123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135 |
- import centerMean from "@turf/center-mean";
- import distance from "@turf/distance";
- import centroid from "@turf/centroid";
- import { isNumber, point, isObject, featureCollection, } from "@turf/helpers";
- import { featureEach } from "@turf/meta";
- /**
- * Takes a {@link FeatureCollection} of points and calculates the median center,
- * algorithimically. The median center is understood as the point that is
- * requires the least total travel from all other points.
- *
- * Turfjs has four different functions for calculating the center of a set of
- * data. Each is useful depending on circumstance.
- *
- * `@turf/center` finds the simple center of a dataset, by finding the
- * midpoint between the extents of the data. That is, it divides in half the
- * farthest east and farthest west point as well as the farthest north and
- * farthest south.
- *
- * `@turf/center-of-mass` imagines that the dataset is a sheet of paper.
- * The center of mass is where the sheet would balance on a fingertip.
- *
- * `@turf/center-mean` takes the averages of all the coordinates and
- * produces a value that respects that. Unlike `@turf/center`, it is
- * sensitive to clusters and outliers. It lands in the statistical middle of a
- * dataset, not the geographical. It can also be weighted, meaning certain
- * points are more important than others.
- *
- * `@turf/center-median` takes the mean center and tries to find, iteratively,
- * a new point that requires the least amount of travel from all the points in
- * the dataset. It is not as sensitive to outliers as `@turf/center-mean`, but it is
- * attracted to clustered data. It, too, can be weighted.
- *
- * **Bibliography**
- *
- * Harold W. Kuhn and Robert E. Kuenne, “An Efficient Algorithm for the
- * Numerical Solution of the Generalized Weber Problem in Spatial
- * Economics,” _Journal of Regional Science_ 4, no. 2 (1962): 21–33,
- * doi:{@link https://doi.org/10.1111/j.1467-9787.1962.tb00902.x}.
- *
- * James E. Burt, Gerald M. Barber, and David L. Rigby, _Elementary
- * Statistics for Geographers_, 3rd ed., New York: The Guilford
- * Press, 2009, 150–151.
- *
- * @name centerMedian
- * @param {FeatureCollection<any>} features Any GeoJSON Feature Collection
- * @param {Object} [options={}] Optional parameters
- * @param {string} [options.weight] the property name used to weight the center
- * @param {number} [options.tolerance=0.001] the difference in distance between candidate medians at which point the algorighim stops iterating.
- * @param {number} [options.counter=10] how many attempts to find the median, should the tolerance be insufficient.
- * @returns {Feature<Point>} The median center of the collection
- * @example
- * var points = turf.points([[0, 0], [1, 0], [0, 1], [5, 8]]);
- * var medianCenter = turf.centerMedian(points);
- *
- * //addToMap
- * var addToMap = [points, medianCenter]
- */
- function centerMedian(features, options) {
- if (options === void 0) { options = {}; }
- // Optional params
- options = options || {};
- if (!isObject(options))
- throw new Error("options is invalid");
- var counter = options.counter || 10;
- if (!isNumber(counter))
- throw new Error("counter must be a number");
- var weightTerm = options.weight;
- // Calculate mean center:
- var meanCenter = centerMean(features, { weight: options.weight });
- // Calculate center of every feature:
- var centroids = featureCollection([]);
- featureEach(features, function (feature) {
- var _a;
- centroids.features.push(centroid(feature, {
- properties: { weight: (_a = feature.properties) === null || _a === void 0 ? void 0 : _a[weightTerm] },
- }));
- });
- var properties = {
- tolerance: options.tolerance,
- medianCandidates: [],
- };
- return findMedian(meanCenter.geometry.coordinates, [0, 0], centroids, properties, counter);
- }
- /**
- * Recursive function to find new candidate medians.
- *
- * @private
- * @param {Position} candidateMedian current candidate median
- * @param {Position} previousCandidate the previous candidate median
- * @param {FeatureCollection<Point>} centroids the collection of centroids whose median we are determining
- * @param {number} counter how many attempts to try before quitting.
- * @returns {Feature<Point>} the median center of the dataset.
- */
- function findMedian(candidateMedian, previousCandidate, centroids, properties, counter) {
- var tolerance = properties.tolerance || 0.001;
- var candidateXsum = 0;
- var candidateYsum = 0;
- var kSum = 0;
- var centroidCount = 0;
- featureEach(centroids, function (theCentroid) {
- var _a;
- var weightValue = (_a = theCentroid.properties) === null || _a === void 0 ? void 0 : _a.weight;
- var weight = weightValue === undefined || weightValue === null ? 1 : weightValue;
- weight = Number(weight);
- if (!isNumber(weight))
- throw new Error("weight value must be a number");
- if (weight > 0) {
- centroidCount += 1;
- var distanceFromCandidate = weight * distance(theCentroid, candidateMedian);
- if (distanceFromCandidate === 0)
- distanceFromCandidate = 1;
- var k = weight / distanceFromCandidate;
- candidateXsum += theCentroid.geometry.coordinates[0] * k;
- candidateYsum += theCentroid.geometry.coordinates[1] * k;
- kSum += k;
- }
- });
- if (centroidCount < 1)
- throw new Error("no features to measure");
- var candidateX = candidateXsum / kSum;
- var candidateY = candidateYsum / kSum;
- if (centroidCount === 1 ||
- counter === 0 ||
- (Math.abs(candidateX - previousCandidate[0]) < tolerance &&
- Math.abs(candidateY - previousCandidate[1]) < tolerance)) {
- return point([candidateX, candidateY], {
- medianCandidates: properties.medianCandidates,
- });
- }
- else {
- properties.medianCandidates.push([candidateX, candidateY]);
- return findMedian([candidateX, candidateY], candidateMedian, centroids, properties, counter - 1);
- }
- }
- export default centerMedian;
|