/* All material copyright ESRI, All Rights Reserved, unless otherwise specified. See https://js.arcgis.com/4.24/esri/copyright.txt for details. */ import{c as t}from"./mat3f64.js";import{RayMarchingSteps as e}from"../views/3d/environment/CloudsTechniqueConfiguration.js";import{ATLAS_SIZE as a,TILE_ROWS as o,TILE_SIZE as i,TEXTURE_SCALE as n,WEATHER_MAP_SCALE as r}from"../views/3d/environment/NoiseTextureAtlasDimensions.js";import{ScreenSpacePass as s}from"../views/3d/webgl-engine/core/shaderLibrary/ScreenSpacePass.js";import{FloatUniform as l}from"../views/3d/webgl-engine/core/shaderModules/FloatUniform.js";import{NoParameters as c,glsl as d}from"../views/3d/webgl-engine/core/shaderModules/interfaces.js";import{Matrix3DrawUniform as u}from"../views/3d/webgl-engine/core/shaderModules/Matrix3DrawUniform.js";import{ShaderBuilder as f}from"../views/3d/webgl-engine/core/shaderModules/ShaderBuilder.js";import{Texture2DUniform as m}from"../views/3d/webgl-engine/core/shaderModules/Texture2DUniform.js";class p extends c{constructor(){super(...arguments),this.viewMatrix=t()}}function g(t){const c=new f;return c.include(s,!1),c.fragment.uniforms.add(new l("cloudRadius")),c.fragment.uniforms.add(new l("halfCubeMapSize")),c.fragment.uniforms.add(new l("power")),c.fragment.uniforms.add(new l("sigmaE")),c.fragment.uniforms.add(new l("density")),c.fragment.uniforms.add(new l("cloudSize")),c.fragment.uniforms.add(new l("detailSize")),c.fragment.uniforms.add(new l("smoothness")),c.fragment.uniforms.add(new l("cloudHeight")),c.fragment.uniforms.add(new l("coverage")),c.fragment.uniforms.add(new u("view",(t=>t.viewMatrix))),c.fragment.uniforms.add(new m("cloudShapeTexture")),c.fragment.code.add(d` const int STEPS = ${t.steps===e.SIXTEEN?d`16`:t.steps===e.HUNDRED?d`100`:d`200`}; const int STEPS_LIGHT = 6; const float stepL = 300.0 / float(STEPS_LIGHT); const float cloudStart = 1500.0; vec3 rayDirection(vec2 fragCoord) { vec2 xy = fragCoord - halfCubeMapSize; return normalize(vec3(-xy, -halfCubeMapSize)); } float remap(float x, float low1, float high1, float low2, float high2) { return low2 + (x - low1) * (high2 - low2) / (high1 - low1); } float saturate(float x) { return clamp(x, 0.0, 1.0); }`),c.fragment.code.add(d` float getCloudShape(vec3 pos, float pOffset) { const float textureWidth = ${d.float(a)}; const float dataWidth = ${d.float(a)}; const float tileRows = ${d.float(o)}; const vec3 atlasDimensions = vec3(${d.float(i)}, ${d.float(i)}, tileRows * tileRows); //Change from Y being height to Z being height vec3 p = float(${d.float(n)}) * pos.xzy; //Pixel coordinates of point in the 3D data vec3 coord = vec3(mod(p - pOffset * atlasDimensions, atlasDimensions)); float f = fract(coord.z); float level = floor(coord.z); float tileY = floor(level / tileRows); float tileX = level - tileY * tileRows; //The data coordinates are offset by the x and y tile, the two boundary cells between each tile pair and the initial boundary cell on the first row/column vec2 offset = atlasDimensions.x * vec2(tileX, tileY) + 2.0 * vec2(tileX, tileY) + 1.0; vec2 pixel = coord.xy + offset; vec2 data = texture2D(cloudShapeTexture, mod(pixel, dataWidth) / textureWidth).xy; return 1.0 - mix(data.x, data.y, f); } float getCloudMap(vec2 p){ // Non-power-of-two textures can't be tiled using WebGL1 // Get fractional part of uv to tile // Shift the texture center to origin to avoid seam artifacts vec2 uv = fract((${d.float(r)} * p) / ${d.float(a)} + 0.5); return texture2D(cloudShapeTexture, uv).a; } `),c.fragment.code.add(d`float clouds(vec3 p) { float cloud = saturate(0.5 * mix(0.0, 1.0, min(2.0 * coverage, 1.0))); if (cloud <= 0.0) { return 0.0; } float cloudMap = getCloudMap(cloudSize * p.xy); cloud = mix(cloud, min(2.0 * (coverage), 1.0) * cloudMap, min(2.0 * (1.0 - coverage), 1.0)); if (cloud <= 0.0) { return 0.0; } float shape = getCloudShape(8.0 * cloudSize * p, 0.0); cloud = saturate(remap(cloud, smoothness * shape, 1.0, 0.0, 1.0)); if (cloud <= 0.0) { return 0.0; } float heightFraction = saturate((length(p) - cloudRadius - cloudStart) / cloudHeight); cloud *= saturate(remap(heightFraction, 0.0, 0.25, 0.0, 1.0)) * smoothstep(1.0, 0.25, heightFraction); if (cloud <= 0.0) { return 0.0; } return density * saturate(remap(cloud, 0.35 * smoothness * getCloudShape(detailSize * p, 0.0), 1.0, 0.0, 1.0)); }`),c.fragment.code.add(d`vec2 sphereIntersections(vec3 start, vec3 dir, float radius) { float a = dot(dir, dir); float b = 2.0 * dot(dir, start); float c = dot(start, start) - (radius * radius); float d = (b * b) - 4.0 * a * c; if (d < 0.0) { return vec2(1e5, -1e5); } return vec2((-b - sqrt(d)) / (2.0 * a), (-b + sqrt(d)) / (2.0 * a)); } float HenyeyGreenstein(float g, float costh) { return (1.0 / (4.0 * 3.1415)) * ((1.0 - g * g) / pow(1.0 + g * g - 2.0 * g * costh, 1.5)); }`),c.fragment.code.add("\n vec3 multipleOctaves(float extinction, float mu, float stepL) {\n float attenuation = 1.0;\n float contribution = 1.0;\n float phaseAttenuation = 1.0;\n vec3 luminance = vec3(0);\n\n for (int i = 0; i < 4; i++) {\n float phase = mix(HenyeyGreenstein(0.0, mu), HenyeyGreenstein(0.3 * phaseAttenuation, mu), 0.7);\n luminance += contribution * phase * exp(-stepL * extinction * sigmaE * attenuation);\n attenuation *= 0.2;\n contribution *= 0.6;\n phaseAttenuation *= 0.5;\n }\n\n return luminance;\n }"),c.fragment.code.add(d`vec3 lightRay(vec3 org, vec3 p, float phaseFunction, float mu, vec3 sunDirection) { float lightRayDensity = clouds(p); lightRayDensity += clouds(p + sunDirection * 1.0 * stepL); lightRayDensity += clouds(p + sunDirection * 2.0 * stepL); lightRayDensity += clouds(p + sunDirection * 3.0 * stepL); lightRayDensity += clouds(p + sunDirection * 4.0 * stepL); lightRayDensity += clouds(p + sunDirection * 5.0 * stepL); vec3 beersLaw = multipleOctaves(lightRayDensity, mu, stepL); return mix(beersLaw * 2.0 * (1.0 - (exp(-stepL * lightRayDensity * 2.0 * sigmaE ))), beersLaw, 0.5 + 0.5 * mu); }`),c.fragment.code.add(d`vec3 mainRay(vec3 org, vec3 dir, vec3 sunDirection, float distToStart, float totalDistance, out float totalTransmittance) { if (dir.z < 0.0) { return vec3(0); } totalTransmittance = 1.0; float stepS = totalDistance / float(STEPS); float cameraHeight = length(org); float mu = 0.5 + 0.5 * dot(sunDirection, dir); float phaseFunction = mix(HenyeyGreenstein(-0.3, mu), HenyeyGreenstein(0.3, mu), 0.7); vec3 p = org + distToStart * dir; float dist = distToStart; vec3 color = vec3(0.0); for (int i = 0; i < STEPS; i++) { float sampleDensity = clouds(p); float sampleSigmaE = sampleDensity * sigmaE; if (sampleDensity > 0.0 ) { float ambient = mix((1.2), (1.6), saturate((length(p) - cloudRadius - cloudStart) / cloudHeight)); vec3 luminance = sampleDensity * (ambient + power * phaseFunction * lightRay(org, p, phaseFunction, mu, sunDirection)); float transmittance = exp(-sampleSigmaE * stepS); color += totalTransmittance * (luminance - luminance * transmittance) / sampleSigmaE; totalTransmittance *= transmittance; if (totalTransmittance <= 0.001) { totalTransmittance = 0.0; break; } } dist += stepS; p = org + dir * dist; } return color; }`),c.fragment.code.add(d`void main() { vec3 rayDir = rayDirection(gl_FragCoord.xy); rayDir = normalize(view * rayDir); vec3 viewPos = vec3(0, 0, cloudRadius + 1.0); bool hitsPlanet = rayDir.z < 0.0; if (hitsPlanet) { gl_FragColor = vec4(vec3(0), 1); return; } vec2 rayStartIntersect = sphereIntersections(viewPos, rayDir, cloudRadius + cloudStart); vec2 rayEndIntersect = sphereIntersections(viewPos, rayDir, cloudRadius + cloudStart + cloudHeight); float distToStart = rayStartIntersect.y; float totalDistance = rayEndIntersect.y - distToStart; float totalTransmittance = 1.0; vec3 sunDirection = normalize(vec3(0, 0, 1)); vec3 col = 0.5 * mainRay(viewPos, rayDir, sunDirection, distToStart, totalDistance, totalTransmittance).rgb; gl_FragColor = vec4(col, totalTransmittance); }`),c}const h=Object.freeze(Object.defineProperty({__proto__:null,CloudsDrawParameters:p,build:g},Symbol.toStringTag,{value:"Module"}));export{p as C,h as a,g as b};