import Cartographic from "./Cartographic.js";
import Check from "./Check.js";
import defaultValue from "./defaultValue.js";
import defined from "./defined.js";
import Ellipsoid from "./Ellipsoid.js";
import CesiumMath from "./Math.js";
/**
* A two dimensional region specified as longitude and latitude coordinates.
*
* @alias Rectangle
* @constructor
*
* @param {Number} [west=0.0] The westernmost longitude, in radians, in the range [-Pi, Pi].
* @param {Number} [south=0.0] The southernmost latitude, in radians, in the range [-Pi/2, Pi/2].
* @param {Number} [east=0.0] The easternmost longitude, in radians, in the range [-Pi, Pi].
* @param {Number} [north=0.0] The northernmost latitude, in radians, in the range [-Pi/2, Pi/2].
*
* @see Packable
*/
function Rectangle(west, south, east, north) {
/**
* The westernmost longitude in radians in the range [-Pi, Pi].
*
* @type {Number}
* @default 0.0
*/
this.west = defaultValue(west, 0.0);
/**
* The southernmost latitude in radians in the range [-Pi/2, Pi/2].
*
* @type {Number}
* @default 0.0
*/
this.south = defaultValue(south, 0.0);
/**
* The easternmost longitude in radians in the range [-Pi, Pi].
*
* @type {Number}
* @default 0.0
*/
this.east = defaultValue(east, 0.0);
/**
* The northernmost latitude in radians in the range [-Pi/2, Pi/2].
*
* @type {Number}
* @default 0.0
*/
this.north = defaultValue(north, 0.0);
}
Object.defineProperties(Rectangle.prototype, {
/**
* Gets the width of the rectangle in radians.
* @memberof Rectangle.prototype
* @type {Number}
* @readonly
*/
width: {
get: function () {
return Rectangle.computeWidth(this);
},
},
/**
* Gets the height of the rectangle in radians.
* @memberof Rectangle.prototype
* @type {Number}
* @readonly
*/
height: {
get: function () {
return Rectangle.computeHeight(this);
},
},
});
/**
* The number of elements used to pack the object into an array.
* @type {Number}
*/
Rectangle.packedLength = 4;
/**
* Stores the provided instance into the provided array.
*
* @param {Rectangle} value The value to pack.
* @param {Number[]} array The array to pack into.
* @param {Number} [startingIndex=0] The index into the array at which to start packing the elements.
*
* @returns {Number[]} The array that was packed into
*/
Rectangle.pack = function (value, array, startingIndex) {
//>>includeStart('debug', pragmas.debug);
Check.typeOf.object("value", value);
Check.defined("array", array);
//>>includeEnd('debug');
startingIndex = defaultValue(startingIndex, 0);
array[startingIndex++] = value.west;
array[startingIndex++] = value.south;
array[startingIndex++] = value.east;
array[startingIndex] = value.north;
return array;
};
/**
* Retrieves an instance from a packed array.
*
* @param {Number[]} array The packed array.
* @param {Number} [startingIndex=0] The starting index of the element to be unpacked.
* @param {Rectangle} [result] The object into which to store the result.
* @returns {Rectangle} The modified result parameter or a new Rectangle instance if one was not provided.
*/
Rectangle.unpack = function (array, startingIndex, result) {
//>>includeStart('debug', pragmas.debug);
Check.defined("array", array);
//>>includeEnd('debug');
startingIndex = defaultValue(startingIndex, 0);
if (!defined(result)) {
result = new Rectangle();
}
result.west = array[startingIndex++];
result.south = array[startingIndex++];
result.east = array[startingIndex++];
result.north = array[startingIndex];
return result;
};
/**
* Computes the width of a rectangle in radians.
* @param {Rectangle} rectangle The rectangle to compute the width of.
* @returns {Number} The width.
*/
Rectangle.computeWidth = function (rectangle) {
//>>includeStart('debug', pragmas.debug);
Check.typeOf.object("rectangle", rectangle);
//>>includeEnd('debug');
let east = rectangle.east;
const west = rectangle.west;
if (east < west) {
east += CesiumMath.TWO_PI;
}
return east - west;
};
/**
* Computes the height of a rectangle in radians.
* @param {Rectangle} rectangle The rectangle to compute the height of.
* @returns {Number} The height.
*/
Rectangle.computeHeight = function (rectangle) {
//>>includeStart('debug', pragmas.debug);
Check.typeOf.object("rectangle", rectangle);
//>>includeEnd('debug');
return rectangle.north - rectangle.south;
};
/**
* Creates a rectangle given the boundary longitude and latitude in degrees.
*
* @param {Number} [west=0.0] The westernmost longitude in degrees in the range [-180.0, 180.0].
* @param {Number} [south=0.0] The southernmost latitude in degrees in the range [-90.0, 90.0].
* @param {Number} [east=0.0] The easternmost longitude in degrees in the range [-180.0, 180.0].
* @param {Number} [north=0.0] The northernmost latitude in degrees in the range [-90.0, 90.0].
* @param {Rectangle} [result] The object onto which to store the result, or undefined if a new instance should be created.
* @returns {Rectangle} The modified result parameter or a new Rectangle instance if none was provided.
*
* @example
* const rectangle = Cesium.Rectangle.fromDegrees(0.0, 20.0, 10.0, 30.0);
*/
Rectangle.fromDegrees = function (west, south, east, north, result) {
west = CesiumMath.toRadians(defaultValue(west, 0.0));
south = CesiumMath.toRadians(defaultValue(south, 0.0));
east = CesiumMath.toRadians(defaultValue(east, 0.0));
north = CesiumMath.toRadians(defaultValue(north, 0.0));
if (!defined(result)) {
return new Rectangle(west, south, east, north);
}
result.west = west;
result.south = south;
result.east = east;
result.north = north;
return result;
};
/**
* Creates a rectangle given the boundary longitude and latitude in radians.
*
* @param {Number} [west=0.0] The westernmost longitude in radians in the range [-Math.PI, Math.PI].
* @param {Number} [south=0.0] The southernmost latitude in radians in the range [-Math.PI/2, Math.PI/2].
* @param {Number} [east=0.0] The easternmost longitude in radians in the range [-Math.PI, Math.PI].
* @param {Number} [north=0.0] The northernmost latitude in radians in the range [-Math.PI/2, Math.PI/2].
* @param {Rectangle} [result] The object onto which to store the result, or undefined if a new instance should be created.
* @returns {Rectangle} The modified result parameter or a new Rectangle instance if none was provided.
*
* @example
* const rectangle = Cesium.Rectangle.fromRadians(0.0, Math.PI/4, Math.PI/8, 3*Math.PI/4);
*/
Rectangle.fromRadians = function (west, south, east, north, result) {
if (!defined(result)) {
return new Rectangle(west, south, east, north);
}
result.west = defaultValue(west, 0.0);
result.south = defaultValue(south, 0.0);
result.east = defaultValue(east, 0.0);
result.north = defaultValue(north, 0.0);
return result;
};
/**
* Creates the smallest possible Rectangle that encloses all positions in the provided array.
*
* @param {Cartographic[]} cartographics The list of Cartographic instances.
* @param {Rectangle} [result] The object onto which to store the result, or undefined if a new instance should be created.
* @returns {Rectangle} The modified result parameter or a new Rectangle instance if none was provided.
*/
Rectangle.fromCartographicArray = function (cartographics, result) {
//>>includeStart('debug', pragmas.debug);
Check.defined("cartographics", cartographics);
//>>includeEnd('debug');
let west = Number.MAX_VALUE;
let east = -Number.MAX_VALUE;
let westOverIDL = Number.MAX_VALUE;
let eastOverIDL = -Number.MAX_VALUE;
let south = Number.MAX_VALUE;
let north = -Number.MAX_VALUE;
for (let i = 0, len = cartographics.length; i < len; i++) {
const position = cartographics[i];
west = Math.min(west, position.longitude);
east = Math.max(east, position.longitude);
south = Math.min(south, position.latitude);
north = Math.max(north, position.latitude);
const lonAdjusted =
position.longitude >= 0
? position.longitude
: position.longitude + CesiumMath.TWO_PI;
westOverIDL = Math.min(westOverIDL, lonAdjusted);
eastOverIDL = Math.max(eastOverIDL, lonAdjusted);
}
if (east - west > eastOverIDL - westOverIDL) {
west = westOverIDL;
east = eastOverIDL;
if (east > CesiumMath.PI) {
east = east - CesiumMath.TWO_PI;
}
if (west > CesiumMath.PI) {
west = west - CesiumMath.TWO_PI;
}
}
if (!defined(result)) {
return new Rectangle(west, south, east, north);
}
result.west = west;
result.south = south;
result.east = east;
result.north = north;
return result;
};
/**
* Creates the smallest possible Rectangle that encloses all positions in the provided array.
*
* @param {Cartesian3[]} cartesians The list of Cartesian instances.
* @param {Ellipsoid} [ellipsoid=Ellipsoid.WGS84] The ellipsoid the cartesians are on.
* @param {Rectangle} [result] The object onto which to store the result, or undefined if a new instance should be created.
* @returns {Rectangle} The modified result parameter or a new Rectangle instance if none was provided.
*/
Rectangle.fromCartesianArray = function (cartesians, ellipsoid, result) {
//>>includeStart('debug', pragmas.debug);
Check.defined("cartesians", cartesians);
//>>includeEnd('debug');
ellipsoid = defaultValue(ellipsoid, Ellipsoid.WGS84);
let west = Number.MAX_VALUE;
let east = -Number.MAX_VALUE;
let westOverIDL = Number.MAX_VALUE;
let eastOverIDL = -Number.MAX_VALUE;
let south = Number.MAX_VALUE;
let north = -Number.MAX_VALUE;
for (let i = 0, len = cartesians.length; i < len; i++) {
const position = ellipsoid.cartesianToCartographic(cartesians[i]);
west = Math.min(west, position.longitude);
east = Math.max(east, position.longitude);
south = Math.min(south, position.latitude);
north = Math.max(north, position.latitude);
const lonAdjusted =
position.longitude >= 0
? position.longitude
: position.longitude + CesiumMath.TWO_PI;
westOverIDL = Math.min(westOverIDL, lonAdjusted);
eastOverIDL = Math.max(eastOverIDL, lonAdjusted);
}
if (east - west > eastOverIDL - westOverIDL) {
west = westOverIDL;
east = eastOverIDL;
if (east > CesiumMath.PI) {
east = east - CesiumMath.TWO_PI;
}
if (west > CesiumMath.PI) {
west = west - CesiumMath.TWO_PI;
}
}
if (!defined(result)) {
return new Rectangle(west, south, east, north);
}
result.west = west;
result.south = south;
result.east = east;
result.north = north;
return result;
};
/**
* Duplicates a Rectangle.
*
* @param {Rectangle} rectangle The rectangle to clone.
* @param {Rectangle} [result] The object onto which to store the result, or undefined if a new instance should be created.
* @returns {Rectangle} The modified result parameter or a new Rectangle instance if none was provided. (Returns undefined if rectangle is undefined)
*/
Rectangle.clone = function (rectangle, result) {
if (!defined(rectangle)) {
return undefined;
}
if (!defined(result)) {
return new Rectangle(
rectangle.west,
rectangle.south,
rectangle.east,
rectangle.north
);
}
result.west = rectangle.west;
result.south = rectangle.south;
result.east = rectangle.east;
result.north = rectangle.north;
return result;
};
/**
* Compares the provided Rectangles componentwise and returns
* true
if they pass an absolute or relative tolerance test,
* false
otherwise.
*
* @param {Rectangle} [left] The first Rectangle.
* @param {Rectangle} [right] The second Rectangle.
* @param {Number} [absoluteEpsilon=0] The absolute epsilon tolerance to use for equality testing.
* @returns {Boolean} true
if left and right are within the provided epsilon, false
otherwise.
*/
Rectangle.equalsEpsilon = function (left, right, absoluteEpsilon) {
absoluteEpsilon = defaultValue(absoluteEpsilon, 0);
return (
left === right ||
(defined(left) &&
defined(right) &&
Math.abs(left.west - right.west) <= absoluteEpsilon &&
Math.abs(left.south - right.south) <= absoluteEpsilon &&
Math.abs(left.east - right.east) <= absoluteEpsilon &&
Math.abs(left.north - right.north) <= absoluteEpsilon)
);
};
/**
* Duplicates this Rectangle.
*
* @param {Rectangle} [result] The object onto which to store the result.
* @returns {Rectangle} The modified result parameter or a new Rectangle instance if none was provided.
*/
Rectangle.prototype.clone = function (result) {
return Rectangle.clone(this, result);
};
/**
* Compares the provided Rectangle with this Rectangle componentwise and returns
* true
if they are equal, false
otherwise.
*
* @param {Rectangle} [other] The Rectangle to compare.
* @returns {Boolean} true
if the Rectangles are equal, false
otherwise.
*/
Rectangle.prototype.equals = function (other) {
return Rectangle.equals(this, other);
};
/**
* Compares the provided rectangles and returns true
if they are equal,
* false
otherwise.
*
* @param {Rectangle} [left] The first Rectangle.
* @param {Rectangle} [right] The second Rectangle.
* @returns {Boolean} true
if left and right are equal; otherwise false
.
*/
Rectangle.equals = function (left, right) {
return (
left === right ||
(defined(left) &&
defined(right) &&
left.west === right.west &&
left.south === right.south &&
left.east === right.east &&
left.north === right.north)
);
};
/**
* Compares the provided Rectangle with this Rectangle componentwise and returns
* true
if they are within the provided epsilon,
* false
otherwise.
*
* @param {Rectangle} [other] The Rectangle to compare.
* @param {Number} [epsilon=0] The epsilon to use for equality testing.
* @returns {Boolean} true
if the Rectangles are within the provided epsilon, false
otherwise.
*/
Rectangle.prototype.equalsEpsilon = function (other, epsilon) {
return Rectangle.equalsEpsilon(this, other, epsilon);
};
/**
* Checks a Rectangle's properties and throws if they are not in valid ranges.
*
* @param {Rectangle} rectangle The rectangle to validate
*
* @exception {DeveloperError} north
must be in the interval [-Pi/2
, Pi/2
].
* @exception {DeveloperError} south
must be in the interval [-Pi/2
, Pi/2
].
* @exception {DeveloperError} east
must be in the interval [-Pi
, Pi
].
* @exception {DeveloperError} west
must be in the interval [-Pi
, Pi
].
*/
Rectangle.validate = function (rectangle) {
//>>includeStart('debug', pragmas.debug);
Check.typeOf.object("rectangle", rectangle);
const north = rectangle.north;
Check.typeOf.number.greaterThanOrEquals(
"north",
north,
-CesiumMath.PI_OVER_TWO
);
Check.typeOf.number.lessThanOrEquals("north", north, CesiumMath.PI_OVER_TWO);
const south = rectangle.south;
Check.typeOf.number.greaterThanOrEquals(
"south",
south,
-CesiumMath.PI_OVER_TWO
);
Check.typeOf.number.lessThanOrEquals("south", south, CesiumMath.PI_OVER_TWO);
const west = rectangle.west;
Check.typeOf.number.greaterThanOrEquals("west", west, -Math.PI);
Check.typeOf.number.lessThanOrEquals("west", west, Math.PI);
const east = rectangle.east;
Check.typeOf.number.greaterThanOrEquals("east", east, -Math.PI);
Check.typeOf.number.lessThanOrEquals("east", east, Math.PI);
//>>includeEnd('debug');
};
/**
* Computes the southwest corner of a rectangle.
*
* @param {Rectangle} rectangle The rectangle for which to find the corner
* @param {Cartographic} [result] The object onto which to store the result.
* @returns {Cartographic} The modified result parameter or a new Cartographic instance if none was provided.
*/
Rectangle.southwest = function (rectangle, result) {
//>>includeStart('debug', pragmas.debug);
Check.typeOf.object("rectangle", rectangle);
//>>includeEnd('debug');
if (!defined(result)) {
return new Cartographic(rectangle.west, rectangle.south);
}
result.longitude = rectangle.west;
result.latitude = rectangle.south;
result.height = 0.0;
return result;
};
/**
* Computes the northwest corner of a rectangle.
*
* @param {Rectangle} rectangle The rectangle for which to find the corner
* @param {Cartographic} [result] The object onto which to store the result.
* @returns {Cartographic} The modified result parameter or a new Cartographic instance if none was provided.
*/
Rectangle.northwest = function (rectangle, result) {
//>>includeStart('debug', pragmas.debug);
Check.typeOf.object("rectangle", rectangle);
//>>includeEnd('debug');
if (!defined(result)) {
return new Cartographic(rectangle.west, rectangle.north);
}
result.longitude = rectangle.west;
result.latitude = rectangle.north;
result.height = 0.0;
return result;
};
/**
* Computes the northeast corner of a rectangle.
*
* @param {Rectangle} rectangle The rectangle for which to find the corner
* @param {Cartographic} [result] The object onto which to store the result.
* @returns {Cartographic} The modified result parameter or a new Cartographic instance if none was provided.
*/
Rectangle.northeast = function (rectangle, result) {
//>>includeStart('debug', pragmas.debug);
Check.typeOf.object("rectangle", rectangle);
//>>includeEnd('debug');
if (!defined(result)) {
return new Cartographic(rectangle.east, rectangle.north);
}
result.longitude = rectangle.east;
result.latitude = rectangle.north;
result.height = 0.0;
return result;
};
/**
* Computes the southeast corner of a rectangle.
*
* @param {Rectangle} rectangle The rectangle for which to find the corner
* @param {Cartographic} [result] The object onto which to store the result.
* @returns {Cartographic} The modified result parameter or a new Cartographic instance if none was provided.
*/
Rectangle.southeast = function (rectangle, result) {
//>>includeStart('debug', pragmas.debug);
Check.typeOf.object("rectangle", rectangle);
//>>includeEnd('debug');
if (!defined(result)) {
return new Cartographic(rectangle.east, rectangle.south);
}
result.longitude = rectangle.east;
result.latitude = rectangle.south;
result.height = 0.0;
return result;
};
/**
* Computes the center of a rectangle.
*
* @param {Rectangle} rectangle The rectangle for which to find the center
* @param {Cartographic} [result] The object onto which to store the result.
* @returns {Cartographic} The modified result parameter or a new Cartographic instance if none was provided.
*/
Rectangle.center = function (rectangle, result) {
//>>includeStart('debug', pragmas.debug);
Check.typeOf.object("rectangle", rectangle);
//>>includeEnd('debug');
let east = rectangle.east;
const west = rectangle.west;
if (east < west) {
east += CesiumMath.TWO_PI;
}
const longitude = CesiumMath.negativePiToPi((west + east) * 0.5);
const latitude = (rectangle.south + rectangle.north) * 0.5;
if (!defined(result)) {
return new Cartographic(longitude, latitude);
}
result.longitude = longitude;
result.latitude = latitude;
result.height = 0.0;
return result;
};
/**
* Computes the intersection of two rectangles. This function assumes that the rectangle's coordinates are
* latitude and longitude in radians and produces a correct intersection, taking into account the fact that
* the same angle can be represented with multiple values as well as the wrapping of longitude at the
* anti-meridian. For a simple intersection that ignores these factors and can be used with projected
* coordinates, see {@link Rectangle.simpleIntersection}.
*
* @param {Rectangle} rectangle On rectangle to find an intersection
* @param {Rectangle} otherRectangle Another rectangle to find an intersection
* @param {Rectangle} [result] The object onto which to store the result.
* @returns {Rectangle|undefined} The modified result parameter, a new Rectangle instance if none was provided or undefined if there is no intersection.
*/
Rectangle.intersection = function (rectangle, otherRectangle, result) {
//>>includeStart('debug', pragmas.debug);
Check.typeOf.object("rectangle", rectangle);
Check.typeOf.object("otherRectangle", otherRectangle);
//>>includeEnd('debug');
let rectangleEast = rectangle.east;
let rectangleWest = rectangle.west;
let otherRectangleEast = otherRectangle.east;
let otherRectangleWest = otherRectangle.west;
if (rectangleEast < rectangleWest && otherRectangleEast > 0.0) {
rectangleEast += CesiumMath.TWO_PI;
} else if (otherRectangleEast < otherRectangleWest && rectangleEast > 0.0) {
otherRectangleEast += CesiumMath.TWO_PI;
}
if (rectangleEast < rectangleWest && otherRectangleWest < 0.0) {
otherRectangleWest += CesiumMath.TWO_PI;
} else if (otherRectangleEast < otherRectangleWest && rectangleWest < 0.0) {
rectangleWest += CesiumMath.TWO_PI;
}
const west = CesiumMath.negativePiToPi(
Math.max(rectangleWest, otherRectangleWest)
);
const east = CesiumMath.negativePiToPi(
Math.min(rectangleEast, otherRectangleEast)
);
if (
(rectangle.west < rectangle.east ||
otherRectangle.west < otherRectangle.east) &&
east <= west
) {
return undefined;
}
const south = Math.max(rectangle.south, otherRectangle.south);
const north = Math.min(rectangle.north, otherRectangle.north);
if (south >= north) {
return undefined;
}
if (!defined(result)) {
return new Rectangle(west, south, east, north);
}
result.west = west;
result.south = south;
result.east = east;
result.north = north;
return result;
};
/**
* Computes a simple intersection of two rectangles. Unlike {@link Rectangle.intersection}, this function
* does not attempt to put the angular coordinates into a consistent range or to account for crossing the
* anti-meridian. As such, it can be used for rectangles where the coordinates are not simply latitude
* and longitude (i.e. projected coordinates).
*
* @param {Rectangle} rectangle On rectangle to find an intersection
* @param {Rectangle} otherRectangle Another rectangle to find an intersection
* @param {Rectangle} [result] The object onto which to store the result.
* @returns {Rectangle|undefined} The modified result parameter, a new Rectangle instance if none was provided or undefined if there is no intersection.
*/
Rectangle.simpleIntersection = function (rectangle, otherRectangle, result) {
//>>includeStart('debug', pragmas.debug);
Check.typeOf.object("rectangle", rectangle);
Check.typeOf.object("otherRectangle", otherRectangle);
//>>includeEnd('debug');
const west = Math.max(rectangle.west, otherRectangle.west);
const south = Math.max(rectangle.south, otherRectangle.south);
const east = Math.min(rectangle.east, otherRectangle.east);
const north = Math.min(rectangle.north, otherRectangle.north);
if (south >= north || west >= east) {
return undefined;
}
if (!defined(result)) {
return new Rectangle(west, south, east, north);
}
result.west = west;
result.south = south;
result.east = east;
result.north = north;
return result;
};
/**
* Computes a rectangle that is the union of two rectangles.
*
* @param {Rectangle} rectangle A rectangle to enclose in rectangle.
* @param {Rectangle} otherRectangle A rectangle to enclose in a rectangle.
* @param {Rectangle} [result] The object onto which to store the result.
* @returns {Rectangle} The modified result parameter or a new Rectangle instance if none was provided.
*/
Rectangle.union = function (rectangle, otherRectangle, result) {
//>>includeStart('debug', pragmas.debug);
Check.typeOf.object("rectangle", rectangle);
Check.typeOf.object("otherRectangle", otherRectangle);
//>>includeEnd('debug');
if (!defined(result)) {
result = new Rectangle();
}
let rectangleEast = rectangle.east;
let rectangleWest = rectangle.west;
let otherRectangleEast = otherRectangle.east;
let otherRectangleWest = otherRectangle.west;
if (rectangleEast < rectangleWest && otherRectangleEast > 0.0) {
rectangleEast += CesiumMath.TWO_PI;
} else if (otherRectangleEast < otherRectangleWest && rectangleEast > 0.0) {
otherRectangleEast += CesiumMath.TWO_PI;
}
if (rectangleEast < rectangleWest && otherRectangleWest < 0.0) {
otherRectangleWest += CesiumMath.TWO_PI;
} else if (otherRectangleEast < otherRectangleWest && rectangleWest < 0.0) {
rectangleWest += CesiumMath.TWO_PI;
}
const west = CesiumMath.negativePiToPi(
Math.min(rectangleWest, otherRectangleWest)
);
const east = CesiumMath.negativePiToPi(
Math.max(rectangleEast, otherRectangleEast)
);
result.west = west;
result.south = Math.min(rectangle.south, otherRectangle.south);
result.east = east;
result.north = Math.max(rectangle.north, otherRectangle.north);
return result;
};
/**
* Computes a rectangle by enlarging the provided rectangle until it contains the provided cartographic.
*
* @param {Rectangle} rectangle A rectangle to expand.
* @param {Cartographic} cartographic A cartographic to enclose in a rectangle.
* @param {Rectangle} [result] The object onto which to store the result.
* @returns {Rectangle} The modified result parameter or a new Rectangle instance if one was not provided.
*/
Rectangle.expand = function (rectangle, cartographic, result) {
//>>includeStart('debug', pragmas.debug);
Check.typeOf.object("rectangle", rectangle);
Check.typeOf.object("cartographic", cartographic);
//>>includeEnd('debug');
if (!defined(result)) {
result = new Rectangle();
}
result.west = Math.min(rectangle.west, cartographic.longitude);
result.south = Math.min(rectangle.south, cartographic.latitude);
result.east = Math.max(rectangle.east, cartographic.longitude);
result.north = Math.max(rectangle.north, cartographic.latitude);
return result;
};
/**
* Returns true if the cartographic is on or inside the rectangle, false otherwise.
*
* @param {Rectangle} rectangle The rectangle
* @param {Cartographic} cartographic The cartographic to test.
* @returns {Boolean} true if the provided cartographic is inside the rectangle, false otherwise.
*/
Rectangle.contains = function (rectangle, cartographic) {
//>>includeStart('debug', pragmas.debug);
Check.typeOf.object("rectangle", rectangle);
Check.typeOf.object("cartographic", cartographic);
//>>includeEnd('debug');
let longitude = cartographic.longitude;
const latitude = cartographic.latitude;
const west = rectangle.west;
let east = rectangle.east;
if (east < west) {
east += CesiumMath.TWO_PI;
if (longitude < 0.0) {
longitude += CesiumMath.TWO_PI;
}
}
return (
(longitude > west ||
CesiumMath.equalsEpsilon(longitude, west, CesiumMath.EPSILON14)) &&
(longitude < east ||
CesiumMath.equalsEpsilon(longitude, east, CesiumMath.EPSILON14)) &&
latitude >= rectangle.south &&
latitude <= rectangle.north
);
};
const subsampleLlaScratch = new Cartographic();
/**
* Samples a rectangle so that it includes a list of Cartesian points suitable for passing to
* {@link BoundingSphere#fromPoints}. Sampling is necessary to account
* for rectangles that cover the poles or cross the equator.
*
* @param {Rectangle} rectangle The rectangle to subsample.
* @param {Ellipsoid} [ellipsoid=Ellipsoid.WGS84] The ellipsoid to use.
* @param {Number} [surfaceHeight=0.0] The height of the rectangle above the ellipsoid.
* @param {Cartesian3[]} [result] The array of Cartesians onto which to store the result.
* @returns {Cartesian3[]} The modified result parameter or a new Array of Cartesians instances if none was provided.
*/
Rectangle.subsample = function (rectangle, ellipsoid, surfaceHeight, result) {
//>>includeStart('debug', pragmas.debug);
Check.typeOf.object("rectangle", rectangle);
//>>includeEnd('debug');
ellipsoid = defaultValue(ellipsoid, Ellipsoid.WGS84);
surfaceHeight = defaultValue(surfaceHeight, 0.0);
if (!defined(result)) {
result = [];
}
let length = 0;
const north = rectangle.north;
const south = rectangle.south;
const east = rectangle.east;
const west = rectangle.west;
const lla = subsampleLlaScratch;
lla.height = surfaceHeight;
lla.longitude = west;
lla.latitude = north;
result[length] = ellipsoid.cartographicToCartesian(lla, result[length]);
length++;
lla.longitude = east;
result[length] = ellipsoid.cartographicToCartesian(lla, result[length]);
length++;
lla.latitude = south;
result[length] = ellipsoid.cartographicToCartesian(lla, result[length]);
length++;
lla.longitude = west;
result[length] = ellipsoid.cartographicToCartesian(lla, result[length]);
length++;
if (north < 0.0) {
lla.latitude = north;
} else if (south > 0.0) {
lla.latitude = south;
} else {
lla.latitude = 0.0;
}
for (let i = 1; i < 8; ++i) {
lla.longitude = -Math.PI + i * CesiumMath.PI_OVER_TWO;
if (Rectangle.contains(rectangle, lla)) {
result[length] = ellipsoid.cartographicToCartesian(lla, result[length]);
length++;
}
}
if (lla.latitude === 0.0) {
lla.longitude = west;
result[length] = ellipsoid.cartographicToCartesian(lla, result[length]);
length++;
lla.longitude = east;
result[length] = ellipsoid.cartographicToCartesian(lla, result[length]);
length++;
}
result.length = length;
return result;
};
/**
* Computes a subsection of a rectangle from normalized coordinates in the range [0.0, 1.0].
*
* @param {Rectangle} rectangle The rectangle to subsection.
* @param {Number} westLerp The west interpolation factor in the range [0.0, 1.0]. Must be less than or equal to eastLerp.
* @param {Number} southLerp The south interpolation factor in the range [0.0, 1.0]. Must be less than or equal to northLerp.
* @param {Number} eastLerp The east interpolation factor in the range [0.0, 1.0]. Must be greater than or equal to westLerp.
* @param {Number} northLerp The north interpolation factor in the range [0.0, 1.0]. Must be greater than or equal to southLerp.
* @param {Rectangle} [result] The object onto which to store the result.
* @returns {Rectangle} The modified result parameter or a new Rectangle instance if none was provided.
*/
Rectangle.subsection = function (
rectangle,
westLerp,
southLerp,
eastLerp,
northLerp,
result
) {
//>>includeStart('debug', pragmas.debug);
Check.typeOf.object("rectangle", rectangle);
Check.typeOf.number.greaterThanOrEquals("westLerp", westLerp, 0.0);
Check.typeOf.number.lessThanOrEquals("westLerp", westLerp, 1.0);
Check.typeOf.number.greaterThanOrEquals("southLerp", southLerp, 0.0);
Check.typeOf.number.lessThanOrEquals("southLerp", southLerp, 1.0);
Check.typeOf.number.greaterThanOrEquals("eastLerp", eastLerp, 0.0);
Check.typeOf.number.lessThanOrEquals("eastLerp", eastLerp, 1.0);
Check.typeOf.number.greaterThanOrEquals("northLerp", northLerp, 0.0);
Check.typeOf.number.lessThanOrEquals("northLerp", northLerp, 1.0);
Check.typeOf.number.lessThanOrEquals("westLerp", westLerp, eastLerp);
Check.typeOf.number.lessThanOrEquals("southLerp", southLerp, northLerp);
//>>includeEnd('debug');
if (!defined(result)) {
result = new Rectangle();
}
// This function doesn't use CesiumMath.lerp because it has floating point precision problems
// when the start and end values are the same but the t changes.
if (rectangle.west <= rectangle.east) {
const width = rectangle.east - rectangle.west;
result.west = rectangle.west + westLerp * width;
result.east = rectangle.west + eastLerp * width;
} else {
const width = CesiumMath.TWO_PI + rectangle.east - rectangle.west;
result.west = CesiumMath.negativePiToPi(rectangle.west + westLerp * width);
result.east = CesiumMath.negativePiToPi(rectangle.west + eastLerp * width);
}
const height = rectangle.north - rectangle.south;
result.south = rectangle.south + southLerp * height;
result.north = rectangle.south + northLerp * height;
// Fix floating point precision problems when t = 1
if (westLerp === 1.0) {
result.west = rectangle.east;
}
if (eastLerp === 1.0) {
result.east = rectangle.east;
}
if (southLerp === 1.0) {
result.south = rectangle.north;
}
if (northLerp === 1.0) {
result.north = rectangle.north;
}
return result;
};
/**
* The largest possible rectangle.
*
* @type {Rectangle}
* @constant
*/
Rectangle.MAX_VALUE = Object.freeze(
new Rectangle(
-Math.PI,
-CesiumMath.PI_OVER_TWO,
Math.PI,
CesiumMath.PI_OVER_TWO
)
);
export default Rectangle;