123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342 |
- import CubicRealPolynomial from "./CubicRealPolynomial.js";
- import DeveloperError from "./DeveloperError.js";
- import CesiumMath from "./Math.js";
- import QuadraticRealPolynomial from "./QuadraticRealPolynomial.js";
- /**
- * Defines functions for 4th order polynomial functions of one variable with only real coefficients.
- *
- * @namespace QuarticRealPolynomial
- */
- const QuarticRealPolynomial = {};
- /**
- * Provides the discriminant of the quartic equation from the supplied coefficients.
- *
- * @param {number} a The coefficient of the 4th order monomial.
- * @param {number} b The coefficient of the 3rd order monomial.
- * @param {number} c The coefficient of the 2nd order monomial.
- * @param {number} d The coefficient of the 1st order monomial.
- * @param {number} e The coefficient of the 0th order monomial.
- * @returns {number} The value of the discriminant.
- */
- QuarticRealPolynomial.computeDiscriminant = function (a, b, c, d, e) {
- //>>includeStart('debug', pragmas.debug);
- if (typeof a !== "number") {
- throw new DeveloperError("a is a required number.");
- }
- if (typeof b !== "number") {
- throw new DeveloperError("b is a required number.");
- }
- if (typeof c !== "number") {
- throw new DeveloperError("c is a required number.");
- }
- if (typeof d !== "number") {
- throw new DeveloperError("d is a required number.");
- }
- if (typeof e !== "number") {
- throw new DeveloperError("e is a required number.");
- }
- //>>includeEnd('debug');
- const a2 = a * a;
- const a3 = a2 * a;
- const b2 = b * b;
- const b3 = b2 * b;
- const c2 = c * c;
- const c3 = c2 * c;
- const d2 = d * d;
- const d3 = d2 * d;
- const e2 = e * e;
- const e3 = e2 * e;
- const discriminant =
- b2 * c2 * d2 -
- 4.0 * b3 * d3 -
- 4.0 * a * c3 * d2 +
- 18 * a * b * c * d3 -
- 27.0 * a2 * d2 * d2 +
- 256.0 * a3 * e3 +
- e *
- (18.0 * b3 * c * d -
- 4.0 * b2 * c3 +
- 16.0 * a * c2 * c2 -
- 80.0 * a * b * c2 * d -
- 6.0 * a * b2 * d2 +
- 144.0 * a2 * c * d2) +
- e2 *
- (144.0 * a * b2 * c -
- 27.0 * b2 * b2 -
- 128.0 * a2 * c2 -
- 192.0 * a2 * b * d);
- return discriminant;
- };
- function original(a3, a2, a1, a0) {
- const a3Squared = a3 * a3;
- const p = a2 - (3.0 * a3Squared) / 8.0;
- const q = a1 - (a2 * a3) / 2.0 + (a3Squared * a3) / 8.0;
- const r =
- a0 -
- (a1 * a3) / 4.0 +
- (a2 * a3Squared) / 16.0 -
- (3.0 * a3Squared * a3Squared) / 256.0;
- // Find the roots of the cubic equations: h^6 + 2 p h^4 + (p^2 - 4 r) h^2 - q^2 = 0.
- const cubicRoots = CubicRealPolynomial.computeRealRoots(
- 1.0,
- 2.0 * p,
- p * p - 4.0 * r,
- -q * q
- );
- if (cubicRoots.length > 0) {
- const temp = -a3 / 4.0;
- // Use the largest positive root.
- const hSquared = cubicRoots[cubicRoots.length - 1];
- if (Math.abs(hSquared) < CesiumMath.EPSILON14) {
- // y^4 + p y^2 + r = 0.
- const roots = QuadraticRealPolynomial.computeRealRoots(1.0, p, r);
- if (roots.length === 2) {
- const root0 = roots[0];
- const root1 = roots[1];
- let y;
- if (root0 >= 0.0 && root1 >= 0.0) {
- const y0 = Math.sqrt(root0);
- const y1 = Math.sqrt(root1);
- return [temp - y1, temp - y0, temp + y0, temp + y1];
- } else if (root0 >= 0.0 && root1 < 0.0) {
- y = Math.sqrt(root0);
- return [temp - y, temp + y];
- } else if (root0 < 0.0 && root1 >= 0.0) {
- y = Math.sqrt(root1);
- return [temp - y, temp + y];
- }
- }
- return [];
- } else if (hSquared > 0.0) {
- const h = Math.sqrt(hSquared);
- const m = (p + hSquared - q / h) / 2.0;
- const n = (p + hSquared + q / h) / 2.0;
- // Now solve the two quadratic factors: (y^2 + h y + m)(y^2 - h y + n);
- const roots1 = QuadraticRealPolynomial.computeRealRoots(1.0, h, m);
- const roots2 = QuadraticRealPolynomial.computeRealRoots(1.0, -h, n);
- if (roots1.length !== 0) {
- roots1[0] += temp;
- roots1[1] += temp;
- if (roots2.length !== 0) {
- roots2[0] += temp;
- roots2[1] += temp;
- if (roots1[1] <= roots2[0]) {
- return [roots1[0], roots1[1], roots2[0], roots2[1]];
- } else if (roots2[1] <= roots1[0]) {
- return [roots2[0], roots2[1], roots1[0], roots1[1]];
- } else if (roots1[0] >= roots2[0] && roots1[1] <= roots2[1]) {
- return [roots2[0], roots1[0], roots1[1], roots2[1]];
- } else if (roots2[0] >= roots1[0] && roots2[1] <= roots1[1]) {
- return [roots1[0], roots2[0], roots2[1], roots1[1]];
- } else if (roots1[0] > roots2[0] && roots1[0] < roots2[1]) {
- return [roots2[0], roots1[0], roots2[1], roots1[1]];
- }
- return [roots1[0], roots2[0], roots1[1], roots2[1]];
- }
- return roots1;
- }
- if (roots2.length !== 0) {
- roots2[0] += temp;
- roots2[1] += temp;
- return roots2;
- }
- return [];
- }
- }
- return [];
- }
- function neumark(a3, a2, a1, a0) {
- const a1Squared = a1 * a1;
- const a2Squared = a2 * a2;
- const a3Squared = a3 * a3;
- const p = -2.0 * a2;
- const q = a1 * a3 + a2Squared - 4.0 * a0;
- const r = a3Squared * a0 - a1 * a2 * a3 + a1Squared;
- const cubicRoots = CubicRealPolynomial.computeRealRoots(1.0, p, q, r);
- if (cubicRoots.length > 0) {
- // Use the most positive root
- const y = cubicRoots[0];
- const temp = a2 - y;
- const tempSquared = temp * temp;
- const g1 = a3 / 2.0;
- const h1 = temp / 2.0;
- const m = tempSquared - 4.0 * a0;
- const mError = tempSquared + 4.0 * Math.abs(a0);
- const n = a3Squared - 4.0 * y;
- const nError = a3Squared + 4.0 * Math.abs(y);
- let g2;
- let h2;
- if (y < 0.0 || m * nError < n * mError) {
- const squareRootOfN = Math.sqrt(n);
- g2 = squareRootOfN / 2.0;
- h2 = squareRootOfN === 0.0 ? 0.0 : (a3 * h1 - a1) / squareRootOfN;
- } else {
- const squareRootOfM = Math.sqrt(m);
- g2 = squareRootOfM === 0.0 ? 0.0 : (a3 * h1 - a1) / squareRootOfM;
- h2 = squareRootOfM / 2.0;
- }
- let G;
- let g;
- if (g1 === 0.0 && g2 === 0.0) {
- G = 0.0;
- g = 0.0;
- } else if (CesiumMath.sign(g1) === CesiumMath.sign(g2)) {
- G = g1 + g2;
- g = y / G;
- } else {
- g = g1 - g2;
- G = y / g;
- }
- let H;
- let h;
- if (h1 === 0.0 && h2 === 0.0) {
- H = 0.0;
- h = 0.0;
- } else if (CesiumMath.sign(h1) === CesiumMath.sign(h2)) {
- H = h1 + h2;
- h = a0 / H;
- } else {
- h = h1 - h2;
- H = a0 / h;
- }
- // Now solve the two quadratic factors: (y^2 + G y + H)(y^2 + g y + h);
- const roots1 = QuadraticRealPolynomial.computeRealRoots(1.0, G, H);
- const roots2 = QuadraticRealPolynomial.computeRealRoots(1.0, g, h);
- if (roots1.length !== 0) {
- if (roots2.length !== 0) {
- if (roots1[1] <= roots2[0]) {
- return [roots1[0], roots1[1], roots2[0], roots2[1]];
- } else if (roots2[1] <= roots1[0]) {
- return [roots2[0], roots2[1], roots1[0], roots1[1]];
- } else if (roots1[0] >= roots2[0] && roots1[1] <= roots2[1]) {
- return [roots2[0], roots1[0], roots1[1], roots2[1]];
- } else if (roots2[0] >= roots1[0] && roots2[1] <= roots1[1]) {
- return [roots1[0], roots2[0], roots2[1], roots1[1]];
- } else if (roots1[0] > roots2[0] && roots1[0] < roots2[1]) {
- return [roots2[0], roots1[0], roots2[1], roots1[1]];
- }
- return [roots1[0], roots2[0], roots1[1], roots2[1]];
- }
- return roots1;
- }
- if (roots2.length !== 0) {
- return roots2;
- }
- }
- return [];
- }
- /**
- * Provides the real valued roots of the quartic polynomial with the provided coefficients.
- *
- * @param {number} a The coefficient of the 4th order monomial.
- * @param {number} b The coefficient of the 3rd order monomial.
- * @param {number} c The coefficient of the 2nd order monomial.
- * @param {number} d The coefficient of the 1st order monomial.
- * @param {number} e The coefficient of the 0th order monomial.
- * @returns {number[]} The real valued roots.
- */
- QuarticRealPolynomial.computeRealRoots = function (a, b, c, d, e) {
- //>>includeStart('debug', pragmas.debug);
- if (typeof a !== "number") {
- throw new DeveloperError("a is a required number.");
- }
- if (typeof b !== "number") {
- throw new DeveloperError("b is a required number.");
- }
- if (typeof c !== "number") {
- throw new DeveloperError("c is a required number.");
- }
- if (typeof d !== "number") {
- throw new DeveloperError("d is a required number.");
- }
- if (typeof e !== "number") {
- throw new DeveloperError("e is a required number.");
- }
- //>>includeEnd('debug');
- if (Math.abs(a) < CesiumMath.EPSILON15) {
- return CubicRealPolynomial.computeRealRoots(b, c, d, e);
- }
- const a3 = b / a;
- const a2 = c / a;
- const a1 = d / a;
- const a0 = e / a;
- let k = a3 < 0.0 ? 1 : 0;
- k += a2 < 0.0 ? k + 1 : k;
- k += a1 < 0.0 ? k + 1 : k;
- k += a0 < 0.0 ? k + 1 : k;
- switch (k) {
- case 0:
- return original(a3, a2, a1, a0);
- case 1:
- return neumark(a3, a2, a1, a0);
- case 2:
- return neumark(a3, a2, a1, a0);
- case 3:
- return original(a3, a2, a1, a0);
- case 4:
- return original(a3, a2, a1, a0);
- case 5:
- return neumark(a3, a2, a1, a0);
- case 6:
- return original(a3, a2, a1, a0);
- case 7:
- return original(a3, a2, a1, a0);
- case 8:
- return neumark(a3, a2, a1, a0);
- case 9:
- return original(a3, a2, a1, a0);
- case 10:
- return original(a3, a2, a1, a0);
- case 11:
- return neumark(a3, a2, a1, a0);
- case 12:
- return original(a3, a2, a1, a0);
- case 13:
- return original(a3, a2, a1, a0);
- case 14:
- return original(a3, a2, a1, a0);
- case 15:
- return original(a3, a2, a1, a0);
- default:
- return undefined;
- }
- };
- export default QuarticRealPolynomial;
|