
    RuntimeError.Check.typeOf.number.lessThanOrEquals("south", south, ComponentDatatype.CesiumMath.PI_OVER_TWO);
    const west = rectangle.west;
    RuntimeError.Check.typeOf.number.greaterThanOrEquals("west", west, -Math.PI);
    RuntimeError.Check.typeOf.number.lessThanOrEquals("west", west, Math.PI);
    const east = rectangle.east;
    RuntimeError.Check.typeOf.number.greaterThanOrEquals("east", east, -Math.PI);
    RuntimeError.Check.typeOf.number.lessThanOrEquals("east", east, Math.PI);
    //>>includeEnd('debug');
  };
  /**
   * Computes the southwest corner of a rectangle.
   *
   * @param {Rectangle} rectangle The rectangle for which to find the corner
   * @param {Cartographic} [result] The object onto which to store the result.
   * @returns {Cartographic} The modified result parameter or a new Cartographic instance if none was provided.
   */
  Rectangle.southwest = function (rectangle, result) {
    //>>includeStart('debug', pragmas.debug);
    RuntimeError.Check.typeOf.object("rectangle", rectangle);
    //>>includeEnd('debug');
    if (!defaultValue.defined(result)) {
      return new Cartographic(rectangle.west, rectangle.south);
    }
    result.longitude = rectangle.west;
    result.latitude = rectangle.south;
    result.height = 0.0;
    return result;
  };
  /**
   * Computes the northwest corner of a rectangle.
   *
   * @param {Rectangle} rectangle The rectangle for which to find the corner
   * @param {Cartographic} [result] The object onto which to store the result.
   * @returns {Cartographic} The modified result parameter or a new Cartographic instance if none was provided.
   */
  Rectangle.northwest = function (rectangle, result) {
    //>>includeStart('debug', pragmas.debug);
    RuntimeError.Check.typeOf.object("rectangle", rectangle);
    //>>includeEnd('debug');
    if (!defaultValue.defined(result)) {
      return new Cartographic(rectangle.west, rectangle.north);
    }
    result.longitude = rectangle.west;
    result.latitude = rectangle.north;
    result.height = 0.0;
    return result;
  };
  /**
   * Computes the northeast corner of a rectangle.
   *
   * @param {Rectangle} rectangle The rectangle for which to find the corner
   * @param {Cartographic} [result] The object onto which to store the result.
   * @returns {Cartographic} The modified result parameter or a new Cartographic instance if none was provided.
   */
  Rectangle.northeast = function (rectangle, result) {
    //>>includeStart('debug', pragmas.debug);
    RuntimeError.Check.typeOf.object("rectangle", rectangle);
    //>>includeEnd('debug');
    if (!defaultValue.defined(result)) {
      return new Cartographic(rectangle.east, rectangle.north);
    }
    result.longitude = rectangle.east;
    result.latitude = rectangle.north;
    result.height = 0.0;
    return result;
  };
  /**
   * Computes the southeast corner of a rectangle.
   *
   * @param {Rectangle} rectangle The rectangle for which to find the corner
   * @param {Cartographic} [result] The object onto which to store the result.
   * @returns {Cartographic} The modified result parameter or a new Cartographic instance if none was provided.
   */
  Rectangle.southeast = function (rectangle, result) {
    //>>includeStart('debug', pragmas.debug);
    RuntimeError.Check.typeOf.object("rectangle", rectangle);
    //>>includeEnd('debug');
    if (!defaultValue.defined(result)) {
      return new Cartographic(rectangle.east, rectangle.south);
    }
    result.longitude = rectangle.east;
    result.latitude = rectangle.south;
    result.height = 0.0;
    return result;
  };
  /**
   * Computes the center of a rectangle.
   *
   * @param {Rectangle} rectangle The rectangle for which to find the center
   * @param {Cartographic} [result] The object onto which to store the result.
   * @returns {Cartographic} The modified result parameter or a new Cartographic instance if none was provided.
   */
  Rectangle.center = function (rectangle, result) {
    //>>includeStart('debug', pragmas.debug);
    RuntimeError.Check.typeOf.object("rectangle", rectangle);
    //>>includeEnd('debug');
    let east = rectangle.east;
    const west = rectangle.west;
    if (east < west) {
      east += ComponentDatatype.CesiumMath.TWO_PI;
    }
    const longitude = ComponentDatatype.CesiumMath.negativePiToPi((west + east) * 0.5);
    const latitude = (rectangle.south + rectangle.north) * 0.5;
    if (!defaultValue.defined(result)) {
      return new Cartographic(longitude, latitude);
    }
    result.longitude = longitude;
    result.latitude = latitude;
    result.height = 0.0;
    return result;
  };
  /**
   * Computes the intersection of two rectangles.  This function assumes that the rectangle's coordinates are
   * latitude and longitude in radians and produces a correct intersection, taking into account the fact that
   * the same angle can be represented with multiple values as well as the wrapping of longitude at the
   * anti-meridian.  For a simple intersection that ignores these factors and can be used with projected
   * coordinates, see {@link Rectangle.simpleIntersection}.
   *
   * @param {Rectangle} rectangle On rectangle to find an intersection
   * @param {Rectangle} otherRectangle Another rectangle to find an intersection
   * @param {Rectangle} [result] The object onto which to store the result.
   * @returns {Rectangle|undefined} The modified result parameter, a new Rectangle instance if none was provided or undefined if there is no intersection.
   */
  Rectangle.intersection = function (rectangle, otherRectangle, result) {
    //>>includeStart('debug', pragmas.debug);
    RuntimeError.Check.typeOf.object("rectangle", rectangle);
    RuntimeError.Check.typeOf.object("otherRectangle", otherRectangle);
    //>>includeEnd('debug');
    let rectangleEast = rectangle.east;
    let rectangleWest = rectangle.west;
    let otherRectangleEast = otherRectangle.east;
    let otherRectangleWest = otherRectangle.west;
    if (rectangleEast < rectangleWest && otherRectangleEast > 0.0) {
      rectangleEast += ComponentDatatype.CesiumMath.TWO_PI;
    } else if (otherRectangleEast < otherRectangleWest && rectangleEast > 0.0) {
      otherRectangleEast += ComponentDatatype.CesiumMath.TWO_PI;
    }
    if (rectangleEast < rectangleWest && otherRectangleWest < 0.0) {
      otherRectangleWest += ComponentDatatype.CesiumMath.TWO_PI;
    } else if (otherRectangleEast < otherRectangleWest && rectangleWest < 0.0) {
      rectangleWest += ComponentDatatype.CesiumMath.TWO_PI;
    }
    const west = ComponentDatatype.CesiumMath.negativePiToPi(
      Math.max(rectangleWest, otherRectangleWest)
    );
    const east = ComponentDatatype.CesiumMath.negativePiToPi(
      Math.min(rectangleEast, otherRectangleEast)
    );
    if (
      (rectangle.west < rectangle.east ||
        otherRectangle.west < otherRectangle.east) &&
      east <= west
    ) {
      return undefined;
    }
    const south = Math.max(rectangle.south, otherRectangle.south);
    const north = Math.min(rectangle.north, otherRectangle.north);
    if (south >= north) {
      return undefined;
    }
    if (!defaultValue.defined(result)) {
      return new Rectangle(west, south, east, north);
    }
    result.west = west;
    result.south = south;
    result.east = east;
    result.north = north;
    return result;
  };
  /**
   * Computes a simple intersection of two rectangles.  Unlike {@link Rectangle.intersection}, this function
   * does not attempt to put the angular coordinates into a consistent range or to account for crossing the
   * anti-meridian.  As such, it can be used for rectangles where the coordinates are not simply latitude
   * and longitude (i.e. projected coordinates).
   *
   * @param {Rectangle} rectangle On rectangle to find an intersection
   * @param {Rectangle} otherRectangle Another rectangle to find an intersection
   * @param {Rectangle} [result] The object onto which to store the result.
   * @returns {Rectangle|undefined} The modified result parameter, a new Rectangle instance if none was provided or undefined if there is no intersection.
   */
  Rectangle.simpleIntersection = function (rectangle, otherRectangle, result) {
    //>>includeStart('debug', pragmas.debug);
    RuntimeError.Check.typeOf.object("rectangle", rectangle);
    RuntimeError.Check.typeOf.object("otherRectangle", otherRectangle);
    //>>includeEnd('debug');
    const west = Math.max(rectangle.west, otherRectangle.west);
    const south = Math.max(rectangle.south, otherRectangle.south);
    const east = Math.min(rectangle.east, otherRectangle.east);
    const north = Math.min(rectangle.north, otherRectangle.north);
    if (south >= north || west >= east) {
      return undefined;
    }
    if (!defaultValue.defined(result)) {
      return new Rectangle(west, south, east, north);
    }
    result.west = west;
    result.south = south;
    result.east = east;
    result.north = north;
    return result;
  };
  /**
   * Computes a rectangle that is the union of two rectangles.
   *
   * @param {Rectangle} rectangle A rectangle to enclose in rectangle.
   * @param {Rectangle} otherRectangle A rectangle to enclose in a rectangle.
   * @param {Rectangle} [result] The object onto which to store the result.
   * @returns {Rectangle} The modified result parameter or a new Rectangle instance if none was provided.
   */
  Rectangle.union = function (rectangle, otherRectangle, result) {
    //>>includeStart('debug', pragmas.debug);
    RuntimeError.Check.typeOf.object("rectangle", rectangle);
    RuntimeError.Check.typeOf.object("otherRectangle", otherRectangle);
    //>>includeEnd('debug');
    if (!defaultValue.defined(result)) {
      result = new Rectangle();
    }
    let rectangleEast = rectangle.east;
    let rectangleWest = rectangle.west;
    let otherRectangleEast = otherRectangle.east;
    let otherRectangleWest = otherRectangle.west;
    if (rectangleEast < rectangleWest && otherRectangleEast > 0.0) {
      rectangleEast += ComponentDatatype.CesiumMath.TWO_PI;
    } else if (otherRectangleEast < otherRectangleWest && rectangleEast > 0.0) {
      otherRectangleEast += ComponentDatatype.CesiumMath.TWO_PI;
    }
    if (rectangleEast < rectangleWest && otherRectangleWest < 0.0) {
      otherRectangleWest += ComponentDatatype.CesiumMath.TWO_PI;
    } else if (otherRectangleEast < otherRectangleWest && rectangleWest < 0.0) {
      rectangleWest += ComponentDatatype.CesiumMath.TWO_PI;
    }
    const west = ComponentDatatype.CesiumMath.negativePiToPi(
      Math.min(rectangleWest, otherRectangleWest)
    );
    const east = ComponentDatatype.CesiumMath.negativePiToPi(
      Math.max(rectangleEast, otherRectangleEast)
    );
    result.west = west;
    result.south = Math.min(rectangle.south, otherRectangle.south);
    result.east = east;
    result.north = Math.max(rectangle.north, otherRectangle.north);
    return result;
  };
  /**
   * Computes a rectangle by enlarging the provided rectangle until it contains the provided cartographic.
   *
   * @param {Rectangle} rectangle A rectangle to expand.
   * @param {Cartographic} cartographic A cartographic to enclose in a rectangle.
   * @param {Rectangle} [result] The object onto which to store the result.
   * @returns {Rectangle} The modified result parameter or a new Rectangle instance if one was not provided.
   */
  Rectangle.expand = function (rectangle, cartographic, result) {
    //>>includeStart('debug', pragmas.debug);
    RuntimeError.Check.typeOf.object("rectangle", rectangle);
    RuntimeError.Check.typeOf.object("cartographic", cartographic);
    //>>includeEnd('debug');
    if (!defaultValue.defined(result)) {
      result = new Rectangle();
    }
    result.west = Math.min(rectangle.west, cartographic.longitude);
    result.south = Math.min(rectangle.south, cartographic.latitude);
    result.east = Math.max(rectangle.east, cartographic.longitude);
    result.north = Math.max(rectangle.north, cartographic.latitude);
    return result;
  };
  /**
   * Returns true if the cartographic is on or inside the rectangle, false otherwise.
   *
   * @param {Rectangle} rectangle The rectangle
   * @param {Cartographic} cartographic The cartographic to test.
   * @returns {Boolean} true if the provided cartographic is inside the rectangle, false otherwise.
   */
  Rectangle.contains = function (rectangle, cartographic) {
    //>>includeStart('debug', pragmas.debug);
    RuntimeError.Check.typeOf.object("rectangle", rectangle);
    RuntimeError.Check.typeOf.object("cartographic", cartographic);
    //>>includeEnd('debug');
    let longitude = cartographic.longitude;
    const latitude = cartographic.latitude;
    const west = rectangle.west;
    let east = rectangle.east;
    if (east < west) {
      east += ComponentDatatype.CesiumMath.TWO_PI;
      if (longitude < 0.0) {
        longitude += ComponentDatatype.CesiumMath.TWO_PI;
      }
    }
    return (
      (longitude > west ||
        ComponentDatatype.CesiumMath.equalsEpsilon(longitude, west, ComponentDatatype.CesiumMath.EPSILON14)) &&
      (longitude < east ||
        ComponentDatatype.CesiumMath.equalsEpsilon(longitude, east, ComponentDatatype.CesiumMath.EPSILON14)) &&
      latitude >= rectangle.south &&
      latitude <= rectangle.north
    );
  };
  const subsampleLlaScratch = new Cartographic();
  /**
   * Samples a rectangle so that it includes a list of Cartesian points suitable for passing to
   * {@link BoundingSphere#fromPoints}.  Sampling is necessary to account
   * for rectangles that cover the poles or cross the equator.
   *
   * @param {Rectangle} rectangle The rectangle to subsample.
   * @param {Ellipsoid} [ellipsoid=Ellipsoid.WGS84] The ellipsoid to use.
   * @param {Number} [surfaceHeight=0.0] The height of the rectangle above the ellipsoid.
   * @param {Cartesian3[]} [result] The array of Cartesians onto which to store the result.
   * @returns {Cartesian3[]} The modified result parameter or a new Array of Cartesians instances if none was provided.
   */
  Rectangle.subsample = function (rectangle, ellipsoid, surfaceHeight, result) {
    //>>includeStart('debug', pragmas.debug);
    RuntimeError.Check.typeOf.object("rectangle", rectangle);
    //>>includeEnd('debug');
    ellipsoid = defaultValue.defaultValue(ellipsoid, Ellipsoid.WGS84);
    surfaceHeight = defaultValue.defaultValue(surfaceHeight, 0.0);
    if (!defaultValue.defined(result)) {
      result = [];
    }
    let length = 0;
    const north = rectangle.north;
    const south = rectangle.south;
    const east = rectangle.east;
    const west = rectangle.west;
    const lla = subsampleLlaScratch;
    lla.height = surfaceHeight;
    lla.longitude = west;
    lla.latitude = north;
    result[length] = ellipsoid.cartographicToCartesian(lla, result[length]);
    length++;
    lla.longitude = east;
    result[length] = ellipsoid.cartographicToCartesian(lla, result[length]);
    length++;
    lla.latitude = south;
    result[length] = ellipsoid.cartographicToCartesian(lla, result[length]);
    length++;
    lla.longitude = west;
    result[length] = ellipsoid.cartographicToCartesian(lla, result[length]);
    length++;
    if (north < 0.0) {
      lla.latitude = north;
    } else if (south > 0.0) {
      lla.latitude = south;
    } else {
      lla.latitude = 0.0;
    }
    for (let i = 1; i < 8; ++i) {
      lla.longitude = -Math.PI + i * ComponentDatatype.CesiumMath.PI_OVER_TWO;
      if (Rectangle.contains(rectangle, lla)) {
        result[length] = ellipsoid.cartographicToCartesian(lla, result[length]);
        length++;
      }
    }
    if (lla.latitude === 0.0) {
      lla.longitude = west;
      result[length] = ellipsoid.cartographicToCartesian(lla, result[length]);
      length++;
      lla.longitude = east;
      result[length] = ellipsoid.cartographicToCartesian(lla, result[length]);
      length++;
    }
    result.length = length;
    return result;
  };
  /**
   * Computes a subsection of a rectangle from normalized coordinates in the range [0.0, 1.0].
   *
   * @param {Rectangle} rectangle The rectangle to subsection.
   * @param {Number} westLerp The west interpolation factor in the range [0.0, 1.0]. Must be less than or equal to eastLerp.
   * @param {Number} southLerp The south interpolation factor in the range [0.0, 1.0]. Must be less than or equal to northLerp.
   * @param {Number} eastLerp The east interpolation factor in the range [0.0, 1.0]. Must be greater than or equal to westLerp.
   * @param {Number} northLerp The north interpolation factor in the range [0.0, 1.0]. Must be greater than or equal to southLerp.
   * @param {Rectangle} [result] The object onto which to store the result.
   * @returns {Rectangle} The modified result parameter or a new Rectangle instance if none was provided.
   */
  Rectangle.subsection = function (
    rectangle,
    westLerp,
    southLerp,
    eastLerp,
    northLerp,
    result
  ) {
    //>>includeStart('debug', pragmas.debug);
    RuntimeError.Check.typeOf.object("rectangle", rectangle);
    RuntimeError.Check.typeOf.number.greaterThanOrEquals("westLerp", westLerp, 0.0);
    RuntimeError.Check.typeOf.number.lessThanOrEquals("westLerp", westLerp, 1.0);
    RuntimeError.Check.typeOf.number.greaterThanOrEquals("southLerp", southLerp, 0.0);
    RuntimeError.Check.typeOf.number.lessThanOrEquals("southLerp", southLerp, 1.0);
    RuntimeError.Check.typeOf.number.greaterThanOrEquals("eastLerp", eastLerp, 0.0);
    RuntimeError.Check.typeOf.number.lessThanOrEquals("eastLerp", eastLerp, 1.0);
    RuntimeError.Check.typeOf.number.greaterThanOrEquals("northLerp", northLerp, 0.0);
    RuntimeError.Check.typeOf.number.lessThanOrEquals("northLerp", northLerp, 1.0);
    RuntimeError.Check.typeOf.number.lessThanOrEquals("westLerp", westLerp, eastLerp);
    RuntimeError.Check.typeOf.number.lessThanOrEquals("southLerp", southLerp, northLerp);
    //>>includeEnd('debug');
    if (!defaultValue.defined(result)) {
      result = new Rectangle();
    }
    // This function doesn't use CesiumMath.lerp because it has floating point precision problems
    // when the start and end values are the same but the t changes.
    if (rectangle.west <= rectangle.east) {
      const width = rectangle.east - rectangle.west;
      result.west = rectangle.west + westLerp * width;
      result.east = rectangle.west + eastLerp * width;
    } else {
      const width = ComponentDatatype.CesiumMath.TWO_PI + rectangle.east - rectangle.west;
      result.west = ComponentDatatype.CesiumMath.negativePiToPi(rectangle.west + westLerp * width);
      result.east = ComponentDatatype.CesiumMath.negativePiToPi(rectangle.west + eastLerp * width);
    }
    const height = rectangle.north - rectangle.south;
    result.south = rectangle.south + southLerp * height;
    result.north = rectangle.south + northLerp * height;
    // Fix floating point precision problems when t = 1
    if (westLerp === 1.0) {
      result.west = rectangle.east;
    }
    if (eastLerp === 1.0) {
      result.east = rectangle.east;
    }
    if (southLerp === 1.0) {
      result.south = rectangle.north;
    }
    if (northLerp === 1.0) {
      result.north = rectangle.north;
    }
    return result;
  };
  /**
   * The largest possible rectangle.
   *
   * @type {Rectangle}
   * @constant
   */
  Rectangle.MAX_VALUE = Object.freeze(
    new Rectangle(
      -Math.PI,
      -ComponentDatatype.CesiumMath.PI_OVER_TWO,
      Math.PI,
      ComponentDatatype.CesiumMath.PI_OVER_TWO
    )
  );
  /**
   * A 2D Cartesian point.
   * @alias Cartesian2
   * @constructor
   *
   * @param {Number} [x=0.0] The X component.
   * @param {Number} [y=0.0] The Y component.
   *
   * @see Cartesian3
   * @see Cartesian4
   * @see Packable
   */
  function Cartesian2(x, y) {
    /**
     * The X component.
     * @type {Number}
     * @default 0.0
     */
    this.x = defaultValue.defaultValue(x, 0.0);
    /**
     * The Y component.
     * @type {Number}
     * @default 0.0
     */
    this.y = defaultValue.defaultValue(y, 0.0);
  }
  /**
   * Creates a Cartesian2 instance from x and y coordinates.
   *
   * @param {Number} x The x coordinate.
   * @param {Number} y The y coordinate.
   * @param {Cartesian2} [result] The object onto which to store the result.
   * @returns {Cartesian2} The modified result parameter or a new Cartesian2 instance if one was not provided.
   */
  Cartesian2.fromElements = function (x, y, result) {
    if (!defaultValue.defined(result)) {
      return new Cartesian2(x, y);
    }
    result.x = x;
    result.y = y;
    return result;
  };
  /**
   * Duplicates a Cartesian2 instance.
   *
   * @param {Cartesian2} cartesian The Cartesian to duplicate.
   * @param {Cartesian2} [result] The object onto which to store the result.
   * @returns {Cartesian2} The modified result parameter or a new Cartesian2 instance if one was not provided. (Returns undefined if cartesian is undefined)
   */
  Cartesian2.clone = function (cartesian, result) {
    if (!defaultValue.defined(cartesian)) {
      return undefined;
    }
    if (!defaultValue.defined(result)) {
      return new Cartesian2(cartesian.x, cartesian.y);
    }
    result.x = cartesian.x;
    result.y = cartesian.y;
    return result;
  };
  /**
   * Creates a Cartesian2 instance from an existing Cartesian3.  This simply takes the
   * x and y properties of the Cartesian3 and drops z.
   * @function
   *
   * @param {Cartesian3} cartesian The Cartesian3 instance to create a Cartesian2 instance from.
   * @param {Cartesian2} [result] The object onto which to store the result.
   * @returns {Cartesian2} The modified result parameter or a new Cartesian2 instance if one was not provided.
   */
  Cartesian2.fromCartesian3 = Cartesian2.clone;
  /**
   * Creates a Cartesian2 instance from an existing Cartesian4.  This simply takes the
   * x and y properties of the Cartesian4 and drops z and w.
   * @function
   *
   * @param {Cartesian4} cartesian The Cartesian4 instance to create a Cartesian2 instance from.
   * @param {Cartesian2} [result] The object onto which to store the result.
   * @returns {Cartesian2} The modified result parameter or a new Cartesian2 instance if one was not provided.
   */
  Cartesian2.fromCartesian4 = Cartesian2.clone;
  /**
   * The number of elements used to pack the object into an array.
   * @type {Number}
   */
  Cartesian2.packedLength = 2;
  /**
   * Stores the provided instance into the provided array.
   *
   * @param {Cartesian2} value The value to pack.
   * @param {Number[]} array The array to pack into.
   * @param {Number} [startingIndex=0] The index into the array at which to start packing the elements.
   *
   * @returns {Number[]} The array that was packed into
   */
  Cartesian2.pack = function (value, array, startingIndex) {
    //>>includeStart('debug', pragmas.debug);
    RuntimeError.Check.typeOf.object("value", value);
    RuntimeError.Check.defined("array", array);
    //>>includeEnd('debug');
    startingIndex = defaultValue.defaultValue(startingIndex, 0);
    array[startingIndex++] = value.x;
    array[startingIndex] = value.y;
    return array;
  };
  /**
   * Retrieves an instance from a packed array.
   *
   * @param {Number[]} array The packed array.
   * @param {Number} [startingIndex=0] The starting index of the element to be unpacked.
   * @param {Cartesian2} [result] The object into which to store the result.
   * @returns {Cartesian2} The modified result parameter or a new Cartesian2 instance if one was not provided.
   */
  Cartesian2.unpack = function (array, startingIndex, result) {
    //>>includeStart('debug', pragmas.debug);
    RuntimeError.Check.defined("array", array);
    //>>includeEnd('debug');
    startingIndex = defaultValue.defaultValue(startingIndex, 0);
    if (!defaultValue.defined(result)) {
      result = new Cartesian2();
    }
    result.x = array[startingIndex++];
    result.y = array[startingIndex];
    return result;
  };
  /**
   * Flattens an array of Cartesian2s into an array of components.
   *
   * @param {Cartesian2[]} array The array of cartesians to pack.
   * @param {Number[]} [result] The array onto which to store the result. If this is a typed array, it must have array.length * 2 components, else a {@link DeveloperError} will be thrown. If it is a regular array, it will be resized to have (array.length * 2) elements.
   * @returns {Number[]} The packed array.
   */
  Cartesian2.packArray = function (array, result) {
    //>>includeStart('debug', pragmas.debug);
    RuntimeError.Check.defined("array", array);
    //>>includeEnd('debug');
    const length = array.length;
    const resultLength = length * 2;
    if (!defaultValue.defined(result)) {
      result = new Array(resultLength);
    } else if (!Array.isArray(result) && result.length !== resultLength) {
      //>>includeStart('debug', pragmas.debug);
      throw new RuntimeError.DeveloperError(
        "If result is a typed array, it must have exactly array.length * 2 elements"
      );
      //>>includeEnd('debug');
    } else if (result.length !== resultLength) {
      result.length = resultLength;
    }
    for (let i = 0; i < length; ++i) {
      Cartesian2.pack(array[i], result, i * 2);
    }
    return result;
  };
  /**
   * Unpacks an array of cartesian components into an array of Cartesian2s.
   *
   * @param {Number[]} array The array of components to unpack.
   * @param {Cartesian2[]} [result] The array onto which to store the result.
   * @returns {Cartesian2[]} The unpacked array.
   */
  Cartesian2.unpackArray = function (array, result) {
    //>>includeStart('debug', pragmas.debug);
    RuntimeError.Check.defined("array", array);
    RuntimeError.Check.typeOf.number.greaterThanOrEquals("array.length", array.length, 2);
    if (array.length % 2 !== 0) {
      throw new RuntimeError.DeveloperError("array length must be a multiple of 2.");
    }
    //>>includeEnd('debug');
    const length = array.length;
    if (!defaultValue.defined(result)) {
      result = new Array(length / 2);
    } else {
      result.length = length / 2;
    }
    for (let i = 0; i < length; i += 2) {
      const index = i / 2;
      result[index] = Cartesian2.unpack(array, i, result[index]);
    }
    return result;
  };
  /**
   * Creates a Cartesian2 from two consecutive elements in an array.
   * @function
   *
   * @param {Number[]} array The array whose two consecutive elements correspond to the x and y components, respectively.
   * @param {Number} [startingIndex=0] The offset into the array of the first element, which corresponds to the x component.
   * @param {Cartesian2} [result] The object onto which to store the result.
   * @returns {Cartesian2} The modified result parameter or a new Cartesian2 instance if one was not provided.
   *
   * @example
   * // Create a Cartesian2 with (1.0, 2.0)
   * const v = [1.0, 2.0];
   * const p = Cesium.Cartesian2.fromArray(v);
   *
   * // Create a Cartesian2 with (1.0, 2.0) using an offset into an array
   * const v2 = [0.0, 0.0, 1.0, 2.0];
   * const p2 = Cesium.Cartesian2.fromArray(v2, 2);
   */
  Cartesian2.fromArray = Cartesian2.unpack;
  /**
   * Computes the value of the maximum component for the supplied Cartesian.
   *
   * @param {Cartesian2} cartesian The cartesian to use.
   * @returns {Number} The value of the maximum component.
   */
  Cartesian2.maximumComponent = function (cartesian) {
    //>>includeStart('debug', pragmas.debug);
    RuntimeError.Check.typeOf.object("cartesian", cartesian);
    //>>includeEnd('debug');
    return Math.max(cartesian.x, cartesian.y);
  };
  /**
   * Computes the value of the minimum component for the supplied Cartesian.
   *
   * @param {Cartesian2} cartesian The cartesian to use.
   * @returns {Number} The value of the minimum component.
   */
  Cartesian2.minimumComponent = function (cartesian) {
    //>>includeStart('debug', pragmas.debug);
    RuntimeError.Check.typeOf.object("cartesian", cartesian);
    //>>includeEnd('debug');
    return Math.min(cartesian.x, cartesian.y);
  };
  /**
   * Compares two Cartesians and computes a Cartesian which contains the minimum components of the supplied Cartesians.
   *
   * @param {Cartesian2} first A cartesian to compare.
   * @param {Cartesian2} second A cartesian to compare.
   * @param {Cartesian2} result The object into which to store the result.
   * @returns {Cartesian2} A cartesian with the minimum components.
   */
  Cartesian2.minimumByComponent = function (first, second, result) {
    //>>includeStart('debug', pragmas.debug);
    RuntimeError.Check.typeOf.object("first", first);
    RuntimeError.Check.typeOf.object("second", second);
    RuntimeError.Check.typeOf.object("result", result);
    //>>includeEnd('debug');
    result.x = Math.min(first.x, second.x);
    result.y = Math.min(first.y, second.y);
    return result;
  };
  /**
   * Compares two Cartesians and computes a Cartesian which contains the maximum components of the supplied Cartesians.
   *
   * @param {Cartesian2} first A cartesian to compare.
   * @param {Cartesian2} second A cartesian to compare.
   * @param {Cartesian2} result The object into which to store the result.
   * @returns {Cartesian2} A cartesian with the maximum components.
   */
  Cartesian2.maximumByComponent = function (first, second, result) {
    //>>includeStart('debug', pragmas.debug);
    RuntimeError.Check.typeOf.object("first", first);
    RuntimeError.Check.typeOf.object("second", second);
    RuntimeError.Check.typeOf.object("result", result);
    //>>includeEnd('debug');
    result.x = Math.max(first.x, second.x);
    result.y = Math.max(first.y, second.y);
    return result;
  };
  /**
   * Constrain a value to lie between two values.
   *
   * @param {Cartesian2} value The value to clamp.
   * @param {Cartesian2} min The minimum bound.
   * @param {Cartesian2} max The maximum bound.
   * @param {Cartesian2} result The object into which to store the result.
   * @returns {Cartesian2} The clamped value such that min <= result <= max.
   */
  Cartesian2.clamp = function (value, min, max, result) {
    //>>includeStart('debug', pragmas.debug);
    RuntimeError.Check.typeOf.object("value", value);
    RuntimeError.Check.typeOf.object("min", min);
    RuntimeError.Check.typeOf.object("max", max);
    RuntimeError.Check.typeOf.object("result", result);
    //>>includeEnd('debug');
    const x = ComponentDatatype.CesiumMath.clamp(value.x, min.x, max.x);
    const y = ComponentDatatype.CesiumMath.clamp(value.y, min.y, max.y);
    result.x = x;
    result.y = y;
    return result;
  };
  /**
   * Computes the provided Cartesian's squared magnitude.
   *
   * @param {Cartesian2} cartesian The Cartesian instance whose squared magnitude is to be computed.
   * @returns {Number} The squared magnitude.
   */
  Cartesian2.magnitudeSquared = function (cartesian) {
    //>>includeStart('debug', pragmas.debug);
    RuntimeError.Check.typeOf.object("cartesian", cartesian);
    //>>includeEnd('debug');
    return cartesian.x * cartesian.x + cartesian.y * cartesian.y;
  };
  /**
   * Computes the Cartesian's magnitude (length).
   *
   * @param {Cartesian2} cartesian The Cartesian instance whose magnitude is to be computed.
   * @returns {Number} The magnitude.
   */
  Cartesian2.magnitude = function (cartesian) {
    return Math.sqrt(Cartesian2.magnitudeSquared(cartesian));
  };
  const distanceScratch = new Cartesian2();
  /**
   * Computes the distance between two points.
   *
   * @param {Cartesian2} left The first point to compute the distance from.
   * @param {Cartesian2} right The second point to compute the distance to.
   * @returns {Number} The distance between two points.
   *
   * @example
   * // Returns 1.0
   * const d = Cesium.Cartesian2.distance(new Cesium.Cartesian2(1.0, 0.0), new Cesium.Cartesian2(2.0, 0.0));
   */
  Cartesian2.distance = function (left, right) {
    //>>includeStart('debug', pragmas.debug);
    RuntimeError.Check.typeOf.object("left", left);
    RuntimeError.Check.typeOf.object("right", right);
    //>>includeEnd('debug');
    Cartesian2.subtract(left, right, distanceScratch);
    return Cartesian2.magnitude(distanceScratch);
  };
  /**
   * Computes the squared distance between two points.  Comparing squared distances
   * using this function is more efficient than comparing distances using {@link Cartesian2#distance}.
   *
   * @param {Cartesian2} left The first point to compute the distance from.
   * @param {Cartesian2} right The second point to compute the distance to.
   * @returns {Number} The distance between two points.
   *
   * @example
   * // Returns 4.0, not 2.0
   * const d = Cesium.Cartesian2.distance(new Cesium.Cartesian2(1.0, 0.0), new Cesium.Cartesian2(3.0, 0.0));
   */
  Cartesian2.distanceSquared = function (left, right) {
    //>>includeStart('debug', pragmas.debug);
    RuntimeError.Check.typeOf.object("left", left);
    RuntimeError.Check.typeOf.object("right", right);
    //>>includeEnd('debug');
    Cartesian2.subtract(left, right, distanceScratch);
    return Cartesian2.magnitudeSquared(distanceScratch);
  };
  /**
   * Computes the normalized form of the supplied Cartesian.
   *
   * @param {Cartesian2} cartesian The Cartesian to be normalized.
   * @param {Cartesian2} result The object onto which to store the result.
   * @returns {Cartesian2} The modified result parameter.
   */
  Cartesian2.normalize = function (cartesian, result) {
    //>>includeStart('debug', pragmas.debug);
    RuntimeError.Check.typeOf.object("cartesian", cartesian);
    RuntimeError.Check.typeOf.object("result", result);
    //>>includeEnd('debug');
    const magnitude = Cartesian2.magnitude(cartesian);
    result.x = cartesian.x / magnitude;
    result.y = cartesian.y / magnitude;
    //>>includeStart('debug', pragmas.debug);
    if (isNaN(result.x) || isNaN(result.y)) {
      throw new RuntimeError.DeveloperError("normalized result is not a number");
    }
    //>>includeEnd('debug');
    return result;
  };
  /**
   * Computes the dot (scalar) product of two Cartesians.
   *
   * @param {Cartesian2} left The first Cartesian.
   * @param {Cartesian2} right The second Cartesian.
   * @returns {Number} The dot product.
   */
  Cartesian2.dot = function (left, right) {
    //>>includeStart('debug', pragmas.debug);
    RuntimeError.Check.typeOf.object("left", left);
    RuntimeError.Check.typeOf.object("right", right);
    //>>includeEnd('debug');
    return left.x * right.x + left.y * right.y;
  };
  /**
   * Computes the magnitude of the cross product that would result from implicitly setting the Z coordinate of the input vectors to 0
   *
   * @param {Cartesian2} left The first Cartesian.
   * @param {Cartesian2} right The second Cartesian.
   * @returns {Number} The cross product.
   */
  Cartesian2.cross = function (left, right) {
    //>>includeStart('debug', pragmas.debug);
    RuntimeError.Check.typeOf.object("left", left);
    RuntimeError.Check.typeOf.object("right", right);
    //>>includeEnd('debug');
    return left.x * right.y - left.y * right.x;
  };
  /**
   * Computes the componentwise product of two Cartesians.
   *
   * @param {Cartesian2} left The first Cartesian.
   * @param {Cartesian2} right The second Cartesian.
   * @param {Cartesian2} result The object onto which to store the result.
   * @returns {Cartesian2} The modified result parameter.
   */
  Cartesian2.multiplyComponents = function (left, right, result) {
    //>>includeStart('debug', pragmas.debug);
    RuntimeError.Check.typeOf.object("left", left);
    RuntimeError.Check.typeOf.object("right", right);
    RuntimeError.Check.typeOf.object("result", result);
    //>>includeEnd('debug');
    result.x = left.x * right.x;
    result.y = left.y * right.y;
    return result;
  };
  /**
   * Computes the componentwise quotient of two Cartesians.
   *
   * @param {Cartesian2} left The first Cartesian.
   * @param {Cartesian2} right The second Cartesian.
   * @param {Cartesian2} result The object onto which to store the result.
   * @returns {Cartesian2} The modified result parameter.
   */
  Cartesian2.divideComponents = function (left, right, result) {
    //>>includeStart('debug', pragmas.debug);
    RuntimeError.Check.typeOf.object("left", left);
    RuntimeError.Check.typeOf.object("right", right);
    RuntimeError.Check.typeOf.object("result", result);
    //>>includeEnd('debug');
    result.x = left.x / right.x;
    result.y = left.y / right.y;
    return result;
  };
  /**
   * Computes the componentwise sum of two Cartesians.
   *
   * @param {Cartesian2} left The first Cartesian.
   * @param {Cartesian2} right The second Cartesian.
   * @param {Cartesian2} result The object onto which to store the result.
   * @returns {Cartesian2} The modified result parameter.
   */
  Cartesian2.add = function (left, right, result) {
    //>>includeStart('debug', pragmas.debug);
    RuntimeError.Check.typeOf.object("left", left);
    RuntimeError.Check.typeOf.object("right", right);
    RuntimeError.Check.typeOf.object("result", result);
    //>>includeEnd('debug');
    result.x = left.x + right.x;
    result.y = left.y + right.y;
    return result;
  };
  /**
   * Computes the componentwise difference of two Cartesians.
   *
   * @param {Cartesian2} left The first Cartesian.
   * @param {Cartesian2} right The second Cartesian.
   * @param {Cartesian2} result The object onto which to store the result.
   * @returns {Cartesian2} The modified result parameter.
   */
  Cartesian2.subtract = function (left, right, result) {
    //>>includeStart('debug', pragmas.debug);
    RuntimeError.Check.typeOf.object("left", left);
    RuntimeError.Check.typeOf.object("right", right);
    RuntimeError.Check.typeOf.object("result", result);
    //>>includeEnd('debug');
    result.x = left.x - right.x;
    result.y = left.y - right.y;
    return result;
  };
  /**
   * Multiplies the provided Cartesian componentwise by the provided scalar.
   *
   * @param {Cartesian2} cartesian The Cartesian to be scaled.
   * @param {Number} scalar The scalar to multiply with.
   * @param {Cartesian2} result The object onto which to store the result.
   * @returns {Cartesian2} The modified result parameter.
   */
  Cartesian2.multiplyByScalar = function (cartesian, scalar, result) {
    //>>includeStart('debug', pragmas.debug);
    RuntimeError.Check.typeOf.object("cartesian", cartesian);
    RuntimeError.Check.typeOf.number("scalar", scalar);
    RuntimeError.Check.typeOf.object("result", result);
    //>>includeEnd('debug');
    result.x = cartesian.x * scalar;
    result.y = cartesian.y * scalar;
    return result;
  };
  /**
   * Divides the provided Cartesian componentwise by the provided scalar.
   *
   * @param {Cartesian2} cartesian The Cartesian to be divided.
   * @param {Number} scalar The scalar to divide by.
   * @param {Cartesian2} result The object onto which to store the result.
   * @returns {Cartesian2} The modified result parameter.
   */
  Cartesian2.divideByScalar = function (cartesian, scalar, result) {
    //>>includeStart('debug', pragmas.debug);
    RuntimeError.Check.typeOf.object("cartesian", cartesian);
    RuntimeError.Check.typeOf.number("scalar", scalar);
    RuntimeError.Check.typeOf.object("result", result);
    //>>includeEnd('debug');
    result.x = cartesian.x / scalar;
    result.y = cartesian.y / scalar;
    return result;
  };
  /**
   * Negates the provided Cartesian.
   *
   * @param {Cartesian2} cartesian The Cartesian to be negated.
   * @param {Cartesian2} result The object onto which to store the result.
   * @returns {Cartesian2} The modified result parameter.
   */
  Cartesian2.negate = function (cartesian, result) {
    //>>includeStart('debug', pragmas.debug);
    RuntimeError.Check.typeOf.object("cartesian", cartesian);
    RuntimeError.Check.typeOf.object("result", result);
    //>>includeEnd('debug');
    result.x = -cartesian.x;
    result.y = -cartesian.y;
    return result;
  };
  /**
   * Computes the absolute value of the provided Cartesian.
   *
   * @param {Cartesian2} cartesian The Cartesian whose absolute value is to be computed.
   * @param {Cartesian2} result The object onto which to store the result.
   * @returns {Cartesian2} The modified result parameter.
   */
  Cartesian2.abs = function (cartesian, result) {
    //>>includeStart('debug', pragmas.debug);
    RuntimeError.Check.typeOf.object("cartesian", cartesian);
    RuntimeError.Check.typeOf.object("result", result);
    //>>includeEnd('debug');
    result.x = Math.abs(cartesian.x);
    result.y = Math.abs(cartesian.y);
    return result;
  };
  const lerpScratch = new Cartesian2();
  /**
   * Computes the linear interpolation or extrapolation at t using the provided cartesians.
   *
   * @param {Cartesian2} start The value corresponding to t at 0.0.
   * @param {Cartesian2} end The value corresponding to t at 1.0.
   * @param {Number} t The point along t at which to interpolate.
   * @param {Cartesian2} result The object onto which to store the result.
   * @returns {Cartesian2} The modified result parameter.
   */
  Cartesian2.lerp = function (start, end, t, result) {
    //>>includeStart('debug', pragmas.debug);
    RuntimeError.Check.typeOf.object("start", start);
    RuntimeError.Check.typeOf.object("end", end);
    RuntimeError.Check.typeOf.number("t", t);
    RuntimeError.Check.typeOf.object("result", result);
    //>>includeEnd('debug');
    Cartesian2.multiplyByScalar(end, t, lerpScratch);
    result = Cartesian2.multiplyByScalar(start, 1.0 - t, result);
    return Cartesian2.add(lerpScratch, result, result);
  };
  const angleBetweenScratch = new Cartesian2();
  const angleBetweenScratch2 = new Cartesian2();
  /**
   * Returns the angle, in radians, between the provided Cartesians.
   *
   * @param {Cartesian2} left The first Cartesian.
   * @param {Cartesian2} right The second Cartesian.
   * @returns {Number} The angle between the Cartesians.
   */
  Cartesian2.angleBetween = function (left, right) {
    //>>includeStart('debug', pragmas.debug);
    RuntimeError.Check.typeOf.object("left", left);
    RuntimeError.Check.typeOf.object("right", right);
    //>>includeEnd('debug');
    Cartesian2.normalize(left, angleBetweenScratch);
    Cartesian2.normalize(right, angleBetweenScratch2);
    return ComponentDatatype.CesiumMath.acosClamped(
      Cartesian2.dot(angleBetweenScratch, angleBetweenScratch2)
    );
  };
  const mostOrthogonalAxisScratch = new Cartesian2();
  /**
   * Returns the axis that is most orthogonal to the provided Cartesian.
   *
   * @param {Cartesian2} cartesian The Cartesian on which to find the most orthogonal axis.
   * @param {Cartesian2} result The object onto which to store the result.
   * @returns {Cartesian2} The most orthogonal axis.
   */
  Cartesian2.mostOrthogonalAxis = function (cartesian, result) {
    //>>includeStart('debug', pragmas.debug);
    RuntimeError.Check.typeOf.object("cartesian", cartesian);
    RuntimeError.Check.typeOf.object("result", result);
    //>>includeEnd('debug');
    const f = Cartesian2.normalize(cartesian, mostOrthogonalAxisScratch);
    Cartesian2.abs(f, f);
    if (f.x <= f.y) {
      result = Cartesian2.clone(Cartesian2.UNIT_X, result);
    } else {
      result = Cartesian2.clone(Cartesian2.UNIT_Y, result);
    }
    return result;
  };
  /**
   * Compares the provided Cartesians componentwise and returns
   * true if they are equal, false otherwise.
   *
   * @param {Cartesian2} [left] The first Cartesian.
   * @param {Cartesian2} [right] The second Cartesian.
   * @returns {Boolean} true if left and right are equal, false otherwise.
   */
  Cartesian2.equals = function (left, right) {
    return (
      left === right ||
      (defaultValue.defined(left) &&
        defaultValue.defined(right) &&
        left.x === right.x &&
        left.y === right.y)
    );
  };
  /**
   * @private
   */
  Cartesian2.equalsArray = function (cartesian, array, offset) {
    return cartesian.x === array[offset] && cartesian.y === array[offset + 1];
  };
  /**
   * Compares the provided Cartesians componentwise and returns
   * true if they pass an absolute or relative tolerance test,
   * false otherwise.
   *
   * @param {Cartesian2} [left] The first Cartesian.
   * @param {Cartesian2} [right] The second Cartesian.
   * @param {Number} [relativeEpsilon=0] The relative epsilon tolerance to use for equality testing.
   * @param {Number} [absoluteEpsilon=relativeEpsilon] The absolute epsilon tolerance to use for equality testing.
   * @returns {Boolean} true if left and right are within the provided epsilon, false otherwise.
   */
  Cartesian2.equalsEpsilon = function (
    left,
    right,
    relativeEpsilon,
    absoluteEpsilon
  ) {
    return (
      left === right ||
      (defaultValue.defined(left) &&
        defaultValue.defined(right) &&
        ComponentDatatype.CesiumMath.equalsEpsilon(
          left.x,
          right.x,
          relativeEpsilon,
          absoluteEpsilon
        ) &&
        ComponentDatatype.CesiumMath.equalsEpsilon(
          left.y,
          right.y,
          relativeEpsilon,
          absoluteEpsilon
        ))
    );
  };
  /**
   * An immutable Cartesian2 instance initialized to (0.0, 0.0).
   *
   * @type {Cartesian2}
   * @constant
   */
  Cartesian2.ZERO = Object.freeze(new Cartesian2(0.0, 0.0));
  /**
   * An immutable Cartesian2 instance initialized to (1.0, 1.0).
   *
   * @type {Cartesian2}
   * @constant
   */
  Cartesian2.ONE = Object.freeze(new Cartesian2(1.0, 1.0));
  /**
   * An immutable Cartesian2 instance initialized to (1.0, 0.0).
   *
   * @type {Cartesian2}
   * @constant
   */
  Cartesian2.UNIT_X = Object.freeze(new Cartesian2(1.0, 0.0));
  /**
   * An immutable Cartesian2 instance initialized to (0.0, 1.0).
   *
   * @type {Cartesian2}
   * @constant
   */
  Cartesian2.UNIT_Y = Object.freeze(new Cartesian2(0.0, 1.0));
  /**
   * Duplicates this Cartesian2 instance.
   *
   * @param {Cartesian2} [result] The object onto which to store the result.
   * @returns {Cartesian2} The modified result parameter or a new Cartesian2 instance if one was not provided.
   */
  Cartesian2.prototype.clone = function (result) {
    return Cartesian2.clone(this, result);
  };
  /**
   * Compares this Cartesian against the provided Cartesian componentwise and returns
   * true if they are equal, false otherwise.
   *
   * @param {Cartesian2} [right] The right hand side Cartesian.
   * @returns {Boolean} true if they are equal, false otherwise.
   */
  Cartesian2.prototype.equals = function (right) {
    return Cartesian2.equals(this, right);
  };
  /**
   * Compares this Cartesian against the provided Cartesian componentwise and returns
   * true if they pass an absolute or relative tolerance test,
   * false otherwise.
   *
   * @param {Cartesian2} [right] The right hand side Cartesian.
   * @param {Number} [relativeEpsilon=0] The relative epsilon tolerance to use for equality testing.
   * @param {Number} [absoluteEpsilon=relativeEpsilon] The absolute epsilon tolerance to use for equality testing.
   * @returns {Boolean} true if they are within the provided epsilon, false otherwise.
   */
  Cartesian2.prototype.equalsEpsilon = function (
    right,
    relativeEpsilon,
    absoluteEpsilon
  ) {
    return Cartesian2.equalsEpsilon(
      this,
      right,
      relativeEpsilon,
      absoluteEpsilon
    );
  };
  /**
   * Creates a string representing this Cartesian in the format '(x, y)'.
   *
   * @returns {String} A string representing the provided Cartesian in the format '(x, y)'.
   */
  Cartesian2.prototype.toString = function () {
    return `(${this.x}, ${this.y})`;
  };
  /**
   * A 2x2 matrix, indexable as a column-major order array.
   * Constructor parameters are in row-major order for code readability.
   * @alias Matrix2
   * @constructor
   * @implements {ArrayLiketrue if they are equal, false otherwise.
   *
   * @param {Matrix2} [left] The first matrix.
   * @param {Matrix2} [right] The second matrix.
   * @returns {Boolean} true if left and right are equal, false otherwise.
   */
  Matrix2.equals = function (left, right) {
    return (
      left === right ||
      (defaultValue.defined(left) &&
        defaultValue.defined(right) &&
        left[0] === right[0] &&
        left[1] === right[1] &&
        left[2] === right[2] &&
        left[3] === right[3])
    );
  };
  /**
   * @private
   */
  Matrix2.equalsArray = function (matrix, array, offset) {
    return (
      matrix[0] === array[offset] &&
      matrix[1] === array[offset + 1] &&
      matrix[2] === array[offset + 2] &&
      matrix[3] === array[offset + 3]
    );
  };
  /**
   * Compares the provided matrices componentwise and returns
   * true if they are within the provided epsilon,
   * false otherwise.
   *
   * @param {Matrix2} [left] The first matrix.
   * @param {Matrix2} [right] The second matrix.
   * @param {Number} [epsilon=0] The epsilon to use for equality testing.
   * @returns {Boolean} true if left and right are within the provided epsilon, false otherwise.
   */
  Matrix2.equalsEpsilon = function (left, right, epsilon) {
    epsilon = defaultValue.defaultValue(epsilon, 0);
    return (
      left === right ||
      (defaultValue.defined(left) &&
        defaultValue.defined(right) &&
        Math.abs(left[0] - right[0]) <= epsilon &&
        Math.abs(left[1] - right[1]) <= epsilon &&
        Math.abs(left[2] - right[2]) <= epsilon &&
        Math.abs(left[3] - right[3]) <= epsilon)
    );
  };
  /**
   * An immutable Matrix2 instance initialized to the identity matrix.
   *
   * @type {Matrix2}
   * @constant
   */
  Matrix2.IDENTITY = Object.freeze(new Matrix2(1.0, 0.0, 0.0, 1.0));
  /**
   * An immutable Matrix2 instance initialized to the zero matrix.
   *
   * @type {Matrix2}
   * @constant
   */
  Matrix2.ZERO = Object.freeze(new Matrix2(0.0, 0.0, 0.0, 0.0));
  /**
   * The index into Matrix2 for column 0, row 0.
   *
   * @type {Number}
   * @constant
   *
   * @example
   * const matrix = new Cesium.Matrix2();
   * matrix[Cesium.Matrix2.COLUMN0ROW0] = 5.0; // set column 0, row 0 to 5.0
   */
  Matrix2.COLUMN0ROW0 = 0;
  /**
   * The index into Matrix2 for column 0, row 1.
   *
   * @type {Number}
   * @constant
   *
   * @example
   * const matrix = new Cesium.Matrix2();
   * matrix[Cesium.Matrix2.COLUMN0ROW1] = 5.0; // set column 0, row 1 to 5.0
   */
  Matrix2.COLUMN0ROW1 = 1;
  /**
   * The index into Matrix2 for column 1, row 0.
   *
   * @type {Number}
   * @constant
   *
   * @example
   * const matrix = new Cesium.Matrix2();
   * matrix[Cesium.Matrix2.COLUMN1ROW0] = 5.0; // set column 1, row 0 to 5.0
   */
  Matrix2.COLUMN1ROW0 = 2;
  /**
   * The index into Matrix2 for column 1, row 1.
   *
   * @type {Number}
   * @constant
   *
   * @example
   * const matrix = new Cesium.Matrix2();
   * matrix[Cesium.Matrix2.COLUMN1ROW1] = 5.0; // set column 1, row 1 to 5.0
   */
  Matrix2.COLUMN1ROW1 = 3;
  Object.defineProperties(Matrix2.prototype, {
    /**
     * Gets the number of items in the collection.
     * @memberof Matrix2.prototype
     *
     * @type {Number}
     */
    length: {
      get: function () {
        return Matrix2.packedLength;
      },
    },
  });
  /**
   * Duplicates the provided Matrix2 instance.
   *
   * @param {Matrix2} [result] The object onto which to store the result.
   * @returns {Matrix2} The modified result parameter or a new Matrix2 instance if one was not provided.
   */
  Matrix2.prototype.clone = function (result) {
    return Matrix2.clone(this, result);
  };
  /**
   * Compares this matrix to the provided matrix componentwise and returns
   * true if they are equal, false otherwise.
   *
   * @param {Matrix2} [right] The right hand side matrix.
   * @returns {Boolean} true if they are equal, false otherwise.
   */
  Matrix2.prototype.equals = function (right) {
    return Matrix2.equals(this, right);
  };
  /**
   * Compares this matrix to the provided matrix componentwise and returns
   * true if they are within the provided epsilon,
   * false otherwise.
   *
   * @param {Matrix2} [right] The right hand side matrix.
   * @param {Number} [epsilon=0] The epsilon to use for equality testing.
   * @returns {Boolean} true if they are within the provided epsilon, false otherwise.
   */
  Matrix2.prototype.equalsEpsilon = function (right, epsilon) {
    return Matrix2.equalsEpsilon(this, right, epsilon);
  };
  /**
   * Creates a string representing this Matrix with each row being
   * on a separate line and in the format '(column0, column1)'.
   *
   * @returns {String} A string representing the provided Matrix with each row being on a separate line and in the format '(column0, column1)'.
   */
  Matrix2.prototype.toString = function () {
    return `(${this[0]}, ${this[2]})\n` + `(${this[1]}, ${this[3]})`;
  };
  exports.Cartesian2 = Cartesian2;
  exports.Cartesian3 = Cartesian3;
  exports.Cartesian4 = Cartesian4;
  exports.Cartographic = Cartographic;
  exports.Ellipsoid = Ellipsoid;
  exports.Matrix2 = Matrix2;
  exports.Matrix3 = Matrix3;
  exports.Matrix4 = Matrix4;
  exports.Rectangle = Rectangle;
}));
//# sourceMappingURL=Matrix2-d35cf4b5.js.map