import ArcType from "./ArcType.js"; import arrayRemoveDuplicates from "./arrayRemoveDuplicates.js"; import Cartesian2 from "./Cartesian2.js"; import Cartesian3 from "./Cartesian3.js"; import Cartographic from "./Cartographic.js"; import ComponentDatatype from "./ComponentDatatype.js"; import defaultValue from "./defaultValue.js"; import defined from "./defined.js"; import Ellipsoid from "./Ellipsoid.js"; import EllipsoidRhumbLine from "./EllipsoidRhumbLine.js"; import Geometry from "./Geometry.js"; import GeometryAttribute from "./GeometryAttribute.js"; import GeometryAttributes from "./GeometryAttributes.js"; import GeometryPipeline from "./GeometryPipeline.js"; import IndexDatatype from "./IndexDatatype.js"; import CesiumMath from "./Math.js"; import Matrix3 from "./Matrix3.js"; import PolygonPipeline from "./PolygonPipeline.js"; import PrimitiveType from "./PrimitiveType.js"; import Quaternion from "./Quaternion.js"; import Queue from "./Queue.js"; import WindingOrder from "./WindingOrder.js"; /** * @private */ const PolygonGeometryLibrary = {}; PolygonGeometryLibrary.computeHierarchyPackedLength = function ( polygonHierarchy ) { let numComponents = 0; const stack = [polygonHierarchy]; while (stack.length > 0) { const hierarchy = stack.pop(); if (!defined(hierarchy)) { continue; } numComponents += 2; const positions = hierarchy.positions; const holes = hierarchy.holes; if (defined(positions)) { numComponents += positions.length * Cartesian3.packedLength; } if (defined(holes)) { const length = holes.length; for (let i = 0; i < length; ++i) { stack.push(holes[i]); } } } return numComponents; }; PolygonGeometryLibrary.packPolygonHierarchy = function ( polygonHierarchy, array, startingIndex ) { const stack = [polygonHierarchy]; while (stack.length > 0) { const hierarchy = stack.pop(); if (!defined(hierarchy)) { continue; } const positions = hierarchy.positions; const holes = hierarchy.holes; array[startingIndex++] = defined(positions) ? positions.length : 0; array[startingIndex++] = defined(holes) ? holes.length : 0; if (defined(positions)) { const positionsLength = positions.length; for (let i = 0; i < positionsLength; ++i, startingIndex += 3) { Cartesian3.pack(positions[i], array, startingIndex); } } if (defined(holes)) { const holesLength = holes.length; for (let j = 0; j < holesLength; ++j) { stack.push(holes[j]); } } } return startingIndex; }; PolygonGeometryLibrary.unpackPolygonHierarchy = function ( array, startingIndex ) { const positionsLength = array[startingIndex++]; const holesLength = array[startingIndex++]; const positions = new Array(positionsLength); const holes = holesLength > 0 ? new Array(holesLength) : undefined; for ( let i = 0; i < positionsLength; ++i, startingIndex += Cartesian3.packedLength ) { positions[i] = Cartesian3.unpack(array, startingIndex); } for (let j = 0; j < holesLength; ++j) { holes[j] = PolygonGeometryLibrary.unpackPolygonHierarchy( array, startingIndex ); startingIndex = holes[j].startingIndex; delete holes[j].startingIndex; } return { positions: positions, holes: holes, startingIndex: startingIndex, }; }; const distanceScratch = new Cartesian3(); function getPointAtDistance(p0, p1, distance, length) { Cartesian3.subtract(p1, p0, distanceScratch); Cartesian3.multiplyByScalar( distanceScratch, distance / length, distanceScratch ); Cartesian3.add(p0, distanceScratch, distanceScratch); return [distanceScratch.x, distanceScratch.y, distanceScratch.z]; } PolygonGeometryLibrary.subdivideLineCount = function (p0, p1, minDistance) { const distance = Cartesian3.distance(p0, p1); const n = distance / minDistance; const countDivide = Math.max(0, Math.ceil(CesiumMath.log2(n))); return Math.pow(2, countDivide); }; const scratchCartographic0 = new Cartographic(); const scratchCartographic1 = new Cartographic(); const scratchCartographic2 = new Cartographic(); const scratchCartesian0 = new Cartesian3(); PolygonGeometryLibrary.subdivideRhumbLineCount = function ( ellipsoid, p0, p1, minDistance ) { const c0 = ellipsoid.cartesianToCartographic(p0, scratchCartographic0); const c1 = ellipsoid.cartesianToCartographic(p1, scratchCartographic1); const rhumb = new EllipsoidRhumbLine(c0, c1, ellipsoid); const n = rhumb.surfaceDistance / minDistance; const countDivide = Math.max(0, Math.ceil(CesiumMath.log2(n))); return Math.pow(2, countDivide); }; PolygonGeometryLibrary.subdivideLine = function (p0, p1, minDistance, result) { const numVertices = PolygonGeometryLibrary.subdivideLineCount( p0, p1, minDistance ); const length = Cartesian3.distance(p0, p1); const distanceBetweenVertices = length / numVertices; if (!defined(result)) { result = []; } const positions = result; positions.length = numVertices * 3; let index = 0; for (let i = 0; i < numVertices; i++) { const p = getPointAtDistance(p0, p1, i * distanceBetweenVertices, length); positions[index++] = p[0]; positions[index++] = p[1]; positions[index++] = p[2]; } return positions; }; PolygonGeometryLibrary.subdivideRhumbLine = function ( ellipsoid, p0, p1, minDistance, result ) { const c0 = ellipsoid.cartesianToCartographic(p0, scratchCartographic0); const c1 = ellipsoid.cartesianToCartographic(p1, scratchCartographic1); const rhumb = new EllipsoidRhumbLine(c0, c1, ellipsoid); const n = rhumb.surfaceDistance / minDistance; const countDivide = Math.max(0, Math.ceil(CesiumMath.log2(n))); const numVertices = Math.pow(2, countDivide); const distanceBetweenVertices = rhumb.surfaceDistance / numVertices; if (!defined(result)) { result = []; } const positions = result; positions.length = numVertices * 3; let index = 0; for (let i = 0; i < numVertices; i++) { const c = rhumb.interpolateUsingSurfaceDistance( i * distanceBetweenVertices, scratchCartographic2 ); const p = ellipsoid.cartographicToCartesian(c, scratchCartesian0); positions[index++] = p.x; positions[index++] = p.y; positions[index++] = p.z; } return positions; }; const scaleToGeodeticHeightN1 = new Cartesian3(); const scaleToGeodeticHeightN2 = new Cartesian3(); const scaleToGeodeticHeightP1 = new Cartesian3(); const scaleToGeodeticHeightP2 = new Cartesian3(); PolygonGeometryLibrary.scaleToGeodeticHeightExtruded = function ( geometry, maxHeight, minHeight, ellipsoid, perPositionHeight ) { ellipsoid = defaultValue(ellipsoid, Ellipsoid.WGS84); const n1 = scaleToGeodeticHeightN1; let n2 = scaleToGeodeticHeightN2; const p = scaleToGeodeticHeightP1; let p2 = scaleToGeodeticHeightP2; if ( defined(geometry) && defined(geometry.attributes) && defined(geometry.attributes.position) ) { const positions = geometry.attributes.position.values; const length = positions.length / 2; for (let i = 0; i < length; i += 3) { Cartesian3.fromArray(positions, i, p); ellipsoid.geodeticSurfaceNormal(p, n1); p2 = ellipsoid.scaleToGeodeticSurface(p, p2); n2 = Cartesian3.multiplyByScalar(n1, minHeight, n2); n2 = Cartesian3.add(p2, n2, n2); positions[i + length] = n2.x; positions[i + 1 + length] = n2.y; positions[i + 2 + length] = n2.z; if (perPositionHeight) { p2 = Cartesian3.clone(p, p2); } n2 = Cartesian3.multiplyByScalar(n1, maxHeight, n2); n2 = Cartesian3.add(p2, n2, n2); positions[i] = n2.x; positions[i + 1] = n2.y; positions[i + 2] = n2.z; } } return geometry; }; PolygonGeometryLibrary.polygonOutlinesFromHierarchy = function ( polygonHierarchy, scaleToEllipsoidSurface, ellipsoid ) { // create from a polygon hierarchy // Algorithm adapted from http://www.geometrictools.com/Documentation/TriangulationByEarClipping.pdf const polygons = []; const queue = new Queue(); queue.enqueue(polygonHierarchy); let i; let j; let length; while (queue.length !== 0) { const outerNode = queue.dequeue(); let outerRing = outerNode.positions; if (scaleToEllipsoidSurface) { length = outerRing.length; for (i = 0; i < length; i++) { ellipsoid.scaleToGeodeticSurface(outerRing[i], outerRing[i]); } } outerRing = arrayRemoveDuplicates( outerRing, Cartesian3.equalsEpsilon, true ); if (outerRing.length < 3) { continue; } const numChildren = outerNode.holes ? outerNode.holes.length : 0; // The outer polygon contains inner polygons for (i = 0; i < numChildren; i++) { const hole = outerNode.holes[i]; let holePositions = hole.positions; if (scaleToEllipsoidSurface) { length = holePositions.length; for (j = 0; j < length; ++j) { ellipsoid.scaleToGeodeticSurface(holePositions[j], holePositions[j]); } } holePositions = arrayRemoveDuplicates( holePositions, Cartesian3.equalsEpsilon, true ); if (holePositions.length < 3) { continue; } polygons.push(holePositions); let numGrandchildren = 0; if (defined(hole.holes)) { numGrandchildren = hole.holes.length; } for (j = 0; j < numGrandchildren; j++) { queue.enqueue(hole.holes[j]); } } polygons.push(outerRing); } return polygons; }; PolygonGeometryLibrary.polygonsFromHierarchy = function ( polygonHierarchy, projectPointsTo2D, scaleToEllipsoidSurface, ellipsoid ) { // create from a polygon hierarchy // Algorithm adapted from http://www.geometrictools.com/Documentation/TriangulationByEarClipping.pdf const hierarchy = []; const polygons = []; const queue = new Queue(); queue.enqueue(polygonHierarchy); while (queue.length !== 0) { const outerNode = queue.dequeue(); let outerRing = outerNode.positions; const holes = outerNode.holes; let i; let length; if (scaleToEllipsoidSurface) { length = outerRing.length; for (i = 0; i < length; i++) { ellipsoid.scaleToGeodeticSurface(outerRing[i], outerRing[i]); } } outerRing = arrayRemoveDuplicates( outerRing, Cartesian3.equalsEpsilon, true ); if (outerRing.length < 3) { continue; } let positions2D = projectPointsTo2D(outerRing); if (!defined(positions2D)) { continue; } const holeIndices = []; let originalWindingOrder = PolygonPipeline.computeWindingOrder2D( positions2D ); if (originalWindingOrder === WindingOrder.CLOCKWISE) { positions2D.reverse(); outerRing = outerRing.slice().reverse(); } let positions = outerRing.slice(); const numChildren = defined(holes) ? holes.length : 0; const polygonHoles = []; let j; for (i = 0; i < numChildren; i++) { const hole = holes[i]; let holePositions = hole.positions; if (scaleToEllipsoidSurface) { length = holePositions.length; for (j = 0; j < length; ++j) { ellipsoid.scaleToGeodeticSurface(holePositions[j], holePositions[j]); } } holePositions = arrayRemoveDuplicates( holePositions, Cartesian3.equalsEpsilon, true ); if (holePositions.length < 3) { continue; } const holePositions2D = projectPointsTo2D(holePositions); if (!defined(holePositions2D)) { continue; } originalWindingOrder = PolygonPipeline.computeWindingOrder2D( holePositions2D ); if (originalWindingOrder === WindingOrder.CLOCKWISE) { holePositions2D.reverse(); holePositions = holePositions.slice().reverse(); } polygonHoles.push(holePositions); holeIndices.push(positions.length); positions = positions.concat(holePositions); positions2D = positions2D.concat(holePositions2D); let numGrandchildren = 0; if (defined(hole.holes)) { numGrandchildren = hole.holes.length; } for (j = 0; j < numGrandchildren; j++) { queue.enqueue(hole.holes[j]); } } hierarchy.push({ outerRing: outerRing, holes: polygonHoles, }); polygons.push({ positions: positions, positions2D: positions2D, holes: holeIndices, }); } return { hierarchy: hierarchy, polygons: polygons, }; }; const computeBoundingRectangleCartesian2 = new Cartesian2(); const computeBoundingRectangleCartesian3 = new Cartesian3(); const computeBoundingRectangleQuaternion = new Quaternion(); const computeBoundingRectangleMatrix3 = new Matrix3(); PolygonGeometryLibrary.computeBoundingRectangle = function ( planeNormal, projectPointTo2D, positions, angle, result ) { const rotation = Quaternion.fromAxisAngle( planeNormal, angle, computeBoundingRectangleQuaternion ); const textureMatrix = Matrix3.fromQuaternion( rotation, computeBoundingRectangleMatrix3 ); let minX = Number.POSITIVE_INFINITY; let maxX = Number.NEGATIVE_INFINITY; let minY = Number.POSITIVE_INFINITY; let maxY = Number.NEGATIVE_INFINITY; const length = positions.length; for (let i = 0; i < length; ++i) { const p = Cartesian3.clone( positions[i], computeBoundingRectangleCartesian3 ); Matrix3.multiplyByVector(textureMatrix, p, p); const st = projectPointTo2D(p, computeBoundingRectangleCartesian2); if (defined(st)) { minX = Math.min(minX, st.x); maxX = Math.max(maxX, st.x); minY = Math.min(minY, st.y); maxY = Math.max(maxY, st.y); } } result.x = minX; result.y = minY; result.width = maxX - minX; result.height = maxY - minY; return result; }; PolygonGeometryLibrary.createGeometryFromPositions = function ( ellipsoid, polygon, granularity, perPositionHeight, vertexFormat, arcType ) { let indices = PolygonPipeline.triangulate(polygon.positions2D, polygon.holes); /* If polygon is completely unrenderable, just use the first three vertices */ if (indices.length < 3) { indices = [0, 1, 2]; } const positions = polygon.positions; if (perPositionHeight) { const length = positions.length; const flattenedPositions = new Array(length * 3); let index = 0; for (let i = 0; i < length; i++) { const p = positions[i]; flattenedPositions[index++] = p.x; flattenedPositions[index++] = p.y; flattenedPositions[index++] = p.z; } const geometry = new Geometry({ attributes: { position: new GeometryAttribute({ componentDatatype: ComponentDatatype.DOUBLE, componentsPerAttribute: 3, values: flattenedPositions, }), }, indices: indices, primitiveType: PrimitiveType.TRIANGLES, }); if (vertexFormat.normal) { return GeometryPipeline.computeNormal(geometry); } return geometry; } if (arcType === ArcType.GEODESIC) { return PolygonPipeline.computeSubdivision( ellipsoid, positions, indices, granularity ); } else if (arcType === ArcType.RHUMB) { return PolygonPipeline.computeRhumbLineSubdivision( ellipsoid, positions, indices, granularity ); } }; const computeWallIndicesSubdivided = []; const p1Scratch = new Cartesian3(); const p2Scratch = new Cartesian3(); PolygonGeometryLibrary.computeWallGeometry = function ( positions, ellipsoid, granularity, perPositionHeight, arcType ) { let edgePositions; let topEdgeLength; let i; let p1; let p2; let length = positions.length; let index = 0; if (!perPositionHeight) { const minDistance = CesiumMath.chordLength( granularity, ellipsoid.maximumRadius ); let numVertices = 0; if (arcType === ArcType.GEODESIC) { for (i = 0; i < length; i++) { numVertices += PolygonGeometryLibrary.subdivideLineCount( positions[i], positions[(i + 1) % length], minDistance ); } } else if (arcType === ArcType.RHUMB) { for (i = 0; i < length; i++) { numVertices += PolygonGeometryLibrary.subdivideRhumbLineCount( ellipsoid, positions[i], positions[(i + 1) % length], minDistance ); } } topEdgeLength = (numVertices + length) * 3; edgePositions = new Array(topEdgeLength * 2); for (i = 0; i < length; i++) { p1 = positions[i]; p2 = positions[(i + 1) % length]; let tempPositions; if (arcType === ArcType.GEODESIC) { tempPositions = PolygonGeometryLibrary.subdivideLine( p1, p2, minDistance, computeWallIndicesSubdivided ); } else if (arcType === ArcType.RHUMB) { tempPositions = PolygonGeometryLibrary.subdivideRhumbLine( ellipsoid, p1, p2, minDistance, computeWallIndicesSubdivided ); } const tempPositionsLength = tempPositions.length; for (let j = 0; j < tempPositionsLength; ++j, ++index) { edgePositions[index] = tempPositions[j]; edgePositions[index + topEdgeLength] = tempPositions[j]; } edgePositions[index] = p2.x; edgePositions[index + topEdgeLength] = p2.x; ++index; edgePositions[index] = p2.y; edgePositions[index + topEdgeLength] = p2.y; ++index; edgePositions[index] = p2.z; edgePositions[index + topEdgeLength] = p2.z; ++index; } } else { topEdgeLength = length * 3 * 2; edgePositions = new Array(topEdgeLength * 2); for (i = 0; i < length; i++) { p1 = positions[i]; p2 = positions[(i + 1) % length]; edgePositions[index] = edgePositions[index + topEdgeLength] = p1.x; ++index; edgePositions[index] = edgePositions[index + topEdgeLength] = p1.y; ++index; edgePositions[index] = edgePositions[index + topEdgeLength] = p1.z; ++index; edgePositions[index] = edgePositions[index + topEdgeLength] = p2.x; ++index; edgePositions[index] = edgePositions[index + topEdgeLength] = p2.y; ++index; edgePositions[index] = edgePositions[index + topEdgeLength] = p2.z; ++index; } } length = edgePositions.length; const indices = IndexDatatype.createTypedArray( length / 3, length - positions.length * 6 ); let edgeIndex = 0; length /= 6; for (i = 0; i < length; i++) { const UL = i; const UR = UL + 1; const LL = UL + length; const LR = LL + 1; p1 = Cartesian3.fromArray(edgePositions, UL * 3, p1Scratch); p2 = Cartesian3.fromArray(edgePositions, UR * 3, p2Scratch); if ( Cartesian3.equalsEpsilon( p1, p2, CesiumMath.EPSILON10, CesiumMath.EPSILON10 ) ) { //skip corner continue; } indices[edgeIndex++] = UL; indices[edgeIndex++] = LL; indices[edgeIndex++] = UR; indices[edgeIndex++] = UR; indices[edgeIndex++] = LL; indices[edgeIndex++] = LR; } return new Geometry({ attributes: new GeometryAttributes({ position: new GeometryAttribute({ componentDatatype: ComponentDatatype.DOUBLE, componentsPerAttribute: 3, values: edgePositions, }), }), indices: indices, primitiveType: PrimitiveType.TRIANGLES, }); }; export default PolygonGeometryLibrary;