1234567891011121314151617181920212223242526272829303132333435 |
- import { Properties, Units, FeatureCollection, Point } from "@turf/helpers";
- export declare type Dbscan = "core" | "edge" | "noise";
- export declare type DbscanProps = Properties & {
- dbscan?: Dbscan;
- cluster?: number;
- };
- /**
- * Takes a set of {@link Point|points} and partition them into clusters according to {@link DBSCAN's|https://en.wikipedia.org/wiki/DBSCAN} data clustering algorithm.
- *
- * @name clustersDbscan
- * @param {FeatureCollection<Point>} points to be clustered
- * @param {number} maxDistance Maximum Distance between any point of the cluster to generate the clusters (kilometers only)
- * @param {Object} [options={}] Optional parameters
- * @param {string} [options.units="kilometers"] in which `maxDistance` is expressed, can be degrees, radians, miles, or kilometers
- * @param {boolean} [options.mutate=false] Allows GeoJSON input to be mutated
- * @param {number} [options.minPoints=3] Minimum number of points to generate a single cluster,
- * points which do not meet this requirement will be classified as an 'edge' or 'noise'.
- * @returns {FeatureCollection<Point>} Clustered Points with an additional two properties associated to each Feature:
- * - {number} cluster - the associated clusterId
- * - {string} dbscan - type of point it has been classified as ('core'|'edge'|'noise')
- * @example
- * // create random points with random z-values in their properties
- * var points = turf.randomPoint(100, {bbox: [0, 30, 20, 50]});
- * var maxDistance = 100;
- * var clustered = turf.clustersDbscan(points, maxDistance);
- *
- * //addToMap
- * var addToMap = [clustered];
- */
- declare function clustersDbscan(points: FeatureCollection<Point>, maxDistance: number, options?: {
- units?: Units;
- minPoints?: number;
- mutate?: boolean;
- }): FeatureCollection<Point, DbscanProps>;
- export default clustersDbscan;
|