import Check from "./Check.js"; import defaultValue from "./defaultValue.js"; import defined from "./defined.js"; import DeveloperError from "./DeveloperError.js"; import CesiumMath from "./Math.js"; /** * A 3D Cartesian point. * @alias Cartesian3 * @constructor * * @param {Number} [x=0.0] The X component. * @param {Number} [y=0.0] The Y component. * @param {Number} [z=0.0] The Z component. * * @see Cartesian2 * @see Cartesian4 * @see Packable */ function Cartesian3(x, y, z) { /** * The X component. * @type {Number} * @default 0.0 */ this.x = defaultValue(x, 0.0); /** * The Y component. * @type {Number} * @default 0.0 */ this.y = defaultValue(y, 0.0); /** * The Z component. * @type {Number} * @default 0.0 */ this.z = defaultValue(z, 0.0); } /** * Converts the provided Spherical into Cartesian3 coordinates. * * @param {Spherical} spherical The Spherical to be converted to Cartesian3. * @param {Cartesian3} [result] The object onto which to store the result. * @returns {Cartesian3} The modified result parameter or a new Cartesian3 instance if one was not provided. */ Cartesian3.fromSpherical = function (spherical, result) { //>>includeStart('debug', pragmas.debug); Check.typeOf.object("spherical", spherical); //>>includeEnd('debug'); if (!defined(result)) { result = new Cartesian3(); } const clock = spherical.clock; const cone = spherical.cone; const magnitude = defaultValue(spherical.magnitude, 1.0); const radial = magnitude * Math.sin(cone); result.x = radial * Math.cos(clock); result.y = radial * Math.sin(clock); result.z = magnitude * Math.cos(cone); return result; }; /** * Creates a Cartesian3 instance from x, y and z coordinates. * * @param {Number} x The x coordinate. * @param {Number} y The y coordinate. * @param {Number} z The z coordinate. * @param {Cartesian3} [result] The object onto which to store the result. * @returns {Cartesian3} The modified result parameter or a new Cartesian3 instance if one was not provided. */ Cartesian3.fromElements = function (x, y, z, result) { if (!defined(result)) { return new Cartesian3(x, y, z); } result.x = x; result.y = y; result.z = z; return result; }; /** * Duplicates a Cartesian3 instance. * * @param {Cartesian3} cartesian The Cartesian to duplicate. * @param {Cartesian3} [result] The object onto which to store the result. * @returns {Cartesian3} The modified result parameter or a new Cartesian3 instance if one was not provided. (Returns undefined if cartesian is undefined) */ Cartesian3.clone = function (cartesian, result) { if (!defined(cartesian)) { return undefined; } if (!defined(result)) { return new Cartesian3(cartesian.x, cartesian.y, cartesian.z); } result.x = cartesian.x; result.y = cartesian.y; result.z = cartesian.z; return result; }; /** * Creates a Cartesian3 instance from an existing Cartesian4. This simply takes the * x, y, and z properties of the Cartesian4 and drops w. * @function * * @param {Cartesian4} cartesian The Cartesian4 instance to create a Cartesian3 instance from. * @param {Cartesian3} [result] The object onto which to store the result. * @returns {Cartesian3} The modified result parameter or a new Cartesian3 instance if one was not provided. */ Cartesian3.fromCartesian4 = Cartesian3.clone; /** * The number of elements used to pack the object into an array. * @type {Number} */ Cartesian3.packedLength = 3; /** * Stores the provided instance into the provided array. * * @param {Cartesian3} value The value to pack. * @param {Number[]} array The array to pack into. * @param {Number} [startingIndex=0] The index into the array at which to start packing the elements. * * @returns {Number[]} The array that was packed into */ Cartesian3.pack = function (value, array, startingIndex) { //>>includeStart('debug', pragmas.debug); Check.typeOf.object("value", value); Check.defined("array", array); //>>includeEnd('debug'); startingIndex = defaultValue(startingIndex, 0); array[startingIndex++] = value.x; array[startingIndex++] = value.y; array[startingIndex] = value.z; return array; }; /** * Retrieves an instance from a packed array. * * @param {Number[]} array The packed array. * @param {Number} [startingIndex=0] The starting index of the element to be unpacked. * @param {Cartesian3} [result] The object into which to store the result. * @returns {Cartesian3} The modified result parameter or a new Cartesian3 instance if one was not provided. */ Cartesian3.unpack = function (array, startingIndex, result) { //>>includeStart('debug', pragmas.debug); Check.defined("array", array); //>>includeEnd('debug'); startingIndex = defaultValue(startingIndex, 0); if (!defined(result)) { result = new Cartesian3(); } result.x = array[startingIndex++]; result.y = array[startingIndex++]; result.z = array[startingIndex]; return result; }; /** * Flattens an array of Cartesian3s into an array of components. * * @param {Cartesian3[]} array The array of cartesians to pack. * @param {Number[]} [result] The array onto which to store the result. If this is a typed array, it must have array.length * 3 components, else a {@link DeveloperError} will be thrown. If it is a regular array, it will be resized to have (array.length * 3) elements. * @returns {Number[]} The packed array. */ Cartesian3.packArray = function (array, result) { //>>includeStart('debug', pragmas.debug); Check.defined("array", array); //>>includeEnd('debug'); const length = array.length; const resultLength = length * 3; if (!defined(result)) { result = new Array(resultLength); } else if (!Array.isArray(result) && result.length !== resultLength) { //>>includeStart('debug', pragmas.debug); throw new DeveloperError( "If result is a typed array, it must have exactly array.length * 3 elements" ); //>>includeEnd('debug'); } else if (result.length !== resultLength) { result.length = resultLength; } for (let i = 0; i < length; ++i) { Cartesian3.pack(array[i], result, i * 3); } return result; }; /** * Unpacks an array of cartesian components into an array of Cartesian3s. * * @param {Number[]} array The array of components to unpack. * @param {Cartesian3[]} [result] The array onto which to store the result. * @returns {Cartesian3[]} The unpacked array. */ Cartesian3.unpackArray = function (array, result) { //>>includeStart('debug', pragmas.debug); Check.defined("array", array); Check.typeOf.number.greaterThanOrEquals("array.length", array.length, 3); if (array.length % 3 !== 0) { throw new DeveloperError("array length must be a multiple of 3."); } //>>includeEnd('debug'); const length = array.length; if (!defined(result)) { result = new Array(length / 3); } else { result.length = length / 3; } for (let i = 0; i < length; i += 3) { const index = i / 3; result[index] = Cartesian3.unpack(array, i, result[index]); } return result; }; /** * Creates a Cartesian3 from three consecutive elements in an array. * @function * * @param {Number[]} array The array whose three consecutive elements correspond to the x, y, and z components, respectively. * @param {Number} [startingIndex=0] The offset into the array of the first element, which corresponds to the x component. * @param {Cartesian3} [result] The object onto which to store the result. * @returns {Cartesian3} The modified result parameter or a new Cartesian3 instance if one was not provided. * * @example * // Create a Cartesian3 with (1.0, 2.0, 3.0) * const v = [1.0, 2.0, 3.0]; * const p = Cesium.Cartesian3.fromArray(v); * * // Create a Cartesian3 with (1.0, 2.0, 3.0) using an offset into an array * const v2 = [0.0, 0.0, 1.0, 2.0, 3.0]; * const p2 = Cesium.Cartesian3.fromArray(v2, 2); */ Cartesian3.fromArray = Cartesian3.unpack; /** * Computes the value of the maximum component for the supplied Cartesian. * * @param {Cartesian3} cartesian The cartesian to use. * @returns {Number} The value of the maximum component. */ Cartesian3.maximumComponent = function (cartesian) { //>>includeStart('debug', pragmas.debug); Check.typeOf.object("cartesian", cartesian); //>>includeEnd('debug'); return Math.max(cartesian.x, cartesian.y, cartesian.z); }; /** * Computes the value of the minimum component for the supplied Cartesian. * * @param {Cartesian3} cartesian The cartesian to use. * @returns {Number} The value of the minimum component. */ Cartesian3.minimumComponent = function (cartesian) { //>>includeStart('debug', pragmas.debug); Check.typeOf.object("cartesian", cartesian); //>>includeEnd('debug'); return Math.min(cartesian.x, cartesian.y, cartesian.z); }; /** * Compares two Cartesians and computes a Cartesian which contains the minimum components of the supplied Cartesians. * * @param {Cartesian3} first A cartesian to compare. * @param {Cartesian3} second A cartesian to compare. * @param {Cartesian3} result The object into which to store the result. * @returns {Cartesian3} A cartesian with the minimum components. */ Cartesian3.minimumByComponent = function (first, second, result) { //>>includeStart('debug', pragmas.debug); Check.typeOf.object("first", first); Check.typeOf.object("second", second); Check.typeOf.object("result", result); //>>includeEnd('debug'); result.x = Math.min(first.x, second.x); result.y = Math.min(first.y, second.y); result.z = Math.min(first.z, second.z); return result; }; /** * Compares two Cartesians and computes a Cartesian which contains the maximum components of the supplied Cartesians. * * @param {Cartesian3} first A cartesian to compare. * @param {Cartesian3} second A cartesian to compare. * @param {Cartesian3} result The object into which to store the result. * @returns {Cartesian3} A cartesian with the maximum components. */ Cartesian3.maximumByComponent = function (first, second, result) { //>>includeStart('debug', pragmas.debug); Check.typeOf.object("first", first); Check.typeOf.object("second", second); Check.typeOf.object("result", result); //>>includeEnd('debug'); result.x = Math.max(first.x, second.x); result.y = Math.max(first.y, second.y); result.z = Math.max(first.z, second.z); return result; }; /** * Constrain a value to lie between two values. * * @param {Cartesian3} cartesian The value to clamp. * @param {Cartesian3} min The minimum bound. * @param {Cartesian3} max The maximum bound. * @param {Cartesian3} result The object into which to store the result. * @returns {Cartesian3} The clamped value such that min <= value <= max. */ Cartesian3.clamp = function (value, min, max, result) { //>>includeStart('debug', pragmas.debug); Check.typeOf.object("value", value); Check.typeOf.object("min", min); Check.typeOf.object("max", max); Check.typeOf.object("result", result); //>>includeEnd('debug'); const x = CesiumMath.clamp(value.x, min.x, max.x); const y = CesiumMath.clamp(value.y, min.y, max.y); const z = CesiumMath.clamp(value.z, min.z, max.z); result.x = x; result.y = y; result.z = z; return result; }; /** * Computes the provided Cartesian's squared magnitude. * * @param {Cartesian3} cartesian The Cartesian instance whose squared magnitude is to be computed. * @returns {Number} The squared magnitude. */ Cartesian3.magnitudeSquared = function (cartesian) { //>>includeStart('debug', pragmas.debug); Check.typeOf.object("cartesian", cartesian); //>>includeEnd('debug'); return ( cartesian.x * cartesian.x + cartesian.y * cartesian.y + cartesian.z * cartesian.z ); }; /** * Computes the Cartesian's magnitude (length). * * @param {Cartesian3} cartesian The Cartesian instance whose magnitude is to be computed. * @returns {Number} The magnitude. */ Cartesian3.magnitude = function (cartesian) { return Math.sqrt(Cartesian3.magnitudeSquared(cartesian)); }; const distanceScratch = new Cartesian3(); /** * Computes the distance between two points. * * @param {Cartesian3} left The first point to compute the distance from. * @param {Cartesian3} right The second point to compute the distance to. * @returns {Number} The distance between two points. * * @example * // Returns 1.0 * const d = Cesium.Cartesian3.distance(new Cesium.Cartesian3(1.0, 0.0, 0.0), new Cesium.Cartesian3(2.0, 0.0, 0.0)); */ Cartesian3.distance = function (left, right) { //>>includeStart('debug', pragmas.debug); Check.typeOf.object("left", left); Check.typeOf.object("right", right); //>>includeEnd('debug'); Cartesian3.subtract(left, right, distanceScratch); return Cartesian3.magnitude(distanceScratch); }; /** * Computes the squared distance between two points. Comparing squared distances * using this function is more efficient than comparing distances using {@link Cartesian3#distance}. * * @param {Cartesian3} left The first point to compute the distance from. * @param {Cartesian3} right The second point to compute the distance to. * @returns {Number} The distance between two points. * * @example * // Returns 4.0, not 2.0 * const d = Cesium.Cartesian3.distanceSquared(new Cesium.Cartesian3(1.0, 0.0, 0.0), new Cesium.Cartesian3(3.0, 0.0, 0.0)); */ Cartesian3.distanceSquared = function (left, right) { //>>includeStart('debug', pragmas.debug); Check.typeOf.object("left", left); Check.typeOf.object("right", right); //>>includeEnd('debug'); Cartesian3.subtract(left, right, distanceScratch); return Cartesian3.magnitudeSquared(distanceScratch); }; /** * Computes the normalized form of the supplied Cartesian. * * @param {Cartesian3} cartesian The Cartesian to be normalized. * @param {Cartesian3} result The object onto which to store the result. * @returns {Cartesian3} The modified result parameter. */ Cartesian3.normalize = function (cartesian, result) { //>>includeStart('debug', pragmas.debug); Check.typeOf.object("cartesian", cartesian); Check.typeOf.object("result", result); //>>includeEnd('debug'); const magnitude = Cartesian3.magnitude(cartesian); result.x = cartesian.x / magnitude; result.y = cartesian.y / magnitude; result.z = cartesian.z / magnitude; //>>includeStart('debug', pragmas.debug); if (isNaN(result.x) || isNaN(result.y) || isNaN(result.z)) { throw new DeveloperError("normalized result is not a number"); } //>>includeEnd('debug'); return result; }; /** * Computes the dot (scalar) product of two Cartesians. * * @param {Cartesian3} left The first Cartesian. * @param {Cartesian3} right The second Cartesian. * @returns {Number} The dot product. */ Cartesian3.dot = function (left, right) { //>>includeStart('debug', pragmas.debug); Check.typeOf.object("left", left); Check.typeOf.object("right", right); //>>includeEnd('debug'); return left.x * right.x + left.y * right.y + left.z * right.z; }; /** * Computes the componentwise product of two Cartesians. * * @param {Cartesian3} left The first Cartesian. * @param {Cartesian3} right The second Cartesian. * @param {Cartesian3} result The object onto which to store the result. * @returns {Cartesian3} The modified result parameter. */ Cartesian3.multiplyComponents = function (left, right, result) { //>>includeStart('debug', pragmas.debug); Check.typeOf.object("left", left); Check.typeOf.object("right", right); Check.typeOf.object("result", result); //>>includeEnd('debug'); result.x = left.x * right.x; result.y = left.y * right.y; result.z = left.z * right.z; return result; }; /** * Computes the componentwise quotient of two Cartesians. * * @param {Cartesian3} left The first Cartesian. * @param {Cartesian3} right The second Cartesian. * @param {Cartesian3} result The object onto which to store the result. * @returns {Cartesian3} The modified result parameter. */ Cartesian3.divideComponents = function (left, right, result) { //>>includeStart('debug', pragmas.debug); Check.typeOf.object("left", left); Check.typeOf.object("right", right); Check.typeOf.object("result", result); //>>includeEnd('debug'); result.x = left.x / right.x; result.y = left.y / right.y; result.z = left.z / right.z; return result; }; /** * Computes the componentwise sum of two Cartesians. * * @param {Cartesian3} left The first Cartesian. * @param {Cartesian3} right The second Cartesian. * @param {Cartesian3} result The object onto which to store the result. * @returns {Cartesian3} The modified result parameter. */ Cartesian3.add = function (left, right, result) { //>>includeStart('debug', pragmas.debug); Check.typeOf.object("left", left); Check.typeOf.object("right", right); Check.typeOf.object("result", result); //>>includeEnd('debug'); result.x = left.x + right.x; result.y = left.y + right.y; result.z = left.z + right.z; return result; }; /** * Computes the componentwise difference of two Cartesians. * * @param {Cartesian3} left The first Cartesian. * @param {Cartesian3} right The second Cartesian. * @param {Cartesian3} result The object onto which to store the result. * @returns {Cartesian3} The modified result parameter. */ Cartesian3.subtract = function (left, right, result) { //>>includeStart('debug', pragmas.debug); Check.typeOf.object("left", left); Check.typeOf.object("right", right); Check.typeOf.object("result", result); //>>includeEnd('debug'); result.x = left.x - right.x; result.y = left.y - right.y; result.z = left.z - right.z; return result; }; /** * Multiplies the provided Cartesian componentwise by the provided scalar. * * @param {Cartesian3} cartesian The Cartesian to be scaled. * @param {Number} scalar The scalar to multiply with. * @param {Cartesian3} result The object onto which to store the result. * @returns {Cartesian3} The modified result parameter. */ Cartesian3.multiplyByScalar = function (cartesian, scalar, result) { //>>includeStart('debug', pragmas.debug); Check.typeOf.object("cartesian", cartesian); Check.typeOf.number("scalar", scalar); Check.typeOf.object("result", result); //>>includeEnd('debug'); result.x = cartesian.x * scalar; result.y = cartesian.y * scalar; result.z = cartesian.z * scalar; return result; }; /** * Divides the provided Cartesian componentwise by the provided scalar. * * @param {Cartesian3} cartesian The Cartesian to be divided. * @param {Number} scalar The scalar to divide by. * @param {Cartesian3} result The object onto which to store the result. * @returns {Cartesian3} The modified result parameter. */ Cartesian3.divideByScalar = function (cartesian, scalar, result) { //>>includeStart('debug', pragmas.debug); Check.typeOf.object("cartesian", cartesian); Check.typeOf.number("scalar", scalar); Check.typeOf.object("result", result); //>>includeEnd('debug'); result.x = cartesian.x / scalar; result.y = cartesian.y / scalar; result.z = cartesian.z / scalar; return result; }; /** * Negates the provided Cartesian. * * @param {Cartesian3} cartesian The Cartesian to be negated. * @param {Cartesian3} result The object onto which to store the result. * @returns {Cartesian3} The modified result parameter. */ Cartesian3.negate = function (cartesian, result) { //>>includeStart('debug', pragmas.debug); Check.typeOf.object("cartesian", cartesian); Check.typeOf.object("result", result); //>>includeEnd('debug'); result.x = -cartesian.x; result.y = -cartesian.y; result.z = -cartesian.z; return result; }; /** * Computes the absolute value of the provided Cartesian. * * @param {Cartesian3} cartesian The Cartesian whose absolute value is to be computed. * @param {Cartesian3} result The object onto which to store the result. * @returns {Cartesian3} The modified result parameter. */ Cartesian3.abs = function (cartesian, result) { //>>includeStart('debug', pragmas.debug); Check.typeOf.object("cartesian", cartesian); Check.typeOf.object("result", result); //>>includeEnd('debug'); result.x = Math.abs(cartesian.x); result.y = Math.abs(cartesian.y); result.z = Math.abs(cartesian.z); return result; }; const lerpScratch = new Cartesian3(); /** * Computes the linear interpolation or extrapolation at t using the provided cartesians. * * @param {Cartesian3} start The value corresponding to t at 0.0. * @param {Cartesian3} end The value corresponding to t at 1.0. * @param {Number} t The point along t at which to interpolate. * @param {Cartesian3} result The object onto which to store the result. * @returns {Cartesian3} The modified result parameter. */ Cartesian3.lerp = function (start, end, t, result) { //>>includeStart('debug', pragmas.debug); Check.typeOf.object("start", start); Check.typeOf.object("end", end); Check.typeOf.number("t", t); Check.typeOf.object("result", result); //>>includeEnd('debug'); Cartesian3.multiplyByScalar(end, t, lerpScratch); result = Cartesian3.multiplyByScalar(start, 1.0 - t, result); return Cartesian3.add(lerpScratch, result, result); }; const angleBetweenScratch = new Cartesian3(); const angleBetweenScratch2 = new Cartesian3(); /** * Returns the angle, in radians, between the provided Cartesians. * * @param {Cartesian3} left The first Cartesian. * @param {Cartesian3} right The second Cartesian. * @returns {Number} The angle between the Cartesians. */ Cartesian3.angleBetween = function (left, right) { //>>includeStart('debug', pragmas.debug); Check.typeOf.object("left", left); Check.typeOf.object("right", right); //>>includeEnd('debug'); Cartesian3.normalize(left, angleBetweenScratch); Cartesian3.normalize(right, angleBetweenScratch2); const cosine = Cartesian3.dot(angleBetweenScratch, angleBetweenScratch2); const sine = Cartesian3.magnitude( Cartesian3.cross( angleBetweenScratch, angleBetweenScratch2, angleBetweenScratch ) ); return Math.atan2(sine, cosine); }; const mostOrthogonalAxisScratch = new Cartesian3(); /** * Returns the axis that is most orthogonal to the provided Cartesian. * * @param {Cartesian3} cartesian The Cartesian on which to find the most orthogonal axis. * @param {Cartesian3} result The object onto which to store the result. * @returns {Cartesian3} The most orthogonal axis. */ Cartesian3.mostOrthogonalAxis = function (cartesian, result) { //>>includeStart('debug', pragmas.debug); Check.typeOf.object("cartesian", cartesian); Check.typeOf.object("result", result); //>>includeEnd('debug'); const f = Cartesian3.normalize(cartesian, mostOrthogonalAxisScratch); Cartesian3.abs(f, f); if (f.x <= f.y) { if (f.x <= f.z) { result = Cartesian3.clone(Cartesian3.UNIT_X, result); } else { result = Cartesian3.clone(Cartesian3.UNIT_Z, result); } } else if (f.y <= f.z) { result = Cartesian3.clone(Cartesian3.UNIT_Y, result); } else { result = Cartesian3.clone(Cartesian3.UNIT_Z, result); } return result; }; /** * Projects vector a onto vector b * @param {Cartesian3} a The vector that needs projecting * @param {Cartesian3} b The vector to project onto * @param {Cartesian3} result The result cartesian * @returns {Cartesian3} The modified result parameter */ Cartesian3.projectVector = function (a, b, result) { //>>includeStart('debug', pragmas.debug); Check.defined("a", a); Check.defined("b", b); Check.defined("result", result); //>>includeEnd('debug'); const scalar = Cartesian3.dot(a, b) / Cartesian3.dot(b, b); return Cartesian3.multiplyByScalar(b, scalar, result); }; /** * Compares the provided Cartesians componentwise and returns * true if they are equal, false otherwise. * * @param {Cartesian3} [left] The first Cartesian. * @param {Cartesian3} [right] The second Cartesian. * @returns {Boolean} true if left and right are equal, false otherwise. */ Cartesian3.equals = function (left, right) { return ( left === right || (defined(left) && defined(right) && left.x === right.x && left.y === right.y && left.z === right.z) ); }; /** * @private */ Cartesian3.equalsArray = function (cartesian, array, offset) { return ( cartesian.x === array[offset] && cartesian.y === array[offset + 1] && cartesian.z === array[offset + 2] ); }; /** * Compares the provided Cartesians componentwise and returns * true if they pass an absolute or relative tolerance test, * false otherwise. * * @param {Cartesian3} [left] The first Cartesian. * @param {Cartesian3} [right] The second Cartesian. * @param {Number} [relativeEpsilon=0] The relative epsilon tolerance to use for equality testing. * @param {Number} [absoluteEpsilon=relativeEpsilon] The absolute epsilon tolerance to use for equality testing. * @returns {Boolean} true if left and right are within the provided epsilon, false otherwise. */ Cartesian3.equalsEpsilon = function ( left, right, relativeEpsilon, absoluteEpsilon ) { return ( left === right || (defined(left) && defined(right) && CesiumMath.equalsEpsilon( left.x, right.x, relativeEpsilon, absoluteEpsilon ) && CesiumMath.equalsEpsilon( left.y, right.y, relativeEpsilon, absoluteEpsilon ) && CesiumMath.equalsEpsilon( left.z, right.z, relativeEpsilon, absoluteEpsilon )) ); }; /** * Computes the cross (outer) product of two Cartesians. * * @param {Cartesian3} left The first Cartesian. * @param {Cartesian3} right The second Cartesian. * @param {Cartesian3} result The object onto which to store the result. * @returns {Cartesian3} The cross product. */ Cartesian3.cross = function (left, right, result) { //>>includeStart('debug', pragmas.debug); Check.typeOf.object("left", left); Check.typeOf.object("right", right); Check.typeOf.object("result", result); //>>includeEnd('debug'); const leftX = left.x; const leftY = left.y; const leftZ = left.z; const rightX = right.x; const rightY = right.y; const rightZ = right.z; const x = leftY * rightZ - leftZ * rightY; const y = leftZ * rightX - leftX * rightZ; const z = leftX * rightY - leftY * rightX; result.x = x; result.y = y; result.z = z; return result; }; /** * Computes the midpoint between the right and left Cartesian. * @param {Cartesian3} left The first Cartesian. * @param {Cartesian3} right The second Cartesian. * @param {Cartesian3} result The object onto which to store the result. * @returns {Cartesian3} The midpoint. */ Cartesian3.midpoint = function (left, right, result) { //>>includeStart('debug', pragmas.debug); Check.typeOf.object("left", left); Check.typeOf.object("right", right); Check.typeOf.object("result", result); //>>includeEnd('debug'); result.x = (left.x + right.x) * 0.5; result.y = (left.y + right.y) * 0.5; result.z = (left.z + right.z) * 0.5; return result; }; /** * Returns a Cartesian3 position from longitude and latitude values given in degrees. * * @param {Number} longitude The longitude, in degrees * @param {Number} latitude The latitude, in degrees * @param {Number} [height=0.0] The height, in meters, above the ellipsoid. * @param {Ellipsoid} [ellipsoid=Ellipsoid.WGS84] The ellipsoid on which the position lies. * @param {Cartesian3} [result] The object onto which to store the result. * @returns {Cartesian3} The position * * @example * const position = Cesium.Cartesian3.fromDegrees(-115.0, 37.0); */ Cartesian3.fromDegrees = function ( longitude, latitude, height, ellipsoid, result ) { //>>includeStart('debug', pragmas.debug); Check.typeOf.number("longitude", longitude); Check.typeOf.number("latitude", latitude); //>>includeEnd('debug'); longitude = CesiumMath.toRadians(longitude); latitude = CesiumMath.toRadians(latitude); return Cartesian3.fromRadians(longitude, latitude, height, ellipsoid, result); }; let scratchN = new Cartesian3(); let scratchK = new Cartesian3(); const wgs84RadiiSquared = new Cartesian3( 6378137.0 * 6378137.0, 6378137.0 * 6378137.0, 6356752.3142451793 * 6356752.3142451793 ); /** * Returns a Cartesian3 position from longitude and latitude values given in radians. * * @param {Number} longitude The longitude, in radians * @param {Number} latitude The latitude, in radians * @param {Number} [height=0.0] The height, in meters, above the ellipsoid. * @param {Ellipsoid} [ellipsoid=Ellipsoid.WGS84] The ellipsoid on which the position lies. * @param {Cartesian3} [result] The object onto which to store the result. * @returns {Cartesian3} The position * * @example * const position = Cesium.Cartesian3.fromRadians(-2.007, 0.645); */ Cartesian3.fromRadians = function ( longitude, latitude, height, ellipsoid, result ) { //>>includeStart('debug', pragmas.debug); Check.typeOf.number("longitude", longitude); Check.typeOf.number("latitude", latitude); //>>includeEnd('debug'); height = defaultValue(height, 0.0); const radiiSquared = defined(ellipsoid) ? ellipsoid.radiiSquared : wgs84RadiiSquared; const cosLatitude = Math.cos(latitude); scratchN.x = cosLatitude * Math.cos(longitude); scratchN.y = cosLatitude * Math.sin(longitude); scratchN.z = Math.sin(latitude); scratchN = Cartesian3.normalize(scratchN, scratchN); Cartesian3.multiplyComponents(radiiSquared, scratchN, scratchK); const gamma = Math.sqrt(Cartesian3.dot(scratchN, scratchK)); scratchK = Cartesian3.divideByScalar(scratchK, gamma, scratchK); scratchN = Cartesian3.multiplyByScalar(scratchN, height, scratchN); if (!defined(result)) { result = new Cartesian3(); } return Cartesian3.add(scratchK, scratchN, result); }; /** * Returns an array of Cartesian3 positions given an array of longitude and latitude values given in degrees. * * @param {Number[]} coordinates A list of longitude and latitude values. Values alternate [longitude, latitude, longitude, latitude...]. * @param {Ellipsoid} [ellipsoid=Ellipsoid.WGS84] The ellipsoid on which the coordinates lie. * @param {Cartesian3[]} [result] An array of Cartesian3 objects to store the result. * @returns {Cartesian3[]} The array of positions. * * @example * const positions = Cesium.Cartesian3.fromDegreesArray([-115.0, 37.0, -107.0, 33.0]); */ Cartesian3.fromDegreesArray = function (coordinates, ellipsoid, result) { //>>includeStart('debug', pragmas.debug); Check.defined("coordinates", coordinates); if (coordinates.length < 2 || coordinates.length % 2 !== 0) { throw new DeveloperError( "the number of coordinates must be a multiple of 2 and at least 2" ); } //>>includeEnd('debug'); const length = coordinates.length; if (!defined(result)) { result = new Array(length / 2); } else { result.length = length / 2; } for (let i = 0; i < length; i += 2) { const longitude = coordinates[i]; const latitude = coordinates[i + 1]; const index = i / 2; result[index] = Cartesian3.fromDegrees( longitude, latitude, 0, ellipsoid, result[index] ); } return result; }; /** * Returns an array of Cartesian3 positions given an array of longitude and latitude values given in radians. * * @param {Number[]} coordinates A list of longitude and latitude values. Values alternate [longitude, latitude, longitude, latitude...]. * @param {Ellipsoid} [ellipsoid=Ellipsoid.WGS84] The ellipsoid on which the coordinates lie. * @param {Cartesian3[]} [result] An array of Cartesian3 objects to store the result. * @returns {Cartesian3[]} The array of positions. * * @example * const positions = Cesium.Cartesian3.fromRadiansArray([-2.007, 0.645, -1.867, .575]); */ Cartesian3.fromRadiansArray = function (coordinates, ellipsoid, result) { //>>includeStart('debug', pragmas.debug); Check.defined("coordinates", coordinates); if (coordinates.length < 2 || coordinates.length % 2 !== 0) { throw new DeveloperError( "the number of coordinates must be a multiple of 2 and at least 2" ); } //>>includeEnd('debug'); const length = coordinates.length; if (!defined(result)) { result = new Array(length / 2); } else { result.length = length / 2; } for (let i = 0; i < length; i += 2) { const longitude = coordinates[i]; const latitude = coordinates[i + 1]; const index = i / 2; result[index] = Cartesian3.fromRadians( longitude, latitude, 0, ellipsoid, result[index] ); } return result; }; /** * Returns an array of Cartesian3 positions given an array of longitude, latitude and height values where longitude and latitude are given in degrees. * * @param {Number[]} coordinates A list of longitude, latitude and height values. Values alternate [longitude, latitude, height, longitude, latitude, height...]. * @param {Ellipsoid} [ellipsoid=Ellipsoid.WGS84] The ellipsoid on which the position lies. * @param {Cartesian3[]} [result] An array of Cartesian3 objects to store the result. * @returns {Cartesian3[]} The array of positions. * * @example * const positions = Cesium.Cartesian3.fromDegreesArrayHeights([-115.0, 37.0, 100000.0, -107.0, 33.0, 150000.0]); */ Cartesian3.fromDegreesArrayHeights = function (coordinates, ellipsoid, result) { //>>includeStart('debug', pragmas.debug); Check.defined("coordinates", coordinates); if (coordinates.length < 3 || coordinates.length % 3 !== 0) { throw new DeveloperError( "the number of coordinates must be a multiple of 3 and at least 3" ); } //>>includeEnd('debug'); const length = coordinates.length; if (!defined(result)) { result = new Array(length / 3); } else { result.length = length / 3; } for (let i = 0; i < length; i += 3) { const longitude = coordinates[i]; const latitude = coordinates[i + 1]; const height = coordinates[i + 2]; const index = i / 3; result[index] = Cartesian3.fromDegrees( longitude, latitude, height, ellipsoid, result[index] ); } return result; }; /** * Returns an array of Cartesian3 positions given an array of longitude, latitude and height values where longitude and latitude are given in radians. * * @param {Number[]} coordinates A list of longitude, latitude and height values. Values alternate [longitude, latitude, height, longitude, latitude, height...]. * @param {Ellipsoid} [ellipsoid=Ellipsoid.WGS84] The ellipsoid on which the position lies. * @param {Cartesian3[]} [result] An array of Cartesian3 objects to store the result. * @returns {Cartesian3[]} The array of positions. * * @example * const positions = Cesium.Cartesian3.fromRadiansArrayHeights([-2.007, 0.645, 100000.0, -1.867, .575, 150000.0]); */ Cartesian3.fromRadiansArrayHeights = function (coordinates, ellipsoid, result) { //>>includeStart('debug', pragmas.debug); Check.defined("coordinates", coordinates); if (coordinates.length < 3 || coordinates.length % 3 !== 0) { throw new DeveloperError( "the number of coordinates must be a multiple of 3 and at least 3" ); } //>>includeEnd('debug'); const length = coordinates.length; if (!defined(result)) { result = new Array(length / 3); } else { result.length = length / 3; } for (let i = 0; i < length; i += 3) { const longitude = coordinates[i]; const latitude = coordinates[i + 1]; const height = coordinates[i + 2]; const index = i / 3; result[index] = Cartesian3.fromRadians( longitude, latitude, height, ellipsoid, result[index] ); } return result; }; /** * An immutable Cartesian3 instance initialized to (0.0, 0.0, 0.0). * * @type {Cartesian3} * @constant */ Cartesian3.ZERO = Object.freeze(new Cartesian3(0.0, 0.0, 0.0)); /** * An immutable Cartesian3 instance initialized to (1.0, 1.0, 1.0). * * @type {Cartesian3} * @constant */ Cartesian3.ONE = Object.freeze(new Cartesian3(1.0, 1.0, 1.0)); /** * An immutable Cartesian3 instance initialized to (1.0, 0.0, 0.0). * * @type {Cartesian3} * @constant */ Cartesian3.UNIT_X = Object.freeze(new Cartesian3(1.0, 0.0, 0.0)); /** * An immutable Cartesian3 instance initialized to (0.0, 1.0, 0.0). * * @type {Cartesian3} * @constant */ Cartesian3.UNIT_Y = Object.freeze(new Cartesian3(0.0, 1.0, 0.0)); /** * An immutable Cartesian3 instance initialized to (0.0, 0.0, 1.0). * * @type {Cartesian3} * @constant */ Cartesian3.UNIT_Z = Object.freeze(new Cartesian3(0.0, 0.0, 1.0)); /** * Duplicates this Cartesian3 instance. * * @param {Cartesian3} [result] The object onto which to store the result. * @returns {Cartesian3} The modified result parameter or a new Cartesian3 instance if one was not provided. */ Cartesian3.prototype.clone = function (result) { return Cartesian3.clone(this, result); }; /** * Compares this Cartesian against the provided Cartesian componentwise and returns * true if they are equal, false otherwise. * * @param {Cartesian3} [right] The right hand side Cartesian. * @returns {Boolean} true if they are equal, false otherwise. */ Cartesian3.prototype.equals = function (right) { return Cartesian3.equals(this, right); }; /** * Compares this Cartesian against the provided Cartesian componentwise and returns * true if they pass an absolute or relative tolerance test, * false otherwise. * * @param {Cartesian3} [right] The right hand side Cartesian. * @param {Number} [relativeEpsilon=0] The relative epsilon tolerance to use for equality testing. * @param {Number} [absoluteEpsilon=relativeEpsilon] The absolute epsilon tolerance to use for equality testing. * @returns {Boolean} true if they are within the provided epsilon, false otherwise. */ Cartesian3.prototype.equalsEpsilon = function ( right, relativeEpsilon, absoluteEpsilon ) { return Cartesian3.equalsEpsilon( this, right, relativeEpsilon, absoluteEpsilon ); }; /** * Creates a string representing this Cartesian in the format '(x, y, z)'. * * @returns {String} A string representing this Cartesian in the format '(x, y, z)'. */ Cartesian3.prototype.toString = function () { return `(${this.x}, ${this.y}, ${this.z})`; }; export default Cartesian3;