| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135 | import centerMean from "@turf/center-mean";import distance from "@turf/distance";import centroid from "@turf/centroid";import { isNumber, point, isObject, featureCollection, } from "@turf/helpers";import { featureEach } from "@turf/meta";/** * Takes a {@link FeatureCollection} of points and calculates the median center, * algorithimically. The median center is understood as the point that is * requires the least total travel from all other points. * * Turfjs has four different functions for calculating the center of a set of * data. Each is useful depending on circumstance. * * `@turf/center` finds the simple center of a dataset, by finding the * midpoint between the extents of the data. That is, it divides in half the * farthest east and farthest west point as well as the farthest north and * farthest south. * * `@turf/center-of-mass` imagines that the dataset is a sheet of paper. * The center of mass is where the sheet would balance on a fingertip. * * `@turf/center-mean` takes the averages of all the coordinates and * produces a value that respects that. Unlike `@turf/center`, it is * sensitive to clusters and outliers. It lands in the statistical middle of a * dataset, not the geographical. It can also be weighted, meaning certain * points are more important than others. * * `@turf/center-median` takes the mean center and tries to find, iteratively, * a new point that requires the least amount of travel from all the points in * the dataset. It is not as sensitive to outliers as `@turf/center-mean`, but it is * attracted to clustered data. It, too, can be weighted. * * **Bibliography** * * Harold W. Kuhn and Robert E. Kuenne, “An Efficient Algorithm for the * Numerical Solution of the Generalized Weber Problem in Spatial * Economics,” _Journal of Regional Science_ 4, no. 2 (1962): 21–33, * doi:{@link https://doi.org/10.1111/j.1467-9787.1962.tb00902.x}. * * James E. Burt, Gerald M. Barber, and David L. Rigby, _Elementary * Statistics for Geographers_, 3rd ed., New York: The Guilford * Press, 2009, 150–151. * * @name centerMedian * @param {FeatureCollection<any>} features Any GeoJSON Feature Collection * @param {Object} [options={}] Optional parameters * @param {string} [options.weight] the property name used to weight the center * @param {number} [options.tolerance=0.001] the difference in distance between candidate medians at which point the algorighim stops iterating. * @param {number} [options.counter=10] how many attempts to find the median, should the tolerance be insufficient. * @returns {Feature<Point>} The median center of the collection * @example * var points = turf.points([[0, 0], [1, 0], [0, 1], [5, 8]]); * var medianCenter = turf.centerMedian(points); * * //addToMap * var addToMap = [points, medianCenter] */function centerMedian(features, options) {    if (options === void 0) { options = {}; }    // Optional params    options = options || {};    if (!isObject(options))        throw new Error("options is invalid");    var counter = options.counter || 10;    if (!isNumber(counter))        throw new Error("counter must be a number");    var weightTerm = options.weight;    // Calculate mean center:    var meanCenter = centerMean(features, { weight: options.weight });    // Calculate center of every feature:    var centroids = featureCollection([]);    featureEach(features, function (feature) {        var _a;        centroids.features.push(centroid(feature, {            properties: { weight: (_a = feature.properties) === null || _a === void 0 ? void 0 : _a[weightTerm] },        }));    });    var properties = {        tolerance: options.tolerance,        medianCandidates: [],    };    return findMedian(meanCenter.geometry.coordinates, [0, 0], centroids, properties, counter);}/** * Recursive function to find new candidate medians. * * @private * @param {Position} candidateMedian current candidate median * @param {Position} previousCandidate the previous candidate median * @param {FeatureCollection<Point>} centroids the collection of centroids whose median we are determining * @param {number} counter how many attempts to try before quitting. * @returns {Feature<Point>} the median center of the dataset. */function findMedian(candidateMedian, previousCandidate, centroids, properties, counter) {    var tolerance = properties.tolerance || 0.001;    var candidateXsum = 0;    var candidateYsum = 0;    var kSum = 0;    var centroidCount = 0;    featureEach(centroids, function (theCentroid) {        var _a;        var weightValue = (_a = theCentroid.properties) === null || _a === void 0 ? void 0 : _a.weight;        var weight = weightValue === undefined || weightValue === null ? 1 : weightValue;        weight = Number(weight);        if (!isNumber(weight))            throw new Error("weight value must be a number");        if (weight > 0) {            centroidCount += 1;            var distanceFromCandidate = weight * distance(theCentroid, candidateMedian);            if (distanceFromCandidate === 0)                distanceFromCandidate = 1;            var k = weight / distanceFromCandidate;            candidateXsum += theCentroid.geometry.coordinates[0] * k;            candidateYsum += theCentroid.geometry.coordinates[1] * k;            kSum += k;        }    });    if (centroidCount < 1)        throw new Error("no features to measure");    var candidateX = candidateXsum / kSum;    var candidateY = candidateYsum / kSum;    if (centroidCount === 1 ||        counter === 0 ||        (Math.abs(candidateX - previousCandidate[0]) < tolerance &&            Math.abs(candidateY - previousCandidate[1]) < tolerance)) {        return point([candidateX, candidateY], {            medianCandidates: properties.medianCandidates,        });    }    else {        properties.medianCandidates.push([candidateX, candidateY]);        return findMedian([candidateX, candidateY], candidateMedian, centroids, properties, counter - 1);    }}export default centerMedian;
 |