123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160 |
- "use strict";
- Object.defineProperty(exports, "__esModule", { value: true });
- /**
- * BezierSpline
- * https://github.com/leszekr/bezier-spline-js
- *
- * @private
- * @copyright
- * Copyright (c) 2013 Leszek Rybicki
- *
- * Permission is hereby granted, free of charge, to any person obtaining a copy
- * of this software and associated documentation files (the "Software"), to deal
- * in the Software without restriction, including without limitation the rights
- * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
- * copies of the Software, and to permit persons to whom the Software is
- * furnished to do so, subject to the following conditions:
- *
- * The above copyright notice and this permission notice shall be included in all
- * copies or substantial portions of the Software.
- *
- * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
- * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
- * SOFTWARE.
- */
- var Spline = /** @class */ (function () {
- function Spline(options) {
- this.points = options.points || [];
- this.duration = options.duration || 10000;
- this.sharpness = options.sharpness || 0.85;
- this.centers = [];
- this.controls = [];
- this.stepLength = options.stepLength || 60;
- this.length = this.points.length;
- this.delay = 0;
- // this is to ensure compatibility with the 2d version
- for (var i = 0; i < this.length; i++) {
- this.points[i].z = this.points[i].z || 0;
- }
- for (var i = 0; i < this.length - 1; i++) {
- var p1 = this.points[i];
- var p2 = this.points[i + 1];
- this.centers.push({
- x: (p1.x + p2.x) / 2,
- y: (p1.y + p2.y) / 2,
- z: (p1.z + p2.z) / 2,
- });
- }
- this.controls.push([this.points[0], this.points[0]]);
- for (var i = 0; i < this.centers.length - 1; i++) {
- var dx = this.points[i + 1].x - (this.centers[i].x + this.centers[i + 1].x) / 2;
- var dy = this.points[i + 1].y - (this.centers[i].y + this.centers[i + 1].y) / 2;
- var dz = this.points[i + 1].z - (this.centers[i].y + this.centers[i + 1].z) / 2;
- this.controls.push([
- {
- x: (1.0 - this.sharpness) * this.points[i + 1].x +
- this.sharpness * (this.centers[i].x + dx),
- y: (1.0 - this.sharpness) * this.points[i + 1].y +
- this.sharpness * (this.centers[i].y + dy),
- z: (1.0 - this.sharpness) * this.points[i + 1].z +
- this.sharpness * (this.centers[i].z + dz),
- },
- {
- x: (1.0 - this.sharpness) * this.points[i + 1].x +
- this.sharpness * (this.centers[i + 1].x + dx),
- y: (1.0 - this.sharpness) * this.points[i + 1].y +
- this.sharpness * (this.centers[i + 1].y + dy),
- z: (1.0 - this.sharpness) * this.points[i + 1].z +
- this.sharpness * (this.centers[i + 1].z + dz),
- },
- ]);
- }
- this.controls.push([
- this.points[this.length - 1],
- this.points[this.length - 1],
- ]);
- this.steps = this.cacheSteps(this.stepLength);
- return this;
- }
- /**
- * Caches an array of equidistant (more or less) points on the curve.
- */
- Spline.prototype.cacheSteps = function (mindist) {
- var steps = [];
- var laststep = this.pos(0);
- steps.push(0);
- for (var t = 0; t < this.duration; t += 10) {
- var step = this.pos(t);
- var dist = Math.sqrt((step.x - laststep.x) * (step.x - laststep.x) +
- (step.y - laststep.y) * (step.y - laststep.y) +
- (step.z - laststep.z) * (step.z - laststep.z));
- if (dist > mindist) {
- steps.push(t);
- laststep = step;
- }
- }
- return steps;
- };
- /**
- * returns angle and speed in the given point in the curve
- */
- Spline.prototype.vector = function (t) {
- var p1 = this.pos(t + 10);
- var p2 = this.pos(t - 10);
- return {
- angle: (180 * Math.atan2(p1.y - p2.y, p1.x - p2.x)) / 3.14,
- speed: Math.sqrt((p2.x - p1.x) * (p2.x - p1.x) +
- (p2.y - p1.y) * (p2.y - p1.y) +
- (p2.z - p1.z) * (p2.z - p1.z)),
- };
- };
- /**
- * Gets the position of the point, given time.
- *
- * WARNING: The speed is not constant. The time it takes between control points is constant.
- *
- * For constant speed, use Spline.steps[i];
- */
- Spline.prototype.pos = function (time) {
- var t = time - this.delay;
- if (t < 0) {
- t = 0;
- }
- if (t > this.duration) {
- t = this.duration - 1;
- }
- // t = t-this.delay;
- var t2 = t / this.duration;
- if (t2 >= 1) {
- return this.points[this.length - 1];
- }
- var n = Math.floor((this.points.length - 1) * t2);
- var t1 = (this.length - 1) * t2 - n;
- return bezier(t1, this.points[n], this.controls[n][1], this.controls[n + 1][0], this.points[n + 1]);
- };
- return Spline;
- }());
- exports.default = Spline;
- function bezier(t, p1, c1, c2, p2) {
- var b = B(t);
- var pos = {
- x: p2.x * b[0] + c2.x * b[1] + c1.x * b[2] + p1.x * b[3],
- y: p2.y * b[0] + c2.y * b[1] + c1.y * b[2] + p1.y * b[3],
- z: p2.z * b[0] + c2.z * b[1] + c1.z * b[2] + p1.z * b[3],
- };
- return pos;
- }
- function B(t) {
- var t2 = t * t;
- var t3 = t2 * t;
- return [
- t3,
- 3 * t2 * (1 - t),
- 3 * t * (1 - t) * (1 - t),
- (1 - t) * (1 - t) * (1 - t),
- ];
- }
|