123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131 |
- /*!
- * All material copyright ESRI, All Rights Reserved, unless otherwise specified.
- * See https://github.com/Esri/calcite-components/blob/master/LICENSE.md for details.
- * v1.0.0-beta.97
- */
- /**
- * Calculate slope of the tangents
- * uses Steffen interpolation as it's monotonic
- * http://jrwalsh1.github.io/posts/interpolations/
- *
- * @param p0
- * @param p1
- * @param p2
- */
- function slope(p0, p1, p2) {
- const dx = p1[0] - p0[0];
- const dx1 = p2[0] - p1[0];
- const dy = p1[1] - p0[1];
- const dy1 = p2[1] - p1[1];
- const m = dy / (dx || (dx1 < 0 && 0));
- const m1 = dy1 / (dx1 || (dx < 0 && 0));
- const p = (m * dx1 + m1 * dx) / (dx + dx1);
- return (Math.sign(m) + Math.sign(m1)) * Math.min(Math.abs(m), Math.abs(m1), 0.5 * Math.abs(p)) || 0;
- }
- /**
- * Calculate slope for just one tangent (single-sided)
- *
- * @param p0
- * @param p1
- * @param m
- */
- function slopeSingle(p0, p1, m) {
- const dx = p1[0] - p0[0];
- const dy = p1[1] - p0[1];
- return dx ? ((3 * dy) / dx - m) / 2 : m;
- }
- /**
- * Given two points and their tangent slopes,
- * calculate the bezier handle coordinates and return draw command.
- *
- * Translates Hermite Spline to Beziér curve:
- * stackoverflow.com/questions/42574940/
- *
- * @param p0
- * @param p1
- * @param m0
- * @param m1
- * @param t
- */
- function bezier(p0, p1, m0, m1, t) {
- const [x0, y0] = p0;
- const [x1, y1] = p1;
- const dx = (x1 - x0) / 3;
- const h1 = t([x0 + dx, y0 + dx * m0]).join(",");
- const h2 = t([x1 - dx, y1 - dx * m1]).join(",");
- const p = t([x1, y1]).join(",");
- return `C ${h1} ${h2} ${p}`;
- }
- /**
- * Generate a function which will translate a point
- * from the data coordinate space to svg viewbox oriented pixels
- *
- * @param root0
- * @param root0.width
- * @param root0.height
- * @param root0.min
- * @param root0.max
- */
- export function translate({ width, height, min, max }) {
- const rangeX = max[0] - min[0];
- const rangeY = max[1] - min[1];
- return (point) => {
- const x = ((point[0] - min[0]) / rangeX) * width;
- const y = height - (point[1] / rangeY) * height;
- return [x, y];
- };
- }
- /**
- * Get the min and max values from the dataset
- *
- * @param data
- */
- export function range(data) {
- const [startX, startY] = data[0];
- const min = [startX, startY];
- const max = [startX, startY];
- return data.reduce(({ min, max }, [x, y]) => ({
- min: [Math.min(min[0], x), Math.min(min[1], y)],
- max: [Math.max(max[0], x), Math.max(max[1], y)]
- }), { min, max });
- }
- /**
- * Generate drawing commands for an area graph
- * returns a string can can be passed directly to a path element's `d` attribute
- *
- * @param root0
- * @param root0.data
- * @param root0.min
- * @param root0.max
- * @param root0.t
- */
- export function area({ data, min, max, t }) {
- if (data.length === 0) {
- return "";
- }
- // important points for beginning and ending the path
- const [startX, startY] = t(data[0]);
- const [minX, minY] = t(min);
- const [maxX] = t(max);
- // keep track of previous slope/points
- let m;
- let p0;
- let p1;
- // iterate over data points, calculating command for each
- const commands = data.reduce((acc, point, i) => {
- p0 = data[i - 2];
- p1 = data[i - 1];
- if (i > 1) {
- const m1 = slope(p0, p1, point);
- const m0 = m === undefined ? slopeSingle(p0, p1, m1) : m;
- const command = bezier(p0, p1, m0, m1, t);
- m = m1;
- return `${acc} ${command}`;
- }
- return acc;
- }, `M ${minX},${minY} L ${minX},${startY} L ${startX},${startY}`);
- // close the path
- const last = data[data.length - 1];
- const end = bezier(p1, last, m, slopeSingle(p1, last, m), t);
- return `${commands} ${end} L ${maxX},${minY} Z`;
- }
|