/*! @name aes-decrypter @version 4.0.1 @license Apache-2.0 */ 'use strict'; Object.defineProperty(exports, '__esModule', { value: true }); var Stream = require('@videojs/vhs-utils/cjs/stream.js'); var pkcs7 = require('pkcs7'); function _interopDefaultLegacy (e) { return e && typeof e === 'object' && 'default' in e ? e : { 'default': e }; } var Stream__default = /*#__PURE__*/_interopDefaultLegacy(Stream); /** * @file aes.js * * This file contains an adaptation of the AES decryption algorithm * from the Standford Javascript Cryptography Library. That work is * covered by the following copyright and permissions notice: * * Copyright 2009-2010 Emily Stark, Mike Hamburg, Dan Boneh. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials provided * with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHORS ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE * OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN * IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * The views and conclusions contained in the software and documentation * are those of the authors and should not be interpreted as representing * official policies, either expressed or implied, of the authors. */ /** * Expand the S-box tables. * * @private */ const precompute = function () { const tables = [[[], [], [], [], []], [[], [], [], [], []]]; const encTable = tables[0]; const decTable = tables[1]; const sbox = encTable[4]; const sboxInv = decTable[4]; let i; let x; let xInv; const d = []; const th = []; let x2; let x4; let x8; let s; let tEnc; let tDec; // Compute double and third tables for (i = 0; i < 256; i++) { th[(d[i] = i << 1 ^ (i >> 7) * 283) ^ i] = i; } for (x = xInv = 0; !sbox[x]; x ^= x2 || 1, xInv = th[xInv] || 1) { // Compute sbox s = xInv ^ xInv << 1 ^ xInv << 2 ^ xInv << 3 ^ xInv << 4; s = s >> 8 ^ s & 255 ^ 99; sbox[x] = s; sboxInv[s] = x; // Compute MixColumns x8 = d[x4 = d[x2 = d[x]]]; tDec = x8 * 0x1010101 ^ x4 * 0x10001 ^ x2 * 0x101 ^ x * 0x1010100; tEnc = d[s] * 0x101 ^ s * 0x1010100; for (i = 0; i < 4; i++) { encTable[i][x] = tEnc = tEnc << 24 ^ tEnc >>> 8; decTable[i][s] = tDec = tDec << 24 ^ tDec >>> 8; } } // Compactify. Considerable speedup on Firefox. for (i = 0; i < 5; i++) { encTable[i] = encTable[i].slice(0); decTable[i] = decTable[i].slice(0); } return tables; }; let aesTables = null; /** * Schedule out an AES key for both encryption and decryption. This * is a low-level class. Use a cipher mode to do bulk encryption. * * @class AES * @param key {Array} The key as an array of 4, 6 or 8 words. */ class AES { constructor(key) { /** * The expanded S-box and inverse S-box tables. These will be computed * on the client so that we don't have to send them down the wire. * * There are two tables, _tables[0] is for encryption and * _tables[1] is for decryption. * * The first 4 sub-tables are the expanded S-box with MixColumns. The * last (_tables[01][4]) is the S-box itself. * * @private */ // if we have yet to precompute the S-box tables // do so now if (!aesTables) { aesTables = precompute(); } // then make a copy of that object for use this._tables = [[aesTables[0][0].slice(), aesTables[0][1].slice(), aesTables[0][2].slice(), aesTables[0][3].slice(), aesTables[0][4].slice()], [aesTables[1][0].slice(), aesTables[1][1].slice(), aesTables[1][2].slice(), aesTables[1][3].slice(), aesTables[1][4].slice()]]; let i; let j; let tmp; const sbox = this._tables[0][4]; const decTable = this._tables[1]; const keyLen = key.length; let rcon = 1; if (keyLen !== 4 && keyLen !== 6 && keyLen !== 8) { throw new Error('Invalid aes key size'); } const encKey = key.slice(0); const decKey = []; this._key = [encKey, decKey]; // schedule encryption keys for (i = keyLen; i < 4 * keyLen + 28; i++) { tmp = encKey[i - 1]; // apply sbox if (i % keyLen === 0 || keyLen === 8 && i % keyLen === 4) { tmp = sbox[tmp >>> 24] << 24 ^ sbox[tmp >> 16 & 255] << 16 ^ sbox[tmp >> 8 & 255] << 8 ^ sbox[tmp & 255]; // shift rows and add rcon if (i % keyLen === 0) { tmp = tmp << 8 ^ tmp >>> 24 ^ rcon << 24; rcon = rcon << 1 ^ (rcon >> 7) * 283; } } encKey[i] = encKey[i - keyLen] ^ tmp; } // schedule decryption keys for (j = 0; i; j++, i--) { tmp = encKey[j & 3 ? i : i - 4]; if (i <= 4 || j < 4) { decKey[j] = tmp; } else { decKey[j] = decTable[0][sbox[tmp >>> 24]] ^ decTable[1][sbox[tmp >> 16 & 255]] ^ decTable[2][sbox[tmp >> 8 & 255]] ^ decTable[3][sbox[tmp & 255]]; } } } /** * Decrypt 16 bytes, specified as four 32-bit words. * * @param {number} encrypted0 the first word to decrypt * @param {number} encrypted1 the second word to decrypt * @param {number} encrypted2 the third word to decrypt * @param {number} encrypted3 the fourth word to decrypt * @param {Int32Array} out the array to write the decrypted words * into * @param {number} offset the offset into the output array to start * writing results * @return {Array} The plaintext. */ decrypt(encrypted0, encrypted1, encrypted2, encrypted3, out, offset) { const key = this._key[1]; // state variables a,b,c,d are loaded with pre-whitened data let a = encrypted0 ^ key[0]; let b = encrypted3 ^ key[1]; let c = encrypted2 ^ key[2]; let d = encrypted1 ^ key[3]; let a2; let b2; let c2; // key.length === 2 ? const nInnerRounds = key.length / 4 - 2; let i; let kIndex = 4; const table = this._tables[1]; // load up the tables const table0 = table[0]; const table1 = table[1]; const table2 = table[2]; const table3 = table[3]; const sbox = table[4]; // Inner rounds. Cribbed from OpenSSL. for (i = 0; i < nInnerRounds; i++) { a2 = table0[a >>> 24] ^ table1[b >> 16 & 255] ^ table2[c >> 8 & 255] ^ table3[d & 255] ^ key[kIndex]; b2 = table0[b >>> 24] ^ table1[c >> 16 & 255] ^ table2[d >> 8 & 255] ^ table3[a & 255] ^ key[kIndex + 1]; c2 = table0[c >>> 24] ^ table1[d >> 16 & 255] ^ table2[a >> 8 & 255] ^ table3[b & 255] ^ key[kIndex + 2]; d = table0[d >>> 24] ^ table1[a >> 16 & 255] ^ table2[b >> 8 & 255] ^ table3[c & 255] ^ key[kIndex + 3]; kIndex += 4; a = a2; b = b2; c = c2; } // Last round. for (i = 0; i < 4; i++) { out[(3 & -i) + offset] = sbox[a >>> 24] << 24 ^ sbox[b >> 16 & 255] << 16 ^ sbox[c >> 8 & 255] << 8 ^ sbox[d & 255] ^ key[kIndex++]; a2 = a; a = b; b = c; c = d; d = a2; } } } /** * @file async-stream.js */ /** * A wrapper around the Stream class to use setTimeout * and run stream "jobs" Asynchronously * * @class AsyncStream * @extends Stream */ class AsyncStream extends Stream__default["default"] { constructor() { super(Stream__default["default"]); this.jobs = []; this.delay = 1; this.timeout_ = null; } /** * process an async job * * @private */ processJob_() { this.jobs.shift()(); if (this.jobs.length) { this.timeout_ = setTimeout(this.processJob_.bind(this), this.delay); } else { this.timeout_ = null; } } /** * push a job into the stream * * @param {Function} job the job to push into the stream */ push(job) { this.jobs.push(job); if (!this.timeout_) { this.timeout_ = setTimeout(this.processJob_.bind(this), this.delay); } } } /** * @file decrypter.js * * An asynchronous implementation of AES-128 CBC decryption with * PKCS#7 padding. */ /** * Convert network-order (big-endian) bytes into their little-endian * representation. */ const ntoh = function (word) { return word << 24 | (word & 0xff00) << 8 | (word & 0xff0000) >> 8 | word >>> 24; }; /** * Decrypt bytes using AES-128 with CBC and PKCS#7 padding. * * @param {Uint8Array} encrypted the encrypted bytes * @param {Uint32Array} key the bytes of the decryption key * @param {Uint32Array} initVector the initialization vector (IV) to * use for the first round of CBC. * @return {Uint8Array} the decrypted bytes * * @see http://en.wikipedia.org/wiki/Advanced_Encryption_Standard * @see http://en.wikipedia.org/wiki/Block_cipher_mode_of_operation#Cipher_Block_Chaining_.28CBC.29 * @see https://tools.ietf.org/html/rfc2315 */ const decrypt = function (encrypted, key, initVector) { // word-level access to the encrypted bytes const encrypted32 = new Int32Array(encrypted.buffer, encrypted.byteOffset, encrypted.byteLength >> 2); const decipher = new AES(Array.prototype.slice.call(key)); // byte and word-level access for the decrypted output const decrypted = new Uint8Array(encrypted.byteLength); const decrypted32 = new Int32Array(decrypted.buffer); // temporary variables for working with the IV, encrypted, and // decrypted data let init0; let init1; let init2; let init3; let encrypted0; let encrypted1; let encrypted2; let encrypted3; // iteration variable let wordIx; // pull out the words of the IV to ensure we don't modify the // passed-in reference and easier access init0 = initVector[0]; init1 = initVector[1]; init2 = initVector[2]; init3 = initVector[3]; // decrypt four word sequences, applying cipher-block chaining (CBC) // to each decrypted block for (wordIx = 0; wordIx < encrypted32.length; wordIx += 4) { // convert big-endian (network order) words into little-endian // (javascript order) encrypted0 = ntoh(encrypted32[wordIx]); encrypted1 = ntoh(encrypted32[wordIx + 1]); encrypted2 = ntoh(encrypted32[wordIx + 2]); encrypted3 = ntoh(encrypted32[wordIx + 3]); // decrypt the block decipher.decrypt(encrypted0, encrypted1, encrypted2, encrypted3, decrypted32, wordIx); // XOR with the IV, and restore network byte-order to obtain the // plaintext decrypted32[wordIx] = ntoh(decrypted32[wordIx] ^ init0); decrypted32[wordIx + 1] = ntoh(decrypted32[wordIx + 1] ^ init1); decrypted32[wordIx + 2] = ntoh(decrypted32[wordIx + 2] ^ init2); decrypted32[wordIx + 3] = ntoh(decrypted32[wordIx + 3] ^ init3); // setup the IV for the next round init0 = encrypted0; init1 = encrypted1; init2 = encrypted2; init3 = encrypted3; } return decrypted; }; /** * The `Decrypter` class that manages decryption of AES * data through `AsyncStream` objects and the `decrypt` * function * * @param {Uint8Array} encrypted the encrypted bytes * @param {Uint32Array} key the bytes of the decryption key * @param {Uint32Array} initVector the initialization vector (IV) to * @param {Function} done the function to run when done * @class Decrypter */ class Decrypter { constructor(encrypted, key, initVector, done) { const step = Decrypter.STEP; const encrypted32 = new Int32Array(encrypted.buffer); const decrypted = new Uint8Array(encrypted.byteLength); let i = 0; this.asyncStream_ = new AsyncStream(); // split up the encryption job and do the individual chunks asynchronously this.asyncStream_.push(this.decryptChunk_(encrypted32.subarray(i, i + step), key, initVector, decrypted)); for (i = step; i < encrypted32.length; i += step) { initVector = new Uint32Array([ntoh(encrypted32[i - 4]), ntoh(encrypted32[i - 3]), ntoh(encrypted32[i - 2]), ntoh(encrypted32[i - 1])]); this.asyncStream_.push(this.decryptChunk_(encrypted32.subarray(i, i + step), key, initVector, decrypted)); } // invoke the done() callback when everything is finished this.asyncStream_.push(function () { // remove pkcs#7 padding from the decrypted bytes done(null, pkcs7.unpad(decrypted)); }); } /** * a getter for step the maximum number of bytes to process at one time * * @return {number} the value of step 32000 */ static get STEP() { // 4 * 8000; return 32000; } /** * @private */ decryptChunk_(encrypted, key, initVector, decrypted) { return function () { const bytes = decrypt(encrypted, key, initVector); decrypted.set(bytes, encrypted.byteOffset); }; } } exports.AsyncStream = AsyncStream; exports.Decrypter = Decrypter; exports.decrypt = decrypt;