import Cartesian3 from "../Core/Cartesian3.js";
import defined from "../Core/defined.js";
import CesiumMath from "../Core/Math.js";
import SceneMode from "./SceneMode.js";
/**
* Blends the atmosphere to geometry far from the camera for horizon views. Allows for additional
* performance improvements by rendering less geometry and dispatching less terrain requests.
*
* @alias Fog
* @constructor
*/
function Fog() {
/**
* true
if fog is enabled, false
otherwise.
* @type {boolean}
* @default true
*/
this.enabled = true;
/**
* true
if fog is renderable in shaders, false
otherwise.
* This allows to benefits from optimized tile loading strategy based on fog density without the actual visual rendering.
* @type {boolean}
* @default true
*/
this.renderable = true;
/**
* A scalar that determines the density of the fog. Terrain that is in full fog are culled.
* The density of the fog increases as this number approaches 1.0 and becomes less dense as it approaches zero.
* The more dense the fog is, the more aggressively the terrain is culled. For example, if the camera is a height of
* 1000.0m above the ellipsoid, increasing the value to 3.0e-3 will cause many tiles close to the viewer be culled.
* Decreasing the value will push the fog further from the viewer, but decrease performance as more of the terrain is rendered.
* @type {number}
* @default 2.0e-4
*/
this.density = 2.0e-4;
/**
* A factor used to increase the screen space error of terrain tiles when they are partially in fog. The effect is to reduce
* the number of terrain tiles requested for rendering. If set to zero, the feature will be disabled. If the value is increased
* for mountainous regions, less tiles will need to be requested, but the terrain meshes near the horizon may be a noticeably
* lower resolution. If the value is increased in a relatively flat area, there will be little noticeable change on the horizon.
* @type {number}
* @default 2.0
*/
this.screenSpaceErrorFactor = 2.0;
/**
* The minimum brightness of the fog color from lighting. A value of 0.0 can cause the fog to be completely black. A value of 1.0 will not affect
* the brightness at all.
* @type {number}
* @default 0.03
*/
this.minimumBrightness = 0.03;
}
// These values were found by sampling the density at certain views and finding at what point culled tiles impacted the view at the horizon.
const heightsTable = [
359.393,
800.749,
1275.6501,
2151.1192,
3141.7763,
4777.5198,
6281.2493,
12364.307,
15900.765,
49889.0549,
78026.8259,
99260.7344,
120036.3873,
151011.0158,
156091.1953,
203849.3112,
274866.9803,
319916.3149,
493552.0528,
628733.5874,
];
const densityTable = [
2.0e-5,
2.0e-4,
1.0e-4,
7.0e-5,
5.0e-5,
4.0e-5,
3.0e-5,
1.9e-5,
1.0e-5,
8.5e-6,
6.2e-6,
5.8e-6,
5.3e-6,
5.2e-6,
5.1e-6,
4.2e-6,
4.0e-6,
3.4e-6,
2.6e-6,
2.2e-6,
];
// Scale densities by 1e6 to bring lowest value to ~1. Prevents divide by zero.
for (let i = 0; i < densityTable.length; ++i) {
densityTable[i] *= 1.0e6;
}
// Change range to [0, 1].
const tableStartDensity = densityTable[1];
const tableEndDensity = densityTable[densityTable.length - 1];
for (let j = 0; j < densityTable.length; ++j) {
densityTable[j] =
(densityTable[j] - tableEndDensity) / (tableStartDensity - tableEndDensity);
}
let tableLastIndex = 0;
function findInterval(height) {
const heights = heightsTable;
const length = heights.length;
if (height < heights[0]) {
tableLastIndex = 0;
return tableLastIndex;
} else if (height > heights[length - 1]) {
tableLastIndex = length - 2;
return tableLastIndex;
}
// Take advantage of temporal coherence by checking current, next and previous intervals
// for containment of time.
if (height >= heights[tableLastIndex]) {
if (tableLastIndex + 1 < length && height < heights[tableLastIndex + 1]) {
return tableLastIndex;
} else if (
tableLastIndex + 2 < length &&
height < heights[tableLastIndex + 2]
) {
++tableLastIndex;
return tableLastIndex;
}
} else if (tableLastIndex - 1 >= 0 && height >= heights[tableLastIndex - 1]) {
--tableLastIndex;
return tableLastIndex;
}
// The above failed so do a linear search.
let i;
for (i = 0; i < length - 2; ++i) {
if (height >= heights[i] && height < heights[i + 1]) {
break;
}
}
tableLastIndex = i;
return tableLastIndex;
}
const scratchPositionNormal = new Cartesian3();
Fog.prototype.update = function (frameState) {
const enabled = (frameState.fog.enabled = this.enabled);
if (!enabled) {
return;
}
frameState.fog.renderable = this.renderable;
const camera = frameState.camera;
const positionCartographic = camera.positionCartographic;
// Turn off fog in space.
if (
!defined(positionCartographic) ||
positionCartographic.height > 800000.0 ||
frameState.mode !== SceneMode.SCENE3D
) {
frameState.fog.enabled = false;
return;
}
const height = positionCartographic.height;
const i = findInterval(height);
const t = CesiumMath.clamp(
(height - heightsTable[i]) / (heightsTable[i + 1] - heightsTable[i]),
0.0,
1.0
);
let density = CesiumMath.lerp(densityTable[i], densityTable[i + 1], t);
// Again, scale value to be in the range of densityTable (prevents divide by zero) and change to new range.
const startDensity = this.density * 1.0e6;
const endDensity = (startDensity / tableStartDensity) * tableEndDensity;
density = density * (startDensity - endDensity) * 1.0e-6;
// Fade fog in as the camera tilts toward the horizon.
const positionNormal = Cartesian3.normalize(
camera.positionWC,
scratchPositionNormal
);
const dot = Math.abs(Cartesian3.dot(camera.directionWC, positionNormal));
density *= 1.0 - dot;
frameState.fog.density = density;
frameState.fog.sse = this.screenSpaceErrorFactor;
frameState.fog.minimumBrightness = this.minimumBrightness;
};
export default Fog;