import defined from "./defined.js"; /** * An {@link InterpolationAlgorithm} for performing Lagrange interpolation. * * @namespace LagrangePolynomialApproximation */ const LagrangePolynomialApproximation = { type: "Lagrange", }; /** * Given the desired degree, returns the number of data points required for interpolation. * * @param {Number} degree The desired degree of interpolation. * @returns {Number} The number of required data points needed for the desired degree of interpolation. */ LagrangePolynomialApproximation.getRequiredDataPoints = function (degree) { return Math.max(degree + 1.0, 2); }; /** * Interpolates values using Lagrange Polynomial Approximation. * * @param {Number} x The independent variable for which the dependent variables will be interpolated. * @param {Number[]} xTable The array of independent variables to use to interpolate. The values * in this array must be in increasing order and the same value must not occur twice in the array. * @param {Number[]} yTable The array of dependent variables to use to interpolate. For a set of three * dependent values (p,q,w) at time 1 and time 2 this should be as follows: {p1, q1, w1, p2, q2, w2}. * @param {Number} yStride The number of dependent variable values in yTable corresponding to * each independent variable value in xTable. * @param {Number[]} [result] An existing array into which to store the result. * @returns {Number[]} The array of interpolated values, or the result parameter if one was provided. */ LagrangePolynomialApproximation.interpolateOrderZero = function ( x, xTable, yTable, yStride, result ) { if (!defined(result)) { result = new Array(yStride); } let i; let j; const length = xTable.length; for (i = 0; i < yStride; i++) { result[i] = 0; } for (i = 0; i < length; i++) { let coefficient = 1; for (j = 0; j < length; j++) { if (j !== i) { const diffX = xTable[i] - xTable[j]; coefficient *= (x - xTable[j]) / diffX; } } for (j = 0; j < yStride; j++) { result[j] += coefficient * yTable[i * yStride + j]; } } return result; }; export default LagrangePolynomialApproximation;