123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376 |
- import Cartesian2 from "./Cartesian2.js";
- import Cartesian3 from "./Cartesian3.js";
- import Cartographic from "./Cartographic.js";
- import Check from "./Check.js";
- import defaultValue from "./defaultValue.js";
- import defined from "./defined.js";
- import DeveloperError from "./DeveloperError.js";
- import GeometryType from "./GeometryType.js";
- import Matrix2 from "./Matrix2.js";
- import Matrix3 from "./Matrix3.js";
- import Matrix4 from "./Matrix4.js";
- import PrimitiveType from "./PrimitiveType.js";
- import Quaternion from "./Quaternion.js";
- import Rectangle from "./Rectangle.js";
- import Transforms from "./Transforms.js";
- /**
- * A geometry representation with attributes forming vertices and optional index data
- * defining primitives. Geometries and an {@link Appearance}, which describes the shading,
- * can be assigned to a {@link Primitive} for visualization. A <code>Primitive</code> can
- * be created from many heterogeneous - in many cases - geometries for performance.
- * <p>
- * Geometries can be transformed and optimized using functions in {@link GeometryPipeline}.
- * </p>
- *
- * @alias Geometry
- * @constructor
- *
- * @param {object} options Object with the following properties:
- * @param {GeometryAttributes} options.attributes Attributes, which make up the geometry's vertices.
- * @param {PrimitiveType} [options.primitiveType=PrimitiveType.TRIANGLES] The type of primitives in the geometry.
- * @param {Uint16Array|Uint32Array} [options.indices] Optional index data that determines the primitives in the geometry.
- * @param {BoundingSphere} [options.boundingSphere] An optional bounding sphere that fully enclosed the geometry.
- *
- * @see PolygonGeometry
- * @see RectangleGeometry
- * @see EllipseGeometry
- * @see CircleGeometry
- * @see WallGeometry
- * @see SimplePolylineGeometry
- * @see BoxGeometry
- * @see EllipsoidGeometry
- *
- * @demo {@link https://sandcastle.cesium.com/index.html?src=Geometry%20and%20Appearances.html|Geometry and Appearances Demo}
- *
- * @example
- * // Create geometry with a position attribute and indexed lines.
- * const positions = new Float64Array([
- * 0.0, 0.0, 0.0,
- * 7500000.0, 0.0, 0.0,
- * 0.0, 7500000.0, 0.0
- * ]);
- *
- * const geometry = new Cesium.Geometry({
- * attributes : {
- * position : new Cesium.GeometryAttribute({
- * componentDatatype : Cesium.ComponentDatatype.DOUBLE,
- * componentsPerAttribute : 3,
- * values : positions
- * })
- * },
- * indices : new Uint16Array([0, 1, 1, 2, 2, 0]),
- * primitiveType : Cesium.PrimitiveType.LINES,
- * boundingSphere : Cesium.BoundingSphere.fromVertices(positions)
- * });
- */
- function Geometry(options) {
- options = defaultValue(options, defaultValue.EMPTY_OBJECT);
- //>>includeStart('debug', pragmas.debug);
- Check.typeOf.object("options.attributes", options.attributes);
- //>>includeEnd('debug');
- /**
- * Attributes, which make up the geometry's vertices. Each property in this object corresponds to a
- * {@link GeometryAttribute} containing the attribute's data.
- * <p>
- * Attributes are always stored non-interleaved in a Geometry.
- * </p>
- * <p>
- * There are reserved attribute names with well-known semantics. The following attributes
- * are created by a Geometry (depending on the provided {@link VertexFormat}.
- * <ul>
- * <li><code>position</code> - 3D vertex position. 64-bit floating-point (for precision). 3 components per attribute. See {@link VertexFormat#position}.</li>
- * <li><code>normal</code> - Normal (normalized), commonly used for lighting. 32-bit floating-point. 3 components per attribute. See {@link VertexFormat#normal}.</li>
- * <li><code>st</code> - 2D texture coordinate. 32-bit floating-point. 2 components per attribute. See {@link VertexFormat#st}.</li>
- * <li><code>bitangent</code> - Bitangent (normalized), used for tangent-space effects like bump mapping. 32-bit floating-point. 3 components per attribute. See {@link VertexFormat#bitangent}.</li>
- * <li><code>tangent</code> - Tangent (normalized), used for tangent-space effects like bump mapping. 32-bit floating-point. 3 components per attribute. See {@link VertexFormat#tangent}.</li>
- * </ul>
- * </p>
- * <p>
- * The following attribute names are generally not created by a Geometry, but are added
- * to a Geometry by a {@link Primitive} or {@link GeometryPipeline} functions to prepare
- * the geometry for rendering.
- * <ul>
- * <li><code>position3DHigh</code> - High 32 bits for encoded 64-bit position computed with {@link GeometryPipeline.encodeAttribute}. 32-bit floating-point. 4 components per attribute.</li>
- * <li><code>position3DLow</code> - Low 32 bits for encoded 64-bit position computed with {@link GeometryPipeline.encodeAttribute}. 32-bit floating-point. 4 components per attribute.</li>
- * <li><code>position3DHigh</code> - High 32 bits for encoded 64-bit 2D (Columbus view) position computed with {@link GeometryPipeline.encodeAttribute}. 32-bit floating-point. 4 components per attribute.</li>
- * <li><code>position2DLow</code> - Low 32 bits for encoded 64-bit 2D (Columbus view) position computed with {@link GeometryPipeline.encodeAttribute}. 32-bit floating-point. 4 components per attribute.</li>
- * <li><code>color</code> - RGBA color (normalized) usually from {@link GeometryInstance#color}. 32-bit floating-point. 4 components per attribute.</li>
- * <li><code>pickColor</code> - RGBA color used for picking. 32-bit floating-point. 4 components per attribute.</li>
- * </ul>
- * </p>
- *
- * @type GeometryAttributes
- *
- * @default undefined
- *
- *
- * @example
- * geometry.attributes.position = new Cesium.GeometryAttribute({
- * componentDatatype : Cesium.ComponentDatatype.FLOAT,
- * componentsPerAttribute : 3,
- * values : new Float32Array(0)
- * });
- *
- * @see GeometryAttribute
- * @see VertexFormat
- */
- this.attributes = options.attributes;
- /**
- * Optional index data that - along with {@link Geometry#primitiveType} -
- * determines the primitives in the geometry.
- *
- * @type {Array}
- *
- * @default undefined
- */
- this.indices = options.indices;
- /**
- * The type of primitives in the geometry. This is most often {@link PrimitiveType.TRIANGLES},
- * but can varying based on the specific geometry.
- *
- * @type PrimitiveType
- *
- * @default undefined
- */
- this.primitiveType = defaultValue(
- options.primitiveType,
- PrimitiveType.TRIANGLES
- );
- /**
- * An optional bounding sphere that fully encloses the geometry. This is
- * commonly used for culling.
- *
- * @type BoundingSphere
- *
- * @default undefined
- */
- this.boundingSphere = options.boundingSphere;
- /**
- * @private
- */
- this.geometryType = defaultValue(options.geometryType, GeometryType.NONE);
- /**
- * @private
- */
- this.boundingSphereCV = options.boundingSphereCV;
- /**
- * Used for computing the bounding sphere for geometry using the applyOffset vertex attribute
- * @private
- */
- this.offsetAttribute = options.offsetAttribute;
- }
- /**
- * Computes the number of vertices in a geometry. The runtime is linear with
- * respect to the number of attributes in a vertex, not the number of vertices.
- *
- * @param {Geometry} geometry The geometry.
- * @returns {number} The number of vertices in the geometry.
- *
- * @example
- * const numVertices = Cesium.Geometry.computeNumberOfVertices(geometry);
- */
- Geometry.computeNumberOfVertices = function (geometry) {
- //>>includeStart('debug', pragmas.debug);
- Check.typeOf.object("geometry", geometry);
- //>>includeEnd('debug');
- let numberOfVertices = -1;
- for (const property in geometry.attributes) {
- if (
- geometry.attributes.hasOwnProperty(property) &&
- defined(geometry.attributes[property]) &&
- defined(geometry.attributes[property].values)
- ) {
- const attribute = geometry.attributes[property];
- const num = attribute.values.length / attribute.componentsPerAttribute;
- //>>includeStart('debug', pragmas.debug);
- if (numberOfVertices !== num && numberOfVertices !== -1) {
- throw new DeveloperError(
- "All attribute lists must have the same number of attributes."
- );
- }
- //>>includeEnd('debug');
- numberOfVertices = num;
- }
- }
- return numberOfVertices;
- };
- const rectangleCenterScratch = new Cartographic();
- const enuCenterScratch = new Cartesian3();
- const fixedFrameToEnuScratch = new Matrix4();
- const boundingRectanglePointsCartographicScratch = [
- new Cartographic(),
- new Cartographic(),
- new Cartographic(),
- ];
- const boundingRectanglePointsEnuScratch = [
- new Cartesian2(),
- new Cartesian2(),
- new Cartesian2(),
- ];
- const points2DScratch = [new Cartesian2(), new Cartesian2(), new Cartesian2()];
- const pointEnuScratch = new Cartesian3();
- const enuRotationScratch = new Quaternion();
- const enuRotationMatrixScratch = new Matrix4();
- const rotation2DScratch = new Matrix2();
- /**
- * For remapping texture coordinates when rendering GroundPrimitives with materials.
- * GroundPrimitive texture coordinates are computed to align with the cartographic coordinate system on the globe.
- * However, EllipseGeometry, RectangleGeometry, and PolygonGeometry all bake rotations to per-vertex texture coordinates
- * using different strategies.
- *
- * This method is used by EllipseGeometry and PolygonGeometry to approximate the same visual effect.
- * We encapsulate rotation and scale by computing a "transformed" texture coordinate system and computing
- * a set of reference points from which "cartographic" texture coordinates can be remapped to the "transformed"
- * system using distances to lines in 2D.
- *
- * This approximation becomes less accurate as the covered area increases, especially for GroundPrimitives near the poles,
- * but is generally reasonable for polygons and ellipses around the size of USA states.
- *
- * RectangleGeometry has its own version of this method that computes remapping coordinates using cartographic space
- * as an intermediary instead of local ENU, which is more accurate for large-area rectangles.
- *
- * @param {Cartesian3[]} positions Array of positions outlining the geometry
- * @param {number} stRotation Texture coordinate rotation.
- * @param {Ellipsoid} ellipsoid Ellipsoid for projecting and generating local vectors.
- * @param {Rectangle} boundingRectangle Bounding rectangle around the positions.
- * @returns {number[]} An array of 6 numbers specifying [minimum point, u extent, v extent] as points in the "cartographic" system.
- * @private
- */
- Geometry._textureCoordinateRotationPoints = function (
- positions,
- stRotation,
- ellipsoid,
- boundingRectangle
- ) {
- let i;
- // Create a local east-north-up coordinate system centered on the polygon's bounding rectangle.
- // Project the southwest, northwest, and southeast corners of the bounding rectangle into the plane of ENU as 2D points.
- // These are the equivalents of (0,0), (0,1), and (1,0) in the texture coordiante system computed in ShadowVolumeAppearanceFS,
- // aka "ENU texture space."
- const rectangleCenter = Rectangle.center(
- boundingRectangle,
- rectangleCenterScratch
- );
- const enuCenter = Cartographic.toCartesian(
- rectangleCenter,
- ellipsoid,
- enuCenterScratch
- );
- const enuToFixedFrame = Transforms.eastNorthUpToFixedFrame(
- enuCenter,
- ellipsoid,
- fixedFrameToEnuScratch
- );
- const fixedFrameToEnu = Matrix4.inverse(
- enuToFixedFrame,
- fixedFrameToEnuScratch
- );
- const boundingPointsEnu = boundingRectanglePointsEnuScratch;
- const boundingPointsCarto = boundingRectanglePointsCartographicScratch;
- boundingPointsCarto[0].longitude = boundingRectangle.west;
- boundingPointsCarto[0].latitude = boundingRectangle.south;
- boundingPointsCarto[1].longitude = boundingRectangle.west;
- boundingPointsCarto[1].latitude = boundingRectangle.north;
- boundingPointsCarto[2].longitude = boundingRectangle.east;
- boundingPointsCarto[2].latitude = boundingRectangle.south;
- let posEnu = pointEnuScratch;
- for (i = 0; i < 3; i++) {
- Cartographic.toCartesian(boundingPointsCarto[i], ellipsoid, posEnu);
- posEnu = Matrix4.multiplyByPointAsVector(fixedFrameToEnu, posEnu, posEnu);
- boundingPointsEnu[i].x = posEnu.x;
- boundingPointsEnu[i].y = posEnu.y;
- }
- // Rotate each point in the polygon around the up vector in the ENU by -stRotation and project into ENU as 2D.
- // Compute the bounding box of these rotated points in the 2D ENU plane.
- // Rotate the corners back by stRotation, then compute their equivalents in the ENU texture space using the corners computed earlier.
- const rotation = Quaternion.fromAxisAngle(
- Cartesian3.UNIT_Z,
- -stRotation,
- enuRotationScratch
- );
- const textureMatrix = Matrix3.fromQuaternion(
- rotation,
- enuRotationMatrixScratch
- );
- const positionsLength = positions.length;
- let enuMinX = Number.POSITIVE_INFINITY;
- let enuMinY = Number.POSITIVE_INFINITY;
- let enuMaxX = Number.NEGATIVE_INFINITY;
- let enuMaxY = Number.NEGATIVE_INFINITY;
- for (i = 0; i < positionsLength; i++) {
- posEnu = Matrix4.multiplyByPointAsVector(
- fixedFrameToEnu,
- positions[i],
- posEnu
- );
- posEnu = Matrix3.multiplyByVector(textureMatrix, posEnu, posEnu);
- enuMinX = Math.min(enuMinX, posEnu.x);
- enuMinY = Math.min(enuMinY, posEnu.y);
- enuMaxX = Math.max(enuMaxX, posEnu.x);
- enuMaxY = Math.max(enuMaxY, posEnu.y);
- }
- const toDesiredInComputed = Matrix2.fromRotation(
- stRotation,
- rotation2DScratch
- );
- const points2D = points2DScratch;
- points2D[0].x = enuMinX;
- points2D[0].y = enuMinY;
- points2D[1].x = enuMinX;
- points2D[1].y = enuMaxY;
- points2D[2].x = enuMaxX;
- points2D[2].y = enuMinY;
- const boundingEnuMin = boundingPointsEnu[0];
- const boundingPointsWidth = boundingPointsEnu[2].x - boundingEnuMin.x;
- const boundingPointsHeight = boundingPointsEnu[1].y - boundingEnuMin.y;
- for (i = 0; i < 3; i++) {
- const point2D = points2D[i];
- // rotate back
- Matrix2.multiplyByVector(toDesiredInComputed, point2D, point2D);
- // Convert point into east-north texture coordinate space
- point2D.x = (point2D.x - boundingEnuMin.x) / boundingPointsWidth;
- point2D.y = (point2D.y - boundingEnuMin.y) / boundingPointsHeight;
- }
- const minXYCorner = points2D[0];
- const maxYCorner = points2D[1];
- const maxXCorner = points2D[2];
- const result = new Array(6);
- Cartesian2.pack(minXYCorner, result);
- Cartesian2.pack(maxYCorner, result, 2);
- Cartesian2.pack(maxXCorner, result, 4);
- return result;
- };
- export default Geometry;
|