import Cartesian3 from "./Cartesian3.js";
import Cartographic from "./Cartographic.js";
import Check from "./Check.js";
import defaultValue from "./defaultValue.js";
import defined from "./defined.js";
import Ellipsoid from "./Ellipsoid.js";
import GeographicProjection from "./GeographicProjection.js";
import Intersect from "./Intersect.js";
import Interval from "./Interval.js";
import CesiumMath from "./Math.js";
import Matrix3 from "./Matrix3.js";
import Matrix4 from "./Matrix4.js";
import Rectangle from "./Rectangle.js";
/**
* A bounding sphere with a center and a radius.
* @alias BoundingSphere
* @constructor
*
* @param {Cartesian3} [center=Cartesian3.ZERO] The center of the bounding sphere.
* @param {Number} [radius=0.0] The radius of the bounding sphere.
*
* @see AxisAlignedBoundingBox
* @see BoundingRectangle
* @see Packable
*/
function BoundingSphere(center, radius) {
/**
* The center point of the sphere.
* @type {Cartesian3}
* @default {@link Cartesian3.ZERO}
*/
this.center = Cartesian3.clone(defaultValue(center, Cartesian3.ZERO));
/**
* The radius of the sphere.
* @type {Number}
* @default 0.0
*/
this.radius = defaultValue(radius, 0.0);
}
const fromPointsXMin = new Cartesian3();
const fromPointsYMin = new Cartesian3();
const fromPointsZMin = new Cartesian3();
const fromPointsXMax = new Cartesian3();
const fromPointsYMax = new Cartesian3();
const fromPointsZMax = new Cartesian3();
const fromPointsCurrentPos = new Cartesian3();
const fromPointsScratch = new Cartesian3();
const fromPointsRitterCenter = new Cartesian3();
const fromPointsMinBoxPt = new Cartesian3();
const fromPointsMaxBoxPt = new Cartesian3();
const fromPointsNaiveCenterScratch = new Cartesian3();
const volumeConstant = (4.0 / 3.0) * CesiumMath.PI;
/**
* Computes a tight-fitting bounding sphere enclosing a list of 3D Cartesian points.
* The bounding sphere is computed by running two algorithms, a naive algorithm and
* Ritter's algorithm. The smaller of the two spheres is used to ensure a tight fit.
*
* @param {Cartesian3[]} [positions] An array of points that the bounding sphere will enclose. Each point must have x
, y
, and z
properties.
* @param {BoundingSphere} [result] The object onto which to store the result.
* @returns {BoundingSphere} The modified result parameter or a new BoundingSphere instance if one was not provided.
*
* @see {@link http://help.agi.com/AGIComponents/html/BlogBoundingSphere.htm|Bounding Sphere computation article}
*/
BoundingSphere.fromPoints = function (positions, result) {
if (!defined(result)) {
result = new BoundingSphere();
}
if (!defined(positions) || positions.length === 0) {
result.center = Cartesian3.clone(Cartesian3.ZERO, result.center);
result.radius = 0.0;
return result;
}
const currentPos = Cartesian3.clone(positions[0], fromPointsCurrentPos);
const xMin = Cartesian3.clone(currentPos, fromPointsXMin);
const yMin = Cartesian3.clone(currentPos, fromPointsYMin);
const zMin = Cartesian3.clone(currentPos, fromPointsZMin);
const xMax = Cartesian3.clone(currentPos, fromPointsXMax);
const yMax = Cartesian3.clone(currentPos, fromPointsYMax);
const zMax = Cartesian3.clone(currentPos, fromPointsZMax);
const numPositions = positions.length;
let i;
for (i = 1; i < numPositions; i++) {
Cartesian3.clone(positions[i], currentPos);
const x = currentPos.x;
const y = currentPos.y;
const z = currentPos.z;
// Store points containing the the smallest and largest components
if (x < xMin.x) {
Cartesian3.clone(currentPos, xMin);
}
if (x > xMax.x) {
Cartesian3.clone(currentPos, xMax);
}
if (y < yMin.y) {
Cartesian3.clone(currentPos, yMin);
}
if (y > yMax.y) {
Cartesian3.clone(currentPos, yMax);
}
if (z < zMin.z) {
Cartesian3.clone(currentPos, zMin);
}
if (z > zMax.z) {
Cartesian3.clone(currentPos, zMax);
}
}
// Compute x-, y-, and z-spans (Squared distances b/n each component's min. and max.).
const xSpan = Cartesian3.magnitudeSquared(
Cartesian3.subtract(xMax, xMin, fromPointsScratch)
);
const ySpan = Cartesian3.magnitudeSquared(
Cartesian3.subtract(yMax, yMin, fromPointsScratch)
);
const zSpan = Cartesian3.magnitudeSquared(
Cartesian3.subtract(zMax, zMin, fromPointsScratch)
);
// Set the diameter endpoints to the largest span.
let diameter1 = xMin;
let diameter2 = xMax;
let maxSpan = xSpan;
if (ySpan > maxSpan) {
maxSpan = ySpan;
diameter1 = yMin;
diameter2 = yMax;
}
if (zSpan > maxSpan) {
maxSpan = zSpan;
diameter1 = zMin;
diameter2 = zMax;
}
// Calculate the center of the initial sphere found by Ritter's algorithm
const ritterCenter = fromPointsRitterCenter;
ritterCenter.x = (diameter1.x + diameter2.x) * 0.5;
ritterCenter.y = (diameter1.y + diameter2.y) * 0.5;
ritterCenter.z = (diameter1.z + diameter2.z) * 0.5;
// Calculate the radius of the initial sphere found by Ritter's algorithm
let radiusSquared = Cartesian3.magnitudeSquared(
Cartesian3.subtract(diameter2, ritterCenter, fromPointsScratch)
);
let ritterRadius = Math.sqrt(radiusSquared);
// Find the center of the sphere found using the Naive method.
const minBoxPt = fromPointsMinBoxPt;
minBoxPt.x = xMin.x;
minBoxPt.y = yMin.y;
minBoxPt.z = zMin.z;
const maxBoxPt = fromPointsMaxBoxPt;
maxBoxPt.x = xMax.x;
maxBoxPt.y = yMax.y;
maxBoxPt.z = zMax.z;
const naiveCenter = Cartesian3.midpoint(
minBoxPt,
maxBoxPt,
fromPointsNaiveCenterScratch
);
// Begin 2nd pass to find naive radius and modify the ritter sphere.
let naiveRadius = 0;
for (i = 0; i < numPositions; i++) {
Cartesian3.clone(positions[i], currentPos);
// Find the furthest point from the naive center to calculate the naive radius.
const r = Cartesian3.magnitude(
Cartesian3.subtract(currentPos, naiveCenter, fromPointsScratch)
);
if (r > naiveRadius) {
naiveRadius = r;
}
// Make adjustments to the Ritter Sphere to include all points.
const oldCenterToPointSquared = Cartesian3.magnitudeSquared(
Cartesian3.subtract(currentPos, ritterCenter, fromPointsScratch)
);
if (oldCenterToPointSquared > radiusSquared) {
const oldCenterToPoint = Math.sqrt(oldCenterToPointSquared);
// Calculate new radius to include the point that lies outside
ritterRadius = (ritterRadius + oldCenterToPoint) * 0.5;
radiusSquared = ritterRadius * ritterRadius;
// Calculate center of new Ritter sphere
const oldToNew = oldCenterToPoint - ritterRadius;
ritterCenter.x =
(ritterRadius * ritterCenter.x + oldToNew * currentPos.x) /
oldCenterToPoint;
ritterCenter.y =
(ritterRadius * ritterCenter.y + oldToNew * currentPos.y) /
oldCenterToPoint;
ritterCenter.z =
(ritterRadius * ritterCenter.z + oldToNew * currentPos.z) /
oldCenterToPoint;
}
}
if (ritterRadius < naiveRadius) {
Cartesian3.clone(ritterCenter, result.center);
result.radius = ritterRadius;
} else {
Cartesian3.clone(naiveCenter, result.center);
result.radius = naiveRadius;
}
return result;
};
const defaultProjection = new GeographicProjection();
const fromRectangle2DLowerLeft = new Cartesian3();
const fromRectangle2DUpperRight = new Cartesian3();
const fromRectangle2DSouthwest = new Cartographic();
const fromRectangle2DNortheast = new Cartographic();
/**
* Computes a bounding sphere from a rectangle projected in 2D.
*
* @param {Rectangle} [rectangle] The rectangle around which to create a bounding sphere.
* @param {Object} [projection=GeographicProjection] The projection used to project the rectangle into 2D.
* @param {BoundingSphere} [result] The object onto which to store the result.
* @returns {BoundingSphere} The modified result parameter or a new BoundingSphere instance if none was provided.
*/
BoundingSphere.fromRectangle2D = function (rectangle, projection, result) {
return BoundingSphere.fromRectangleWithHeights2D(
rectangle,
projection,
0.0,
0.0,
result
);
};
/**
* Computes a bounding sphere from a rectangle projected in 2D. The bounding sphere accounts for the
* object's minimum and maximum heights over the rectangle.
*
* @param {Rectangle} [rectangle] The rectangle around which to create a bounding sphere.
* @param {Object} [projection=GeographicProjection] The projection used to project the rectangle into 2D.
* @param {Number} [minimumHeight=0.0] The minimum height over the rectangle.
* @param {Number} [maximumHeight=0.0] The maximum height over the rectangle.
* @param {BoundingSphere} [result] The object onto which to store the result.
* @returns {BoundingSphere} The modified result parameter or a new BoundingSphere instance if none was provided.
*/
BoundingSphere.fromRectangleWithHeights2D = function (
rectangle,
projection,
minimumHeight,
maximumHeight,
result
) {
if (!defined(result)) {
result = new BoundingSphere();
}
if (!defined(rectangle)) {
result.center = Cartesian3.clone(Cartesian3.ZERO, result.center);
result.radius = 0.0;
return result;
}
projection = defaultValue(projection, defaultProjection);
Rectangle.southwest(rectangle, fromRectangle2DSouthwest);
fromRectangle2DSouthwest.height = minimumHeight;
Rectangle.northeast(rectangle, fromRectangle2DNortheast);
fromRectangle2DNortheast.height = maximumHeight;
const lowerLeft = projection.project(
fromRectangle2DSouthwest,
fromRectangle2DLowerLeft
);
const upperRight = projection.project(
fromRectangle2DNortheast,
fromRectangle2DUpperRight
);
const width = upperRight.x - lowerLeft.x;
const height = upperRight.y - lowerLeft.y;
const elevation = upperRight.z - lowerLeft.z;
result.radius =
Math.sqrt(width * width + height * height + elevation * elevation) * 0.5;
const center = result.center;
center.x = lowerLeft.x + width * 0.5;
center.y = lowerLeft.y + height * 0.5;
center.z = lowerLeft.z + elevation * 0.5;
return result;
};
const fromRectangle3DScratch = [];
/**
* Computes a bounding sphere from a rectangle in 3D. The bounding sphere is created using a subsample of points
* on the ellipsoid and contained in the rectangle. It may not be accurate for all rectangles on all types of ellipsoids.
*
* @param {Rectangle} [rectangle] The valid rectangle used to create a bounding sphere.
* @param {Ellipsoid} [ellipsoid=Ellipsoid.WGS84] The ellipsoid used to determine positions of the rectangle.
* @param {Number} [surfaceHeight=0.0] The height above the surface of the ellipsoid.
* @param {BoundingSphere} [result] The object onto which to store the result.
* @returns {BoundingSphere} The modified result parameter or a new BoundingSphere instance if none was provided.
*/
BoundingSphere.fromRectangle3D = function (
rectangle,
ellipsoid,
surfaceHeight,
result
) {
ellipsoid = defaultValue(ellipsoid, Ellipsoid.WGS84);
surfaceHeight = defaultValue(surfaceHeight, 0.0);
if (!defined(result)) {
result = new BoundingSphere();
}
if (!defined(rectangle)) {
result.center = Cartesian3.clone(Cartesian3.ZERO, result.center);
result.radius = 0.0;
return result;
}
const positions = Rectangle.subsample(
rectangle,
ellipsoid,
surfaceHeight,
fromRectangle3DScratch
);
return BoundingSphere.fromPoints(positions, result);
};
/**
* Computes a tight-fitting bounding sphere enclosing a list of 3D points, where the points are
* stored in a flat array in X, Y, Z, order. The bounding sphere is computed by running two
* algorithms, a naive algorithm and Ritter's algorithm. The smaller of the two spheres is used to
* ensure a tight fit.
*
* @param {Number[]} [positions] An array of points that the bounding sphere will enclose. Each point
* is formed from three elements in the array in the order X, Y, Z.
* @param {Cartesian3} [center=Cartesian3.ZERO] The position to which the positions are relative, which need not be the
* origin of the coordinate system. This is useful when the positions are to be used for
* relative-to-center (RTC) rendering.
* @param {Number} [stride=3] The number of array elements per vertex. It must be at least 3, but it may
* be higher. Regardless of the value of this parameter, the X coordinate of the first position
* is at array index 0, the Y coordinate is at array index 1, and the Z coordinate is at array index
* 2. When stride is 3, the X coordinate of the next position then begins at array index 3. If
* the stride is 5, however, two array elements are skipped and the next position begins at array
* index 5.
* @param {BoundingSphere} [result] The object onto which to store the result.
* @returns {BoundingSphere} The modified result parameter or a new BoundingSphere instance if one was not provided.
*
* @example
* // Compute the bounding sphere from 3 positions, each specified relative to a center.
* // In addition to the X, Y, and Z coordinates, the points array contains two additional
* // elements per point which are ignored for the purpose of computing the bounding sphere.
* const center = new Cesium.Cartesian3(1.0, 2.0, 3.0);
* const points = [1.0, 2.0, 3.0, 0.1, 0.2,
* 4.0, 5.0, 6.0, 0.1, 0.2,
* 7.0, 8.0, 9.0, 0.1, 0.2];
* const sphere = Cesium.BoundingSphere.fromVertices(points, center, 5);
*
* @see {@link http://blogs.agi.com/insight3d/index.php/2008/02/04/a-bounding/|Bounding Sphere computation article}
*/
BoundingSphere.fromVertices = function (positions, center, stride, result) {
if (!defined(result)) {
result = new BoundingSphere();
}
if (!defined(positions) || positions.length === 0) {
result.center = Cartesian3.clone(Cartesian3.ZERO, result.center);
result.radius = 0.0;
return result;
}
center = defaultValue(center, Cartesian3.ZERO);
stride = defaultValue(stride, 3);
//>>includeStart('debug', pragmas.debug);
Check.typeOf.number.greaterThanOrEquals("stride", stride, 3);
//>>includeEnd('debug');
const currentPos = fromPointsCurrentPos;
currentPos.x = positions[0] + center.x;
currentPos.y = positions[1] + center.y;
currentPos.z = positions[2] + center.z;
const xMin = Cartesian3.clone(currentPos, fromPointsXMin);
const yMin = Cartesian3.clone(currentPos, fromPointsYMin);
const zMin = Cartesian3.clone(currentPos, fromPointsZMin);
const xMax = Cartesian3.clone(currentPos, fromPointsXMax);
const yMax = Cartesian3.clone(currentPos, fromPointsYMax);
const zMax = Cartesian3.clone(currentPos, fromPointsZMax);
const numElements = positions.length;
let i;
for (i = 0; i < numElements; i += stride) {
const x = positions[i] + center.x;
const y = positions[i + 1] + center.y;
const z = positions[i + 2] + center.z;
currentPos.x = x;
currentPos.y = y;
currentPos.z = z;
// Store points containing the the smallest and largest components
if (x < xMin.x) {
Cartesian3.clone(currentPos, xMin);
}
if (x > xMax.x) {
Cartesian3.clone(currentPos, xMax);
}
if (y < yMin.y) {
Cartesian3.clone(currentPos, yMin);
}
if (y > yMax.y) {
Cartesian3.clone(currentPos, yMax);
}
if (z < zMin.z) {
Cartesian3.clone(currentPos, zMin);
}
if (z > zMax.z) {
Cartesian3.clone(currentPos, zMax);
}
}
// Compute x-, y-, and z-spans (Squared distances b/n each component's min. and max.).
const xSpan = Cartesian3.magnitudeSquared(
Cartesian3.subtract(xMax, xMin, fromPointsScratch)
);
const ySpan = Cartesian3.magnitudeSquared(
Cartesian3.subtract(yMax, yMin, fromPointsScratch)
);
const zSpan = Cartesian3.magnitudeSquared(
Cartesian3.subtract(zMax, zMin, fromPointsScratch)
);
// Set the diameter endpoints to the largest span.
let diameter1 = xMin;
let diameter2 = xMax;
let maxSpan = xSpan;
if (ySpan > maxSpan) {
maxSpan = ySpan;
diameter1 = yMin;
diameter2 = yMax;
}
if (zSpan > maxSpan) {
maxSpan = zSpan;
diameter1 = zMin;
diameter2 = zMax;
}
// Calculate the center of the initial sphere found by Ritter's algorithm
const ritterCenter = fromPointsRitterCenter;
ritterCenter.x = (diameter1.x + diameter2.x) * 0.5;
ritterCenter.y = (diameter1.y + diameter2.y) * 0.5;
ritterCenter.z = (diameter1.z + diameter2.z) * 0.5;
// Calculate the radius of the initial sphere found by Ritter's algorithm
let radiusSquared = Cartesian3.magnitudeSquared(
Cartesian3.subtract(diameter2, ritterCenter, fromPointsScratch)
);
let ritterRadius = Math.sqrt(radiusSquared);
// Find the center of the sphere found using the Naive method.
const minBoxPt = fromPointsMinBoxPt;
minBoxPt.x = xMin.x;
minBoxPt.y = yMin.y;
minBoxPt.z = zMin.z;
const maxBoxPt = fromPointsMaxBoxPt;
maxBoxPt.x = xMax.x;
maxBoxPt.y = yMax.y;
maxBoxPt.z = zMax.z;
const naiveCenter = Cartesian3.midpoint(
minBoxPt,
maxBoxPt,
fromPointsNaiveCenterScratch
);
// Begin 2nd pass to find naive radius and modify the ritter sphere.
let naiveRadius = 0;
for (i = 0; i < numElements; i += stride) {
currentPos.x = positions[i] + center.x;
currentPos.y = positions[i + 1] + center.y;
currentPos.z = positions[i + 2] + center.z;
// Find the furthest point from the naive center to calculate the naive radius.
const r = Cartesian3.magnitude(
Cartesian3.subtract(currentPos, naiveCenter, fromPointsScratch)
);
if (r > naiveRadius) {
naiveRadius = r;
}
// Make adjustments to the Ritter Sphere to include all points.
const oldCenterToPointSquared = Cartesian3.magnitudeSquared(
Cartesian3.subtract(currentPos, ritterCenter, fromPointsScratch)
);
if (oldCenterToPointSquared > radiusSquared) {
const oldCenterToPoint = Math.sqrt(oldCenterToPointSquared);
// Calculate new radius to include the point that lies outside
ritterRadius = (ritterRadius + oldCenterToPoint) * 0.5;
radiusSquared = ritterRadius * ritterRadius;
// Calculate center of new Ritter sphere
const oldToNew = oldCenterToPoint - ritterRadius;
ritterCenter.x =
(ritterRadius * ritterCenter.x + oldToNew * currentPos.x) /
oldCenterToPoint;
ritterCenter.y =
(ritterRadius * ritterCenter.y + oldToNew * currentPos.y) /
oldCenterToPoint;
ritterCenter.z =
(ritterRadius * ritterCenter.z + oldToNew * currentPos.z) /
oldCenterToPoint;
}
}
if (ritterRadius < naiveRadius) {
Cartesian3.clone(ritterCenter, result.center);
result.radius = ritterRadius;
} else {
Cartesian3.clone(naiveCenter, result.center);
result.radius = naiveRadius;
}
return result;
};
/**
* Computes a tight-fitting bounding sphere enclosing a list of EncodedCartesian3s, where the points are
* stored in parallel flat arrays in X, Y, Z, order. The bounding sphere is computed by running two
* algorithms, a naive algorithm and Ritter's algorithm. The smaller of the two spheres is used to
* ensure a tight fit.
*
* @param {Number[]} [positionsHigh] An array of high bits of the encoded cartesians that the bounding sphere will enclose. Each point
* is formed from three elements in the array in the order X, Y, Z.
* @param {Number[]} [positionsLow] An array of low bits of the encoded cartesians that the bounding sphere will enclose. Each point
* is formed from three elements in the array in the order X, Y, Z.
* @param {BoundingSphere} [result] The object onto which to store the result.
* @returns {BoundingSphere} The modified result parameter or a new BoundingSphere instance if one was not provided.
*
* @see {@link http://blogs.agi.com/insight3d/index.php/2008/02/04/a-bounding/|Bounding Sphere computation article}
*/
BoundingSphere.fromEncodedCartesianVertices = function (
positionsHigh,
positionsLow,
result
) {
if (!defined(result)) {
result = new BoundingSphere();
}
if (
!defined(positionsHigh) ||
!defined(positionsLow) ||
positionsHigh.length !== positionsLow.length ||
positionsHigh.length === 0
) {
result.center = Cartesian3.clone(Cartesian3.ZERO, result.center);
result.radius = 0.0;
return result;
}
const currentPos = fromPointsCurrentPos;
currentPos.x = positionsHigh[0] + positionsLow[0];
currentPos.y = positionsHigh[1] + positionsLow[1];
currentPos.z = positionsHigh[2] + positionsLow[2];
const xMin = Cartesian3.clone(currentPos, fromPointsXMin);
const yMin = Cartesian3.clone(currentPos, fromPointsYMin);
const zMin = Cartesian3.clone(currentPos, fromPointsZMin);
const xMax = Cartesian3.clone(currentPos, fromPointsXMax);
const yMax = Cartesian3.clone(currentPos, fromPointsYMax);
const zMax = Cartesian3.clone(currentPos, fromPointsZMax);
const numElements = positionsHigh.length;
let i;
for (i = 0; i < numElements; i += 3) {
const x = positionsHigh[i] + positionsLow[i];
const y = positionsHigh[i + 1] + positionsLow[i + 1];
const z = positionsHigh[i + 2] + positionsLow[i + 2];
currentPos.x = x;
currentPos.y = y;
currentPos.z = z;
// Store points containing the the smallest and largest components
if (x < xMin.x) {
Cartesian3.clone(currentPos, xMin);
}
if (x > xMax.x) {
Cartesian3.clone(currentPos, xMax);
}
if (y < yMin.y) {
Cartesian3.clone(currentPos, yMin);
}
if (y > yMax.y) {
Cartesian3.clone(currentPos, yMax);
}
if (z < zMin.z) {
Cartesian3.clone(currentPos, zMin);
}
if (z > zMax.z) {
Cartesian3.clone(currentPos, zMax);
}
}
// Compute x-, y-, and z-spans (Squared distances b/n each component's min. and max.).
const xSpan = Cartesian3.magnitudeSquared(
Cartesian3.subtract(xMax, xMin, fromPointsScratch)
);
const ySpan = Cartesian3.magnitudeSquared(
Cartesian3.subtract(yMax, yMin, fromPointsScratch)
);
const zSpan = Cartesian3.magnitudeSquared(
Cartesian3.subtract(zMax, zMin, fromPointsScratch)
);
// Set the diameter endpoints to the largest span.
let diameter1 = xMin;
let diameter2 = xMax;
let maxSpan = xSpan;
if (ySpan > maxSpan) {
maxSpan = ySpan;
diameter1 = yMin;
diameter2 = yMax;
}
if (zSpan > maxSpan) {
maxSpan = zSpan;
diameter1 = zMin;
diameter2 = zMax;
}
// Calculate the center of the initial sphere found by Ritter's algorithm
const ritterCenter = fromPointsRitterCenter;
ritterCenter.x = (diameter1.x + diameter2.x) * 0.5;
ritterCenter.y = (diameter1.y + diameter2.y) * 0.5;
ritterCenter.z = (diameter1.z + diameter2.z) * 0.5;
// Calculate the radius of the initial sphere found by Ritter's algorithm
let radiusSquared = Cartesian3.magnitudeSquared(
Cartesian3.subtract(diameter2, ritterCenter, fromPointsScratch)
);
let ritterRadius = Math.sqrt(radiusSquared);
// Find the center of the sphere found using the Naive method.
const minBoxPt = fromPointsMinBoxPt;
minBoxPt.x = xMin.x;
minBoxPt.y = yMin.y;
minBoxPt.z = zMin.z;
const maxBoxPt = fromPointsMaxBoxPt;
maxBoxPt.x = xMax.x;
maxBoxPt.y = yMax.y;
maxBoxPt.z = zMax.z;
const naiveCenter = Cartesian3.midpoint(
minBoxPt,
maxBoxPt,
fromPointsNaiveCenterScratch
);
// Begin 2nd pass to find naive radius and modify the ritter sphere.
let naiveRadius = 0;
for (i = 0; i < numElements; i += 3) {
currentPos.x = positionsHigh[i] + positionsLow[i];
currentPos.y = positionsHigh[i + 1] + positionsLow[i + 1];
currentPos.z = positionsHigh[i + 2] + positionsLow[i + 2];
// Find the furthest point from the naive center to calculate the naive radius.
const r = Cartesian3.magnitude(
Cartesian3.subtract(currentPos, naiveCenter, fromPointsScratch)
);
if (r > naiveRadius) {
naiveRadius = r;
}
// Make adjustments to the Ritter Sphere to include all points.
const oldCenterToPointSquared = Cartesian3.magnitudeSquared(
Cartesian3.subtract(currentPos, ritterCenter, fromPointsScratch)
);
if (oldCenterToPointSquared > radiusSquared) {
const oldCenterToPoint = Math.sqrt(oldCenterToPointSquared);
// Calculate new radius to include the point that lies outside
ritterRadius = (ritterRadius + oldCenterToPoint) * 0.5;
radiusSquared = ritterRadius * ritterRadius;
// Calculate center of new Ritter sphere
const oldToNew = oldCenterToPoint - ritterRadius;
ritterCenter.x =
(ritterRadius * ritterCenter.x + oldToNew * currentPos.x) /
oldCenterToPoint;
ritterCenter.y =
(ritterRadius * ritterCenter.y + oldToNew * currentPos.y) /
oldCenterToPoint;
ritterCenter.z =
(ritterRadius * ritterCenter.z + oldToNew * currentPos.z) /
oldCenterToPoint;
}
}
if (ritterRadius < naiveRadius) {
Cartesian3.clone(ritterCenter, result.center);
result.radius = ritterRadius;
} else {
Cartesian3.clone(naiveCenter, result.center);
result.radius = naiveRadius;
}
return result;
};
/**
* Computes a bounding sphere from the corner points of an axis-aligned bounding box. The sphere
* tighly and fully encompases the box.
*
* @param {Cartesian3} [corner] The minimum height over the rectangle.
* @param {Cartesian3} [oppositeCorner] The maximum height over the rectangle.
* @param {BoundingSphere} [result] The object onto which to store the result.
* @returns {BoundingSphere} The modified result parameter or a new BoundingSphere instance if none was provided.
*
* @example
* // Create a bounding sphere around the unit cube
* const sphere = Cesium.BoundingSphere.fromCornerPoints(new Cesium.Cartesian3(-0.5, -0.5, -0.5), new Cesium.Cartesian3(0.5, 0.5, 0.5));
*/
BoundingSphere.fromCornerPoints = function (corner, oppositeCorner, result) {
//>>includeStart('debug', pragmas.debug);
Check.typeOf.object("corner", corner);
Check.typeOf.object("oppositeCorner", oppositeCorner);
//>>includeEnd('debug');
if (!defined(result)) {
result = new BoundingSphere();
}
const center = Cartesian3.midpoint(corner, oppositeCorner, result.center);
result.radius = Cartesian3.distance(center, oppositeCorner);
return result;
};
/**
* Creates a bounding sphere encompassing an ellipsoid.
*
* @param {Ellipsoid} ellipsoid The ellipsoid around which to create a bounding sphere.
* @param {BoundingSphere} [result] The object onto which to store the result.
* @returns {BoundingSphere} The modified result parameter or a new BoundingSphere instance if none was provided.
*
* @example
* const boundingSphere = Cesium.BoundingSphere.fromEllipsoid(ellipsoid);
*/
BoundingSphere.fromEllipsoid = function (ellipsoid, result) {
//>>includeStart('debug', pragmas.debug);
Check.typeOf.object("ellipsoid", ellipsoid);
//>>includeEnd('debug');
if (!defined(result)) {
result = new BoundingSphere();
}
Cartesian3.clone(Cartesian3.ZERO, result.center);
result.radius = ellipsoid.maximumRadius;
return result;
};
const fromBoundingSpheresScratch = new Cartesian3();
/**
* Computes a tight-fitting bounding sphere enclosing the provided array of bounding spheres.
*
* @param {BoundingSphere[]} [boundingSpheres] The array of bounding spheres.
* @param {BoundingSphere} [result] The object onto which to store the result.
* @returns {BoundingSphere} The modified result parameter or a new BoundingSphere instance if none was provided.
*/
BoundingSphere.fromBoundingSpheres = function (boundingSpheres, result) {
if (!defined(result)) {
result = new BoundingSphere();
}
if (!defined(boundingSpheres) || boundingSpheres.length === 0) {
result.center = Cartesian3.clone(Cartesian3.ZERO, result.center);
result.radius = 0.0;
return result;
}
const length = boundingSpheres.length;
if (length === 1) {
return BoundingSphere.clone(boundingSpheres[0], result);
}
if (length === 2) {
return BoundingSphere.union(boundingSpheres[0], boundingSpheres[1], result);
}
const positions = [];
let i;
for (i = 0; i < length; i++) {
positions.push(boundingSpheres[i].center);
}
result = BoundingSphere.fromPoints(positions, result);
const center = result.center;
let radius = result.radius;
for (i = 0; i < length; i++) {
const tmp = boundingSpheres[i];
radius = Math.max(
radius,
Cartesian3.distance(center, tmp.center, fromBoundingSpheresScratch) +
tmp.radius
);
}
result.radius = radius;
return result;
};
const fromOrientedBoundingBoxScratchU = new Cartesian3();
const fromOrientedBoundingBoxScratchV = new Cartesian3();
const fromOrientedBoundingBoxScratchW = new Cartesian3();
/**
* Computes a tight-fitting bounding sphere enclosing the provided oriented bounding box.
*
* @param {OrientedBoundingBox} orientedBoundingBox The oriented bounding box.
* @param {BoundingSphere} [result] The object onto which to store the result.
* @returns {BoundingSphere} The modified result parameter or a new BoundingSphere instance if none was provided.
*/
BoundingSphere.fromOrientedBoundingBox = function (
orientedBoundingBox,
result
) {
//>>includeStart('debug', pragmas.debug);
Check.defined("orientedBoundingBox", orientedBoundingBox);
//>>includeEnd('debug');
if (!defined(result)) {
result = new BoundingSphere();
}
const halfAxes = orientedBoundingBox.halfAxes;
const u = Matrix3.getColumn(halfAxes, 0, fromOrientedBoundingBoxScratchU);
const v = Matrix3.getColumn(halfAxes, 1, fromOrientedBoundingBoxScratchV);
const w = Matrix3.getColumn(halfAxes, 2, fromOrientedBoundingBoxScratchW);
Cartesian3.add(u, v, u);
Cartesian3.add(u, w, u);
result.center = Cartesian3.clone(orientedBoundingBox.center, result.center);
result.radius = Cartesian3.magnitude(u);
return result;
};
const scratchFromTransformationCenter = new Cartesian3();
const scratchFromTransformationScale = new Cartesian3();
/**
* Computes a tight-fitting bounding sphere enclosing the provided affine transformation.
*
* @param {Matrix4} transformation The affine transformation.
* @param {BoundingSphere} [result] The object onto which to store the result.
* @returns {BoundingSphere} The modified result parameter or a new BoundingSphere instance if none was provided.
*/
BoundingSphere.fromTransformation = function (transformation, result) {
//>>includeStart('debug', pragmas.debug);
Check.typeOf.object("transformation", transformation);
//>>includeEnd('debug');
if (!defined(result)) {
result = new BoundingSphere();
}
const center = Matrix4.getTranslation(
transformation,
scratchFromTransformationCenter
);
const scale = Matrix4.getScale(
transformation,
scratchFromTransformationScale
);
const radius = 0.5 * Cartesian3.magnitude(scale);
result.center = Cartesian3.clone(center, result.center);
result.radius = radius;
return result;
};
/**
* Duplicates a BoundingSphere instance.
*
* @param {BoundingSphere} sphere The bounding sphere to duplicate.
* @param {BoundingSphere} [result] The object onto which to store the result.
* @returns {BoundingSphere} The modified result parameter or a new BoundingSphere instance if none was provided. (Returns undefined if sphere is undefined)
*/
BoundingSphere.clone = function (sphere, result) {
if (!defined(sphere)) {
return undefined;
}
if (!defined(result)) {
return new BoundingSphere(sphere.center, sphere.radius);
}
result.center = Cartesian3.clone(sphere.center, result.center);
result.radius = sphere.radius;
return result;
};
/**
* The number of elements used to pack the object into an array.
* @type {Number}
*/
BoundingSphere.packedLength = 4;
/**
* Stores the provided instance into the provided array.
*
* @param {BoundingSphere} value The value to pack.
* @param {Number[]} array The array to pack into.
* @param {Number} [startingIndex=0] The index into the array at which to start packing the elements.
*
* @returns {Number[]} The array that was packed into
*/
BoundingSphere.pack = function (value, array, startingIndex) {
//>>includeStart('debug', pragmas.debug);
Check.typeOf.object("value", value);
Check.defined("array", array);
//>>includeEnd('debug');
startingIndex = defaultValue(startingIndex, 0);
const center = value.center;
array[startingIndex++] = center.x;
array[startingIndex++] = center.y;
array[startingIndex++] = center.z;
array[startingIndex] = value.radius;
return array;
};
/**
* Retrieves an instance from a packed array.
*
* @param {Number[]} array The packed array.
* @param {Number} [startingIndex=0] The starting index of the element to be unpacked.
* @param {BoundingSphere} [result] The object into which to store the result.
* @returns {BoundingSphere} The modified result parameter or a new BoundingSphere instance if one was not provided.
*/
BoundingSphere.unpack = function (array, startingIndex, result) {
//>>includeStart('debug', pragmas.debug);
Check.defined("array", array);
//>>includeEnd('debug');
startingIndex = defaultValue(startingIndex, 0);
if (!defined(result)) {
result = new BoundingSphere();
}
const center = result.center;
center.x = array[startingIndex++];
center.y = array[startingIndex++];
center.z = array[startingIndex++];
result.radius = array[startingIndex];
return result;
};
const unionScratch = new Cartesian3();
const unionScratchCenter = new Cartesian3();
/**
* Computes a bounding sphere that contains both the left and right bounding spheres.
*
* @param {BoundingSphere} left A sphere to enclose in a bounding sphere.
* @param {BoundingSphere} right A sphere to enclose in a bounding sphere.
* @param {BoundingSphere} [result] The object onto which to store the result.
* @returns {BoundingSphere} The modified result parameter or a new BoundingSphere instance if none was provided.
*/
BoundingSphere.union = function (left, right, result) {
//>>includeStart('debug', pragmas.debug);
Check.typeOf.object("left", left);
Check.typeOf.object("right", right);
//>>includeEnd('debug');
if (!defined(result)) {
result = new BoundingSphere();
}
const leftCenter = left.center;
const leftRadius = left.radius;
const rightCenter = right.center;
const rightRadius = right.radius;
const toRightCenter = Cartesian3.subtract(
rightCenter,
leftCenter,
unionScratch
);
const centerSeparation = Cartesian3.magnitude(toRightCenter);
if (leftRadius >= centerSeparation + rightRadius) {
// Left sphere wins.
left.clone(result);
return result;
}
if (rightRadius >= centerSeparation + leftRadius) {
// Right sphere wins.
right.clone(result);
return result;
}
// There are two tangent points, one on far side of each sphere.
const halfDistanceBetweenTangentPoints =
(leftRadius + centerSeparation + rightRadius) * 0.5;
// Compute the center point halfway between the two tangent points.
const center = Cartesian3.multiplyByScalar(
toRightCenter,
(-leftRadius + halfDistanceBetweenTangentPoints) / centerSeparation,
unionScratchCenter
);
Cartesian3.add(center, leftCenter, center);
Cartesian3.clone(center, result.center);
result.radius = halfDistanceBetweenTangentPoints;
return result;
};
const expandScratch = new Cartesian3();
/**
* Computes a bounding sphere by enlarging the provided sphere to contain the provided point.
*
* @param {BoundingSphere} sphere A sphere to expand.
* @param {Cartesian3} point A point to enclose in a bounding sphere.
* @param {BoundingSphere} [result] The object onto which to store the result.
* @returns {BoundingSphere} The modified result parameter or a new BoundingSphere instance if none was provided.
*/
BoundingSphere.expand = function (sphere, point, result) {
//>>includeStart('debug', pragmas.debug);
Check.typeOf.object("sphere", sphere);
Check.typeOf.object("point", point);
//>>includeEnd('debug');
result = BoundingSphere.clone(sphere, result);
const radius = Cartesian3.magnitude(
Cartesian3.subtract(point, result.center, expandScratch)
);
if (radius > result.radius) {
result.radius = radius;
}
return result;
};
/**
* Determines which side of a plane a sphere is located.
*
* @param {BoundingSphere} sphere The bounding sphere to test.
* @param {Plane} plane The plane to test against.
* @returns {Intersect} {@link Intersect.INSIDE} if the entire sphere is on the side of the plane
* the normal is pointing, {@link Intersect.OUTSIDE} if the entire sphere is
* on the opposite side, and {@link Intersect.INTERSECTING} if the sphere
* intersects the plane.
*/
BoundingSphere.intersectPlane = function (sphere, plane) {
//>>includeStart('debug', pragmas.debug);
Check.typeOf.object("sphere", sphere);
Check.typeOf.object("plane", plane);
//>>includeEnd('debug');
const center = sphere.center;
const radius = sphere.radius;
const normal = plane.normal;
const distanceToPlane = Cartesian3.dot(normal, center) + plane.distance;
if (distanceToPlane < -radius) {
// The center point is negative side of the plane normal
return Intersect.OUTSIDE;
} else if (distanceToPlane < radius) {
// The center point is positive side of the plane, but radius extends beyond it; partial overlap
return Intersect.INTERSECTING;
}
return Intersect.INSIDE;
};
/**
* Applies a 4x4 affine transformation matrix to a bounding sphere.
*
* @param {BoundingSphere} sphere The bounding sphere to apply the transformation to.
* @param {Matrix4} transform The transformation matrix to apply to the bounding sphere.
* @param {BoundingSphere} [result] The object onto which to store the result.
* @returns {BoundingSphere} The modified result parameter or a new BoundingSphere instance if none was provided.
*/
BoundingSphere.transform = function (sphere, transform, result) {
//>>includeStart('debug', pragmas.debug);
Check.typeOf.object("sphere", sphere);
Check.typeOf.object("transform", transform);
//>>includeEnd('debug');
if (!defined(result)) {
result = new BoundingSphere();
}
result.center = Matrix4.multiplyByPoint(
transform,
sphere.center,
result.center
);
result.radius = Matrix4.getMaximumScale(transform) * sphere.radius;
return result;
};
const distanceSquaredToScratch = new Cartesian3();
/**
* Computes the estimated distance squared from the closest point on a bounding sphere to a point.
*
* @param {BoundingSphere} sphere The sphere.
* @param {Cartesian3} cartesian The point
* @returns {Number} The distance squared from the bounding sphere to the point. Returns 0 if the point is inside the sphere.
*
* @example
* // Sort bounding spheres from back to front
* spheres.sort(function(a, b) {
* return Cesium.BoundingSphere.distanceSquaredTo(b, camera.positionWC) - Cesium.BoundingSphere.distanceSquaredTo(a, camera.positionWC);
* });
*/
BoundingSphere.distanceSquaredTo = function (sphere, cartesian) {
//>>includeStart('debug', pragmas.debug);
Check.typeOf.object("sphere", sphere);
Check.typeOf.object("cartesian", cartesian);
//>>includeEnd('debug');
const diff = Cartesian3.subtract(
sphere.center,
cartesian,
distanceSquaredToScratch
);
const distance = Cartesian3.magnitude(diff) - sphere.radius;
if (distance <= 0.0) {
return 0.0;
}
return distance * distance;
};
/**
* Applies a 4x4 affine transformation matrix to a bounding sphere where there is no scale
* The transformation matrix is not verified to have a uniform scale of 1.
* This method is faster than computing the general bounding sphere transform using {@link BoundingSphere.transform}.
*
* @param {BoundingSphere} sphere The bounding sphere to apply the transformation to.
* @param {Matrix4} transform The transformation matrix to apply to the bounding sphere.
* @param {BoundingSphere} [result] The object onto which to store the result.
* @returns {BoundingSphere} The modified result parameter or a new BoundingSphere instance if none was provided.
*
* @example
* const modelMatrix = Cesium.Transforms.eastNorthUpToFixedFrame(positionOnEllipsoid);
* const boundingSphere = new Cesium.BoundingSphere();
* const newBoundingSphere = Cesium.BoundingSphere.transformWithoutScale(boundingSphere, modelMatrix);
*/
BoundingSphere.transformWithoutScale = function (sphere, transform, result) {
//>>includeStart('debug', pragmas.debug);
Check.typeOf.object("sphere", sphere);
Check.typeOf.object("transform", transform);
//>>includeEnd('debug');
if (!defined(result)) {
result = new BoundingSphere();
}
result.center = Matrix4.multiplyByPoint(
transform,
sphere.center,
result.center
);
result.radius = sphere.radius;
return result;
};
const scratchCartesian3 = new Cartesian3();
/**
* The distances calculated by the vector from the center of the bounding sphere to position projected onto direction
* plus/minus the radius of the bounding sphere.
*
* If you imagine the infinite number of planes with normal direction, this computes the smallest distance to the
* closest and farthest planes from position that intersect the bounding sphere.
*
* @param {BoundingSphere} sphere The bounding sphere to calculate the distance to.
* @param {Cartesian3} position The position to calculate the distance from.
* @param {Cartesian3} direction The direction from position.
* @param {Interval} [result] A Interval to store the nearest and farthest distances.
* @returns {Interval} The nearest and farthest distances on the bounding sphere from position in direction.
*/
BoundingSphere.computePlaneDistances = function (
sphere,
position,
direction,
result
) {
//>>includeStart('debug', pragmas.debug);
Check.typeOf.object("sphere", sphere);
Check.typeOf.object("position", position);
Check.typeOf.object("direction", direction);
//>>includeEnd('debug');
if (!defined(result)) {
result = new Interval();
}
const toCenter = Cartesian3.subtract(
sphere.center,
position,
scratchCartesian3
);
const mag = Cartesian3.dot(direction, toCenter);
result.start = mag - sphere.radius;
result.stop = mag + sphere.radius;
return result;
};
const projectTo2DNormalScratch = new Cartesian3();
const projectTo2DEastScratch = new Cartesian3();
const projectTo2DNorthScratch = new Cartesian3();
const projectTo2DWestScratch = new Cartesian3();
const projectTo2DSouthScratch = new Cartesian3();
const projectTo2DCartographicScratch = new Cartographic();
const projectTo2DPositionsScratch = new Array(8);
for (let n = 0; n < 8; ++n) {
projectTo2DPositionsScratch[n] = new Cartesian3();
}
const projectTo2DProjection = new GeographicProjection();
/**
* Creates a bounding sphere in 2D from a bounding sphere in 3D world coordinates.
*
* @param {BoundingSphere} sphere The bounding sphere to transform to 2D.
* @param {Object} [projection=GeographicProjection] The projection to 2D.
* @param {BoundingSphere} [result] The object onto which to store the result.
* @returns {BoundingSphere} The modified result parameter or a new BoundingSphere instance if none was provided.
*/
BoundingSphere.projectTo2D = function (sphere, projection, result) {
//>>includeStart('debug', pragmas.debug);
Check.typeOf.object("sphere", sphere);
//>>includeEnd('debug');
projection = defaultValue(projection, projectTo2DProjection);
const ellipsoid = projection.ellipsoid;
let center = sphere.center;
const radius = sphere.radius;
let normal;
if (Cartesian3.equals(center, Cartesian3.ZERO)) {
// Bounding sphere is at the center. The geodetic surface normal is not
// defined here so pick the x-axis as a fallback.
normal = Cartesian3.clone(Cartesian3.UNIT_X, projectTo2DNormalScratch);
} else {
normal = ellipsoid.geodeticSurfaceNormal(center, projectTo2DNormalScratch);
}
const east = Cartesian3.cross(
Cartesian3.UNIT_Z,
normal,
projectTo2DEastScratch
);
Cartesian3.normalize(east, east);
const north = Cartesian3.cross(normal, east, projectTo2DNorthScratch);
Cartesian3.normalize(north, north);
Cartesian3.multiplyByScalar(normal, radius, normal);
Cartesian3.multiplyByScalar(north, radius, north);
Cartesian3.multiplyByScalar(east, radius, east);
const south = Cartesian3.negate(north, projectTo2DSouthScratch);
const west = Cartesian3.negate(east, projectTo2DWestScratch);
const positions = projectTo2DPositionsScratch;
// top NE corner
let corner = positions[0];
Cartesian3.add(normal, north, corner);
Cartesian3.add(corner, east, corner);
// top NW corner
corner = positions[1];
Cartesian3.add(normal, north, corner);
Cartesian3.add(corner, west, corner);
// top SW corner
corner = positions[2];
Cartesian3.add(normal, south, corner);
Cartesian3.add(corner, west, corner);
// top SE corner
corner = positions[3];
Cartesian3.add(normal, south, corner);
Cartesian3.add(corner, east, corner);
Cartesian3.negate(normal, normal);
// bottom NE corner
corner = positions[4];
Cartesian3.add(normal, north, corner);
Cartesian3.add(corner, east, corner);
// bottom NW corner
corner = positions[5];
Cartesian3.add(normal, north, corner);
Cartesian3.add(corner, west, corner);
// bottom SW corner
corner = positions[6];
Cartesian3.add(normal, south, corner);
Cartesian3.add(corner, west, corner);
// bottom SE corner
corner = positions[7];
Cartesian3.add(normal, south, corner);
Cartesian3.add(corner, east, corner);
const length = positions.length;
for (let i = 0; i < length; ++i) {
const position = positions[i];
Cartesian3.add(center, position, position);
const cartographic = ellipsoid.cartesianToCartographic(
position,
projectTo2DCartographicScratch
);
projection.project(cartographic, position);
}
result = BoundingSphere.fromPoints(positions, result);
// swizzle center components
center = result.center;
const x = center.x;
const y = center.y;
const z = center.z;
center.x = z;
center.y = x;
center.z = y;
return result;
};
/**
* Determines whether or not a sphere is hidden from view by the occluder.
*
* @param {BoundingSphere} sphere The bounding sphere surrounding the occludee object.
* @param {Occluder} occluder The occluder.
* @returns {Boolean} true
if the sphere is not visible; otherwise false
.
*/
BoundingSphere.isOccluded = function (sphere, occluder) {
//>>includeStart('debug', pragmas.debug);
Check.typeOf.object("sphere", sphere);
Check.typeOf.object("occluder", occluder);
//>>includeEnd('debug');
return !occluder.isBoundingSphereVisible(sphere);
};
/**
* Compares the provided BoundingSphere componentwise and returns
* true
if they are equal, false
otherwise.
*
* @param {BoundingSphere} [left] The first BoundingSphere.
* @param {BoundingSphere} [right] The second BoundingSphere.
* @returns {Boolean} true
if left and right are equal, false
otherwise.
*/
BoundingSphere.equals = function (left, right) {
return (
left === right ||
(defined(left) &&
defined(right) &&
Cartesian3.equals(left.center, right.center) &&
left.radius === right.radius)
);
};
/**
* Determines which side of a plane the sphere is located.
*
* @param {Plane} plane The plane to test against.
* @returns {Intersect} {@link Intersect.INSIDE} if the entire sphere is on the side of the plane
* the normal is pointing, {@link Intersect.OUTSIDE} if the entire sphere is
* on the opposite side, and {@link Intersect.INTERSECTING} if the sphere
* intersects the plane.
*/
BoundingSphere.prototype.intersectPlane = function (plane) {
return BoundingSphere.intersectPlane(this, plane);
};
/**
* Computes the estimated distance squared from the closest point on a bounding sphere to a point.
*
* @param {Cartesian3} cartesian The point
* @returns {Number} The estimated distance squared from the bounding sphere to the point.
*
* @example
* // Sort bounding spheres from back to front
* spheres.sort(function(a, b) {
* return b.distanceSquaredTo(camera.positionWC) - a.distanceSquaredTo(camera.positionWC);
* });
*/
BoundingSphere.prototype.distanceSquaredTo = function (cartesian) {
return BoundingSphere.distanceSquaredTo(this, cartesian);
};
/**
* The distances calculated by the vector from the center of the bounding sphere to position projected onto direction
* plus/minus the radius of the bounding sphere.
*
* If you imagine the infinite number of planes with normal direction, this computes the smallest distance to the
* closest and farthest planes from position that intersect the bounding sphere.
*
* @param {Cartesian3} position The position to calculate the distance from.
* @param {Cartesian3} direction The direction from position.
* @param {Interval} [result] A Interval to store the nearest and farthest distances.
* @returns {Interval} The nearest and farthest distances on the bounding sphere from position in direction.
*/
BoundingSphere.prototype.computePlaneDistances = function (
position,
direction,
result
) {
return BoundingSphere.computePlaneDistances(
this,
position,
direction,
result
);
};
/**
* Determines whether or not a sphere is hidden from view by the occluder.
*
* @param {Occluder} occluder The occluder.
* @returns {Boolean} true
if the sphere is not visible; otherwise false
.
*/
BoundingSphere.prototype.isOccluded = function (occluder) {
return BoundingSphere.isOccluded(this, occluder);
};
/**
* Compares this BoundingSphere against the provided BoundingSphere componentwise and returns
* true
if they are equal, false
otherwise.
*
* @param {BoundingSphere} [right] The right hand side BoundingSphere.
* @returns {Boolean} true
if they are equal, false
otherwise.
*/
BoundingSphere.prototype.equals = function (right) {
return BoundingSphere.equals(this, right);
};
/**
* Duplicates this BoundingSphere instance.
*
* @param {BoundingSphere} [result] The object onto which to store the result.
* @returns {BoundingSphere} The modified result parameter or a new BoundingSphere instance if none was provided.
*/
BoundingSphere.prototype.clone = function (result) {
return BoundingSphere.clone(this, result);
};
/**
* Computes the radius of the BoundingSphere.
* @returns {Number} The radius of the BoundingSphere.
*/
BoundingSphere.prototype.volume = function () {
const radius = this.radius;
return volumeConstant * radius * radius * radius;
};
export default BoundingSphere;