EllipsoidOutlineGeometry-40d97455.js 18 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454
  1. define(['exports', './Transforms-bc45e707', './Matrix3-41c58dde', './ComponentDatatype-cf1fa08e', './defaultValue-fe22d8c0', './Check-6ede7e26', './GeometryAttribute-a466e9c7', './GeometryAttributes-ad136444', './GeometryOffsetAttribute-9ad0019c', './IndexDatatype-2643aa47', './Math-0a2ac845'], (function (exports, Transforms, Matrix3, ComponentDatatype, defaultValue, Check, GeometryAttribute, GeometryAttributes, GeometryOffsetAttribute, IndexDatatype, Math$1) { 'use strict';
  2. const defaultRadii = new Matrix3.Cartesian3(1.0, 1.0, 1.0);
  3. const cos = Math.cos;
  4. const sin = Math.sin;
  5. /**
  6. * A description of the outline of an ellipsoid centered at the origin.
  7. *
  8. * @alias EllipsoidOutlineGeometry
  9. * @constructor
  10. *
  11. * @param {object} [options] Object with the following properties:
  12. * @param {Cartesian3} [options.radii=Cartesian3(1.0, 1.0, 1.0)] The radii of the ellipsoid in the x, y, and z directions.
  13. * @param {Cartesian3} [options.innerRadii=options.radii] The inner radii of the ellipsoid in the x, y, and z directions.
  14. * @param {number} [options.minimumClock=0.0] The minimum angle lying in the xy-plane measured from the positive x-axis and toward the positive y-axis.
  15. * @param {number} [options.maximumClock=2*PI] The maximum angle lying in the xy-plane measured from the positive x-axis and toward the positive y-axis.
  16. * @param {number} [options.minimumCone=0.0] The minimum angle measured from the positive z-axis and toward the negative z-axis.
  17. * @param {number} [options.maximumCone=PI] The maximum angle measured from the positive z-axis and toward the negative z-axis.
  18. * @param {number} [options.stackPartitions=10] The count of stacks for the ellipsoid (1 greater than the number of parallel lines).
  19. * @param {number} [options.slicePartitions=8] The count of slices for the ellipsoid (Equal to the number of radial lines).
  20. * @param {number} [options.subdivisions=128] The number of points per line, determining the granularity of the curvature.
  21. *
  22. * @exception {DeveloperError} options.stackPartitions must be greater than or equal to one.
  23. * @exception {DeveloperError} options.slicePartitions must be greater than or equal to zero.
  24. * @exception {DeveloperError} options.subdivisions must be greater than or equal to zero.
  25. *
  26. * @example
  27. * const ellipsoid = new Cesium.EllipsoidOutlineGeometry({
  28. * radii : new Cesium.Cartesian3(1000000.0, 500000.0, 500000.0),
  29. * stackPartitions: 6,
  30. * slicePartitions: 5
  31. * });
  32. * const geometry = Cesium.EllipsoidOutlineGeometry.createGeometry(ellipsoid);
  33. */
  34. function EllipsoidOutlineGeometry(options) {
  35. options = defaultValue.defaultValue(options, defaultValue.defaultValue.EMPTY_OBJECT);
  36. const radii = defaultValue.defaultValue(options.radii, defaultRadii);
  37. const innerRadii = defaultValue.defaultValue(options.innerRadii, radii);
  38. const minimumClock = defaultValue.defaultValue(options.minimumClock, 0.0);
  39. const maximumClock = defaultValue.defaultValue(options.maximumClock, Math$1.CesiumMath.TWO_PI);
  40. const minimumCone = defaultValue.defaultValue(options.minimumCone, 0.0);
  41. const maximumCone = defaultValue.defaultValue(options.maximumCone, Math$1.CesiumMath.PI);
  42. const stackPartitions = Math.round(defaultValue.defaultValue(options.stackPartitions, 10));
  43. const slicePartitions = Math.round(defaultValue.defaultValue(options.slicePartitions, 8));
  44. const subdivisions = Math.round(defaultValue.defaultValue(options.subdivisions, 128));
  45. //>>includeStart('debug', pragmas.debug);
  46. if (stackPartitions < 1) {
  47. throw new Check.DeveloperError("options.stackPartitions cannot be less than 1");
  48. }
  49. if (slicePartitions < 0) {
  50. throw new Check.DeveloperError("options.slicePartitions cannot be less than 0");
  51. }
  52. if (subdivisions < 0) {
  53. throw new Check.DeveloperError(
  54. "options.subdivisions must be greater than or equal to zero."
  55. );
  56. }
  57. if (
  58. defaultValue.defined(options.offsetAttribute) &&
  59. options.offsetAttribute === GeometryOffsetAttribute.GeometryOffsetAttribute.TOP
  60. ) {
  61. throw new Check.DeveloperError(
  62. "GeometryOffsetAttribute.TOP is not a supported options.offsetAttribute for this geometry."
  63. );
  64. }
  65. //>>includeEnd('debug');
  66. this._radii = Matrix3.Cartesian3.clone(radii);
  67. this._innerRadii = Matrix3.Cartesian3.clone(innerRadii);
  68. this._minimumClock = minimumClock;
  69. this._maximumClock = maximumClock;
  70. this._minimumCone = minimumCone;
  71. this._maximumCone = maximumCone;
  72. this._stackPartitions = stackPartitions;
  73. this._slicePartitions = slicePartitions;
  74. this._subdivisions = subdivisions;
  75. this._offsetAttribute = options.offsetAttribute;
  76. this._workerName = "createEllipsoidOutlineGeometry";
  77. }
  78. /**
  79. * The number of elements used to pack the object into an array.
  80. * @type {number}
  81. */
  82. EllipsoidOutlineGeometry.packedLength = 2 * Matrix3.Cartesian3.packedLength + 8;
  83. /**
  84. * Stores the provided instance into the provided array.
  85. *
  86. * @param {EllipsoidOutlineGeometry} value The value to pack.
  87. * @param {number[]} array The array to pack into.
  88. * @param {number} [startingIndex=0] The index into the array at which to start packing the elements.
  89. *
  90. * @returns {number[]} The array that was packed into
  91. */
  92. EllipsoidOutlineGeometry.pack = function (value, array, startingIndex) {
  93. //>>includeStart('debug', pragmas.debug);
  94. if (!defaultValue.defined(value)) {
  95. throw new Check.DeveloperError("value is required");
  96. }
  97. if (!defaultValue.defined(array)) {
  98. throw new Check.DeveloperError("array is required");
  99. }
  100. //>>includeEnd('debug');
  101. startingIndex = defaultValue.defaultValue(startingIndex, 0);
  102. Matrix3.Cartesian3.pack(value._radii, array, startingIndex);
  103. startingIndex += Matrix3.Cartesian3.packedLength;
  104. Matrix3.Cartesian3.pack(value._innerRadii, array, startingIndex);
  105. startingIndex += Matrix3.Cartesian3.packedLength;
  106. array[startingIndex++] = value._minimumClock;
  107. array[startingIndex++] = value._maximumClock;
  108. array[startingIndex++] = value._minimumCone;
  109. array[startingIndex++] = value._maximumCone;
  110. array[startingIndex++] = value._stackPartitions;
  111. array[startingIndex++] = value._slicePartitions;
  112. array[startingIndex++] = value._subdivisions;
  113. array[startingIndex] = defaultValue.defaultValue(value._offsetAttribute, -1);
  114. return array;
  115. };
  116. const scratchRadii = new Matrix3.Cartesian3();
  117. const scratchInnerRadii = new Matrix3.Cartesian3();
  118. const scratchOptions = {
  119. radii: scratchRadii,
  120. innerRadii: scratchInnerRadii,
  121. minimumClock: undefined,
  122. maximumClock: undefined,
  123. minimumCone: undefined,
  124. maximumCone: undefined,
  125. stackPartitions: undefined,
  126. slicePartitions: undefined,
  127. subdivisions: undefined,
  128. offsetAttribute: undefined,
  129. };
  130. /**
  131. * Retrieves an instance from a packed array.
  132. *
  133. * @param {number[]} array The packed array.
  134. * @param {number} [startingIndex=0] The starting index of the element to be unpacked.
  135. * @param {EllipsoidOutlineGeometry} [result] The object into which to store the result.
  136. * @returns {EllipsoidOutlineGeometry} The modified result parameter or a new EllipsoidOutlineGeometry instance if one was not provided.
  137. */
  138. EllipsoidOutlineGeometry.unpack = function (array, startingIndex, result) {
  139. //>>includeStart('debug', pragmas.debug);
  140. if (!defaultValue.defined(array)) {
  141. throw new Check.DeveloperError("array is required");
  142. }
  143. //>>includeEnd('debug');
  144. startingIndex = defaultValue.defaultValue(startingIndex, 0);
  145. const radii = Matrix3.Cartesian3.unpack(array, startingIndex, scratchRadii);
  146. startingIndex += Matrix3.Cartesian3.packedLength;
  147. const innerRadii = Matrix3.Cartesian3.unpack(array, startingIndex, scratchInnerRadii);
  148. startingIndex += Matrix3.Cartesian3.packedLength;
  149. const minimumClock = array[startingIndex++];
  150. const maximumClock = array[startingIndex++];
  151. const minimumCone = array[startingIndex++];
  152. const maximumCone = array[startingIndex++];
  153. const stackPartitions = array[startingIndex++];
  154. const slicePartitions = array[startingIndex++];
  155. const subdivisions = array[startingIndex++];
  156. const offsetAttribute = array[startingIndex];
  157. if (!defaultValue.defined(result)) {
  158. scratchOptions.minimumClock = minimumClock;
  159. scratchOptions.maximumClock = maximumClock;
  160. scratchOptions.minimumCone = minimumCone;
  161. scratchOptions.maximumCone = maximumCone;
  162. scratchOptions.stackPartitions = stackPartitions;
  163. scratchOptions.slicePartitions = slicePartitions;
  164. scratchOptions.subdivisions = subdivisions;
  165. scratchOptions.offsetAttribute =
  166. offsetAttribute === -1 ? undefined : offsetAttribute;
  167. return new EllipsoidOutlineGeometry(scratchOptions);
  168. }
  169. result._radii = Matrix3.Cartesian3.clone(radii, result._radii);
  170. result._innerRadii = Matrix3.Cartesian3.clone(innerRadii, result._innerRadii);
  171. result._minimumClock = minimumClock;
  172. result._maximumClock = maximumClock;
  173. result._minimumCone = minimumCone;
  174. result._maximumCone = maximumCone;
  175. result._stackPartitions = stackPartitions;
  176. result._slicePartitions = slicePartitions;
  177. result._subdivisions = subdivisions;
  178. result._offsetAttribute =
  179. offsetAttribute === -1 ? undefined : offsetAttribute;
  180. return result;
  181. };
  182. /**
  183. * Computes the geometric representation of an outline of an ellipsoid, including its vertices, indices, and a bounding sphere.
  184. *
  185. * @param {EllipsoidOutlineGeometry} ellipsoidGeometry A description of the ellipsoid outline.
  186. * @returns {Geometry|undefined} The computed vertices and indices.
  187. */
  188. EllipsoidOutlineGeometry.createGeometry = function (ellipsoidGeometry) {
  189. const radii = ellipsoidGeometry._radii;
  190. if (radii.x <= 0 || radii.y <= 0 || radii.z <= 0) {
  191. return;
  192. }
  193. const innerRadii = ellipsoidGeometry._innerRadii;
  194. if (innerRadii.x <= 0 || innerRadii.y <= 0 || innerRadii.z <= 0) {
  195. return;
  196. }
  197. const minimumClock = ellipsoidGeometry._minimumClock;
  198. const maximumClock = ellipsoidGeometry._maximumClock;
  199. const minimumCone = ellipsoidGeometry._minimumCone;
  200. const maximumCone = ellipsoidGeometry._maximumCone;
  201. const subdivisions = ellipsoidGeometry._subdivisions;
  202. const ellipsoid = Matrix3.Ellipsoid.fromCartesian3(radii);
  203. // Add an extra slice and stack to remain consistent with EllipsoidGeometry
  204. let slicePartitions = ellipsoidGeometry._slicePartitions + 1;
  205. let stackPartitions = ellipsoidGeometry._stackPartitions + 1;
  206. slicePartitions = Math.round(
  207. (slicePartitions * Math.abs(maximumClock - minimumClock)) /
  208. Math$1.CesiumMath.TWO_PI
  209. );
  210. stackPartitions = Math.round(
  211. (stackPartitions * Math.abs(maximumCone - minimumCone)) / Math$1.CesiumMath.PI
  212. );
  213. if (slicePartitions < 2) {
  214. slicePartitions = 2;
  215. }
  216. if (stackPartitions < 2) {
  217. stackPartitions = 2;
  218. }
  219. let extraIndices = 0;
  220. let vertexMultiplier = 1.0;
  221. const hasInnerSurface =
  222. innerRadii.x !== radii.x ||
  223. innerRadii.y !== radii.y ||
  224. innerRadii.z !== radii.z;
  225. let isTopOpen = false;
  226. let isBotOpen = false;
  227. if (hasInnerSurface) {
  228. vertexMultiplier = 2.0;
  229. // Add 2x slicePartitions to connect the top/bottom of the outer to
  230. // the top/bottom of the inner
  231. if (minimumCone > 0.0) {
  232. isTopOpen = true;
  233. extraIndices += slicePartitions;
  234. }
  235. if (maximumCone < Math.PI) {
  236. isBotOpen = true;
  237. extraIndices += slicePartitions;
  238. }
  239. }
  240. const vertexCount =
  241. subdivisions * vertexMultiplier * (stackPartitions + slicePartitions);
  242. const positions = new Float64Array(vertexCount * 3);
  243. // Multiply by two because two points define each line segment
  244. const numIndices =
  245. 2 *
  246. (vertexCount +
  247. extraIndices -
  248. (slicePartitions + stackPartitions) * vertexMultiplier);
  249. const indices = IndexDatatype.IndexDatatype.createTypedArray(vertexCount, numIndices);
  250. let i;
  251. let j;
  252. let theta;
  253. let phi;
  254. let index = 0;
  255. // Calculate sin/cos phi
  256. const sinPhi = new Array(stackPartitions);
  257. const cosPhi = new Array(stackPartitions);
  258. for (i = 0; i < stackPartitions; i++) {
  259. phi =
  260. minimumCone + (i * (maximumCone - minimumCone)) / (stackPartitions - 1);
  261. sinPhi[i] = sin(phi);
  262. cosPhi[i] = cos(phi);
  263. }
  264. // Calculate sin/cos theta
  265. const sinTheta = new Array(subdivisions);
  266. const cosTheta = new Array(subdivisions);
  267. for (i = 0; i < subdivisions; i++) {
  268. theta =
  269. minimumClock + (i * (maximumClock - minimumClock)) / (subdivisions - 1);
  270. sinTheta[i] = sin(theta);
  271. cosTheta[i] = cos(theta);
  272. }
  273. // Calculate the latitude lines on the outer surface
  274. for (i = 0; i < stackPartitions; i++) {
  275. for (j = 0; j < subdivisions; j++) {
  276. positions[index++] = radii.x * sinPhi[i] * cosTheta[j];
  277. positions[index++] = radii.y * sinPhi[i] * sinTheta[j];
  278. positions[index++] = radii.z * cosPhi[i];
  279. }
  280. }
  281. // Calculate the latitude lines on the inner surface
  282. if (hasInnerSurface) {
  283. for (i = 0; i < stackPartitions; i++) {
  284. for (j = 0; j < subdivisions; j++) {
  285. positions[index++] = innerRadii.x * sinPhi[i] * cosTheta[j];
  286. positions[index++] = innerRadii.y * sinPhi[i] * sinTheta[j];
  287. positions[index++] = innerRadii.z * cosPhi[i];
  288. }
  289. }
  290. }
  291. // Calculate sin/cos phi
  292. sinPhi.length = subdivisions;
  293. cosPhi.length = subdivisions;
  294. for (i = 0; i < subdivisions; i++) {
  295. phi = minimumCone + (i * (maximumCone - minimumCone)) / (subdivisions - 1);
  296. sinPhi[i] = sin(phi);
  297. cosPhi[i] = cos(phi);
  298. }
  299. // Calculate sin/cos theta for each slice partition
  300. sinTheta.length = slicePartitions;
  301. cosTheta.length = slicePartitions;
  302. for (i = 0; i < slicePartitions; i++) {
  303. theta =
  304. minimumClock +
  305. (i * (maximumClock - minimumClock)) / (slicePartitions - 1);
  306. sinTheta[i] = sin(theta);
  307. cosTheta[i] = cos(theta);
  308. }
  309. // Calculate the longitude lines on the outer surface
  310. for (i = 0; i < subdivisions; i++) {
  311. for (j = 0; j < slicePartitions; j++) {
  312. positions[index++] = radii.x * sinPhi[i] * cosTheta[j];
  313. positions[index++] = radii.y * sinPhi[i] * sinTheta[j];
  314. positions[index++] = radii.z * cosPhi[i];
  315. }
  316. }
  317. // Calculate the longitude lines on the inner surface
  318. if (hasInnerSurface) {
  319. for (i = 0; i < subdivisions; i++) {
  320. for (j = 0; j < slicePartitions; j++) {
  321. positions[index++] = innerRadii.x * sinPhi[i] * cosTheta[j];
  322. positions[index++] = innerRadii.y * sinPhi[i] * sinTheta[j];
  323. positions[index++] = innerRadii.z * cosPhi[i];
  324. }
  325. }
  326. }
  327. // Create indices for the latitude lines
  328. index = 0;
  329. for (i = 0; i < stackPartitions * vertexMultiplier; i++) {
  330. const topOffset = i * subdivisions;
  331. for (j = 0; j < subdivisions - 1; j++) {
  332. indices[index++] = topOffset + j;
  333. indices[index++] = topOffset + j + 1;
  334. }
  335. }
  336. // Create indices for the outer longitude lines
  337. let offset = stackPartitions * subdivisions * vertexMultiplier;
  338. for (i = 0; i < slicePartitions; i++) {
  339. for (j = 0; j < subdivisions - 1; j++) {
  340. indices[index++] = offset + i + j * slicePartitions;
  341. indices[index++] = offset + i + (j + 1) * slicePartitions;
  342. }
  343. }
  344. // Create indices for the inner longitude lines
  345. if (hasInnerSurface) {
  346. offset =
  347. stackPartitions * subdivisions * vertexMultiplier +
  348. slicePartitions * subdivisions;
  349. for (i = 0; i < slicePartitions; i++) {
  350. for (j = 0; j < subdivisions - 1; j++) {
  351. indices[index++] = offset + i + j * slicePartitions;
  352. indices[index++] = offset + i + (j + 1) * slicePartitions;
  353. }
  354. }
  355. }
  356. if (hasInnerSurface) {
  357. let outerOffset = stackPartitions * subdivisions * vertexMultiplier;
  358. let innerOffset = outerOffset + subdivisions * slicePartitions;
  359. if (isTopOpen) {
  360. // Draw lines from the top of the inner surface to the top of the outer surface
  361. for (i = 0; i < slicePartitions; i++) {
  362. indices[index++] = outerOffset + i;
  363. indices[index++] = innerOffset + i;
  364. }
  365. }
  366. if (isBotOpen) {
  367. // Draw lines from the top of the inner surface to the top of the outer surface
  368. outerOffset += subdivisions * slicePartitions - slicePartitions;
  369. innerOffset += subdivisions * slicePartitions - slicePartitions;
  370. for (i = 0; i < slicePartitions; i++) {
  371. indices[index++] = outerOffset + i;
  372. indices[index++] = innerOffset + i;
  373. }
  374. }
  375. }
  376. const attributes = new GeometryAttributes.GeometryAttributes({
  377. position: new GeometryAttribute.GeometryAttribute({
  378. componentDatatype: ComponentDatatype.ComponentDatatype.DOUBLE,
  379. componentsPerAttribute: 3,
  380. values: positions,
  381. }),
  382. });
  383. if (defaultValue.defined(ellipsoidGeometry._offsetAttribute)) {
  384. const length = positions.length;
  385. const offsetValue =
  386. ellipsoidGeometry._offsetAttribute === GeometryOffsetAttribute.GeometryOffsetAttribute.NONE
  387. ? 0
  388. : 1;
  389. const applyOffset = new Uint8Array(length / 3).fill(offsetValue);
  390. attributes.applyOffset = new GeometryAttribute.GeometryAttribute({
  391. componentDatatype: ComponentDatatype.ComponentDatatype.UNSIGNED_BYTE,
  392. componentsPerAttribute: 1,
  393. values: applyOffset,
  394. });
  395. }
  396. return new GeometryAttribute.Geometry({
  397. attributes: attributes,
  398. indices: indices,
  399. primitiveType: GeometryAttribute.PrimitiveType.LINES,
  400. boundingSphere: Transforms.BoundingSphere.fromEllipsoid(ellipsoid),
  401. offsetAttribute: ellipsoidGeometry._offsetAttribute,
  402. });
  403. };
  404. exports.EllipsoidOutlineGeometry = EllipsoidOutlineGeometry;
  405. }));