12345678910111213141516171819202122232425262728293031323334353637 |
- import { Feature, FeatureCollection, Point } from "@turf/helpers";
- /**
- * calcualte the Minkowski p-norm distance between two features.
- * @param feature1 point feature
- * @param feature2 point feature
- * @param p p-norm 1=<p<=infinity 1: Manhattan distance 2: Euclidean distance
- */
- export declare function pNormDistance(feature1: Feature<Point>, feature2: Feature<Point>, p?: number): number;
- /**
- *
- *
- * @name distanceWeight
- * @param {FeatureCollection<any>} fc FeatureCollection.
- * @param {Object} [options] option object.
- * @param {number} [options.threshold=10000] If the distance between neighbor and
- * target features is greater than threshold, the weight of that neighbor is 0.
- * @param {number} [options.p=2] Minkowski p-norm distance parameter.
- * 1: Manhattan distance. 2: Euclidean distance. 1=<p<=infinity.
- * @param {boolean} [options.binary=false] If true, weight=1 if d <= threshold otherwise weight=0.
- * If false, weight=Math.pow(d, alpha).
- * @param {number} [options.alpha=-1] distance decay parameter.
- * A big value means the weight decay quickly as distance increases.
- * @param {boolean} [options.standardization=false] row standardization.
- * @returns {Array<Array<number>>} distance weight matrix.
- * @example
- *
- * var bbox = [-65, 40, -63, 42];
- * var dataset = turf.randomPoint(100, { bbox: bbox });
- * var result = turf.distanceWeight(dataset);
- */
- export default function distanceWeight(fc: FeatureCollection<any>, options?: {
- threshold?: number;
- p?: number;
- binary?: boolean;
- alpha?: number;
- standardization?: boolean;
- }): number[][];
|