predicates.js 73 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341
  1. (function (global, factory) {
  2. typeof exports === 'object' && typeof module !== 'undefined' ? factory(exports) :
  3. typeof define === 'function' && define.amd ? define(['exports'], factory) :
  4. (global = global || self, factory(global.predicates = {}));
  5. }(this, function (exports) { 'use strict';
  6. const epsilon = 1.1102230246251565e-16;
  7. const splitter = 134217729;
  8. const resulterrbound = (3 + 8 * epsilon) * epsilon;
  9. // fast_expansion_sum_zeroelim routine from oritinal code
  10. function sum(elen, e, flen, f, h) {
  11. let Q, Qnew, hh, bvirt;
  12. let enow = e[0];
  13. let fnow = f[0];
  14. let eindex = 0;
  15. let findex = 0;
  16. if ((fnow > enow) === (fnow > -enow)) {
  17. Q = enow;
  18. enow = e[++eindex];
  19. } else {
  20. Q = fnow;
  21. fnow = f[++findex];
  22. }
  23. let hindex = 0;
  24. if (eindex < elen && findex < flen) {
  25. if ((fnow > enow) === (fnow > -enow)) {
  26. Qnew = enow + Q;
  27. hh = Q - (Qnew - enow);
  28. enow = e[++eindex];
  29. } else {
  30. Qnew = fnow + Q;
  31. hh = Q - (Qnew - fnow);
  32. fnow = f[++findex];
  33. }
  34. Q = Qnew;
  35. if (hh !== 0) {
  36. h[hindex++] = hh;
  37. }
  38. while (eindex < elen && findex < flen) {
  39. if ((fnow > enow) === (fnow > -enow)) {
  40. Qnew = Q + enow;
  41. bvirt = Qnew - Q;
  42. hh = Q - (Qnew - bvirt) + (enow - bvirt);
  43. enow = e[++eindex];
  44. } else {
  45. Qnew = Q + fnow;
  46. bvirt = Qnew - Q;
  47. hh = Q - (Qnew - bvirt) + (fnow - bvirt);
  48. fnow = f[++findex];
  49. }
  50. Q = Qnew;
  51. if (hh !== 0) {
  52. h[hindex++] = hh;
  53. }
  54. }
  55. }
  56. while (eindex < elen) {
  57. Qnew = Q + enow;
  58. bvirt = Qnew - Q;
  59. hh = Q - (Qnew - bvirt) + (enow - bvirt);
  60. enow = e[++eindex];
  61. Q = Qnew;
  62. if (hh !== 0) {
  63. h[hindex++] = hh;
  64. }
  65. }
  66. while (findex < flen) {
  67. Qnew = Q + fnow;
  68. bvirt = Qnew - Q;
  69. hh = Q - (Qnew - bvirt) + (fnow - bvirt);
  70. fnow = f[++findex];
  71. Q = Qnew;
  72. if (hh !== 0) {
  73. h[hindex++] = hh;
  74. }
  75. }
  76. if (Q !== 0 || hindex === 0) {
  77. h[hindex++] = Q;
  78. }
  79. return hindex;
  80. }
  81. function sum_three(alen, a, blen, b, clen, c, tmp, out) {
  82. return sum(sum(alen, a, blen, b, tmp), tmp, clen, c, out);
  83. }
  84. // scale_expansion_zeroelim routine from oritinal code
  85. function scale(elen, e, b, h) {
  86. let Q, sum, hh, product1, product0;
  87. let bvirt, c, ahi, alo, bhi, blo;
  88. c = splitter * b;
  89. bhi = c - (c - b);
  90. blo = b - bhi;
  91. let enow = e[0];
  92. Q = enow * b;
  93. c = splitter * enow;
  94. ahi = c - (c - enow);
  95. alo = enow - ahi;
  96. hh = alo * blo - (Q - ahi * bhi - alo * bhi - ahi * blo);
  97. let hindex = 0;
  98. if (hh !== 0) {
  99. h[hindex++] = hh;
  100. }
  101. for (let i = 1; i < elen; i++) {
  102. enow = e[i];
  103. product1 = enow * b;
  104. c = splitter * enow;
  105. ahi = c - (c - enow);
  106. alo = enow - ahi;
  107. product0 = alo * blo - (product1 - ahi * bhi - alo * bhi - ahi * blo);
  108. sum = Q + product0;
  109. bvirt = sum - Q;
  110. hh = Q - (sum - bvirt) + (product0 - bvirt);
  111. if (hh !== 0) {
  112. h[hindex++] = hh;
  113. }
  114. Q = product1 + sum;
  115. hh = sum - (Q - product1);
  116. if (hh !== 0) {
  117. h[hindex++] = hh;
  118. }
  119. }
  120. if (Q !== 0 || hindex === 0) {
  121. h[hindex++] = Q;
  122. }
  123. return hindex;
  124. }
  125. function negate(elen, e) {
  126. for (let i = 0; i < elen; i++) e[i] = -e[i];
  127. return elen;
  128. }
  129. function estimate(elen, e) {
  130. let Q = e[0];
  131. for (let i = 1; i < elen; i++) Q += e[i];
  132. return Q;
  133. }
  134. function vec(n) {
  135. return new Float64Array(n);
  136. }
  137. const ccwerrboundA = (3 + 16 * epsilon) * epsilon;
  138. const ccwerrboundB = (2 + 12 * epsilon) * epsilon;
  139. const ccwerrboundC = (9 + 64 * epsilon) * epsilon * epsilon;
  140. const B = vec(4);
  141. const C1 = vec(8);
  142. const C2 = vec(12);
  143. const D = vec(16);
  144. const u = vec(4);
  145. function orient2dadapt(ax, ay, bx, by, cx, cy, detsum) {
  146. let acxtail, acytail, bcxtail, bcytail;
  147. let bvirt, c, ahi, alo, bhi, blo, _i, _j, _0, s1, s0, t1, t0, u3;
  148. const acx = ax - cx;
  149. const bcx = bx - cx;
  150. const acy = ay - cy;
  151. const bcy = by - cy;
  152. s1 = acx * bcy;
  153. c = splitter * acx;
  154. ahi = c - (c - acx);
  155. alo = acx - ahi;
  156. c = splitter * bcy;
  157. bhi = c - (c - bcy);
  158. blo = bcy - bhi;
  159. s0 = alo * blo - (s1 - ahi * bhi - alo * bhi - ahi * blo);
  160. t1 = acy * bcx;
  161. c = splitter * acy;
  162. ahi = c - (c - acy);
  163. alo = acy - ahi;
  164. c = splitter * bcx;
  165. bhi = c - (c - bcx);
  166. blo = bcx - bhi;
  167. t0 = alo * blo - (t1 - ahi * bhi - alo * bhi - ahi * blo);
  168. _i = s0 - t0;
  169. bvirt = s0 - _i;
  170. B[0] = s0 - (_i + bvirt) + (bvirt - t0);
  171. _j = s1 + _i;
  172. bvirt = _j - s1;
  173. _0 = s1 - (_j - bvirt) + (_i - bvirt);
  174. _i = _0 - t1;
  175. bvirt = _0 - _i;
  176. B[1] = _0 - (_i + bvirt) + (bvirt - t1);
  177. u3 = _j + _i;
  178. bvirt = u3 - _j;
  179. B[2] = _j - (u3 - bvirt) + (_i - bvirt);
  180. B[3] = u3;
  181. let det = estimate(4, B);
  182. let errbound = ccwerrboundB * detsum;
  183. if (det >= errbound || -det >= errbound) {
  184. return det;
  185. }
  186. bvirt = ax - acx;
  187. acxtail = ax - (acx + bvirt) + (bvirt - cx);
  188. bvirt = bx - bcx;
  189. bcxtail = bx - (bcx + bvirt) + (bvirt - cx);
  190. bvirt = ay - acy;
  191. acytail = ay - (acy + bvirt) + (bvirt - cy);
  192. bvirt = by - bcy;
  193. bcytail = by - (bcy + bvirt) + (bvirt - cy);
  194. if (acxtail === 0 && acytail === 0 && bcxtail === 0 && bcytail === 0) {
  195. return det;
  196. }
  197. errbound = ccwerrboundC * detsum + resulterrbound * Math.abs(det);
  198. det += (acx * bcytail + bcy * acxtail) - (acy * bcxtail + bcx * acytail);
  199. if (det >= errbound || -det >= errbound) return det;
  200. s1 = acxtail * bcy;
  201. c = splitter * acxtail;
  202. ahi = c - (c - acxtail);
  203. alo = acxtail - ahi;
  204. c = splitter * bcy;
  205. bhi = c - (c - bcy);
  206. blo = bcy - bhi;
  207. s0 = alo * blo - (s1 - ahi * bhi - alo * bhi - ahi * blo);
  208. t1 = acytail * bcx;
  209. c = splitter * acytail;
  210. ahi = c - (c - acytail);
  211. alo = acytail - ahi;
  212. c = splitter * bcx;
  213. bhi = c - (c - bcx);
  214. blo = bcx - bhi;
  215. t0 = alo * blo - (t1 - ahi * bhi - alo * bhi - ahi * blo);
  216. _i = s0 - t0;
  217. bvirt = s0 - _i;
  218. u[0] = s0 - (_i + bvirt) + (bvirt - t0);
  219. _j = s1 + _i;
  220. bvirt = _j - s1;
  221. _0 = s1 - (_j - bvirt) + (_i - bvirt);
  222. _i = _0 - t1;
  223. bvirt = _0 - _i;
  224. u[1] = _0 - (_i + bvirt) + (bvirt - t1);
  225. u3 = _j + _i;
  226. bvirt = u3 - _j;
  227. u[2] = _j - (u3 - bvirt) + (_i - bvirt);
  228. u[3] = u3;
  229. const C1len = sum(4, B, 4, u, C1);
  230. s1 = acx * bcytail;
  231. c = splitter * acx;
  232. ahi = c - (c - acx);
  233. alo = acx - ahi;
  234. c = splitter * bcytail;
  235. bhi = c - (c - bcytail);
  236. blo = bcytail - bhi;
  237. s0 = alo * blo - (s1 - ahi * bhi - alo * bhi - ahi * blo);
  238. t1 = acy * bcxtail;
  239. c = splitter * acy;
  240. ahi = c - (c - acy);
  241. alo = acy - ahi;
  242. c = splitter * bcxtail;
  243. bhi = c - (c - bcxtail);
  244. blo = bcxtail - bhi;
  245. t0 = alo * blo - (t1 - ahi * bhi - alo * bhi - ahi * blo);
  246. _i = s0 - t0;
  247. bvirt = s0 - _i;
  248. u[0] = s0 - (_i + bvirt) + (bvirt - t0);
  249. _j = s1 + _i;
  250. bvirt = _j - s1;
  251. _0 = s1 - (_j - bvirt) + (_i - bvirt);
  252. _i = _0 - t1;
  253. bvirt = _0 - _i;
  254. u[1] = _0 - (_i + bvirt) + (bvirt - t1);
  255. u3 = _j + _i;
  256. bvirt = u3 - _j;
  257. u[2] = _j - (u3 - bvirt) + (_i - bvirt);
  258. u[3] = u3;
  259. const C2len = sum(C1len, C1, 4, u, C2);
  260. s1 = acxtail * bcytail;
  261. c = splitter * acxtail;
  262. ahi = c - (c - acxtail);
  263. alo = acxtail - ahi;
  264. c = splitter * bcytail;
  265. bhi = c - (c - bcytail);
  266. blo = bcytail - bhi;
  267. s0 = alo * blo - (s1 - ahi * bhi - alo * bhi - ahi * blo);
  268. t1 = acytail * bcxtail;
  269. c = splitter * acytail;
  270. ahi = c - (c - acytail);
  271. alo = acytail - ahi;
  272. c = splitter * bcxtail;
  273. bhi = c - (c - bcxtail);
  274. blo = bcxtail - bhi;
  275. t0 = alo * blo - (t1 - ahi * bhi - alo * bhi - ahi * blo);
  276. _i = s0 - t0;
  277. bvirt = s0 - _i;
  278. u[0] = s0 - (_i + bvirt) + (bvirt - t0);
  279. _j = s1 + _i;
  280. bvirt = _j - s1;
  281. _0 = s1 - (_j - bvirt) + (_i - bvirt);
  282. _i = _0 - t1;
  283. bvirt = _0 - _i;
  284. u[1] = _0 - (_i + bvirt) + (bvirt - t1);
  285. u3 = _j + _i;
  286. bvirt = u3 - _j;
  287. u[2] = _j - (u3 - bvirt) + (_i - bvirt);
  288. u[3] = u3;
  289. const Dlen = sum(C2len, C2, 4, u, D);
  290. return D[Dlen - 1];
  291. }
  292. function orient2d(ax, ay, bx, by, cx, cy) {
  293. const detleft = (ay - cy) * (bx - cx);
  294. const detright = (ax - cx) * (by - cy);
  295. const det = detleft - detright;
  296. if (detleft === 0 || detright === 0 || (detleft > 0) !== (detright > 0)) return det;
  297. const detsum = Math.abs(detleft + detright);
  298. if (Math.abs(det) >= ccwerrboundA * detsum) return det;
  299. return -orient2dadapt(ax, ay, bx, by, cx, cy, detsum);
  300. }
  301. function orient2dfast(ax, ay, bx, by, cx, cy) {
  302. return (ay - cy) * (bx - cx) - (ax - cx) * (by - cy);
  303. }
  304. const o3derrboundA = (7 + 56 * epsilon) * epsilon;
  305. const o3derrboundB = (3 + 28 * epsilon) * epsilon;
  306. const o3derrboundC = (26 + 288 * epsilon) * epsilon * epsilon;
  307. const bc = vec(4);
  308. const ca = vec(4);
  309. const ab = vec(4);
  310. const at_b = vec(4);
  311. const at_c = vec(4);
  312. const bt_c = vec(4);
  313. const bt_a = vec(4);
  314. const ct_a = vec(4);
  315. const ct_b = vec(4);
  316. const bct = vec(8);
  317. const cat = vec(8);
  318. const abt = vec(8);
  319. const u$1 = vec(4);
  320. const _8 = vec(8);
  321. const _8b = vec(8);
  322. const _16 = vec(8);
  323. const _12 = vec(12);
  324. let fin = vec(192);
  325. let fin2 = vec(192);
  326. function finadd(finlen, alen, a) {
  327. finlen = sum(finlen, fin, alen, a, fin2);
  328. const tmp = fin; fin = fin2; fin2 = tmp;
  329. return finlen;
  330. }
  331. function tailinit(xtail, ytail, ax, ay, bx, by, a, b) {
  332. let bvirt, c, ahi, alo, bhi, blo, _i, _j, _0, s1, s0, t1, t0, u3, negate;
  333. if (xtail === 0) {
  334. if (ytail === 0) {
  335. a[0] = 0;
  336. b[0] = 0;
  337. return 1;
  338. } else {
  339. negate = -ytail;
  340. s1 = negate * ax;
  341. c = splitter * negate;
  342. ahi = c - (c - negate);
  343. alo = negate - ahi;
  344. c = splitter * ax;
  345. bhi = c - (c - ax);
  346. blo = ax - bhi;
  347. a[0] = alo * blo - (s1 - ahi * bhi - alo * bhi - ahi * blo);
  348. a[1] = s1;
  349. s1 = ytail * bx;
  350. c = splitter * ytail;
  351. ahi = c - (c - ytail);
  352. alo = ytail - ahi;
  353. c = splitter * bx;
  354. bhi = c - (c - bx);
  355. blo = bx - bhi;
  356. b[0] = alo * blo - (s1 - ahi * bhi - alo * bhi - ahi * blo);
  357. b[1] = s1;
  358. return 2;
  359. }
  360. } else {
  361. if (ytail === 0) {
  362. s1 = xtail * ay;
  363. c = splitter * xtail;
  364. ahi = c - (c - xtail);
  365. alo = xtail - ahi;
  366. c = splitter * ay;
  367. bhi = c - (c - ay);
  368. blo = ay - bhi;
  369. a[0] = alo * blo - (s1 - ahi * bhi - alo * bhi - ahi * blo);
  370. a[1] = s1;
  371. negate = -xtail;
  372. s1 = negate * by;
  373. c = splitter * negate;
  374. ahi = c - (c - negate);
  375. alo = negate - ahi;
  376. c = splitter * by;
  377. bhi = c - (c - by);
  378. blo = by - bhi;
  379. b[0] = alo * blo - (s1 - ahi * bhi - alo * bhi - ahi * blo);
  380. b[1] = s1;
  381. return 2;
  382. } else {
  383. s1 = xtail * ay;
  384. c = splitter * xtail;
  385. ahi = c - (c - xtail);
  386. alo = xtail - ahi;
  387. c = splitter * ay;
  388. bhi = c - (c - ay);
  389. blo = ay - bhi;
  390. s0 = alo * blo - (s1 - ahi * bhi - alo * bhi - ahi * blo);
  391. t1 = ytail * ax;
  392. c = splitter * ytail;
  393. ahi = c - (c - ytail);
  394. alo = ytail - ahi;
  395. c = splitter * ax;
  396. bhi = c - (c - ax);
  397. blo = ax - bhi;
  398. t0 = alo * blo - (t1 - ahi * bhi - alo * bhi - ahi * blo);
  399. _i = s0 - t0;
  400. bvirt = s0 - _i;
  401. a[0] = s0 - (_i + bvirt) + (bvirt - t0);
  402. _j = s1 + _i;
  403. bvirt = _j - s1;
  404. _0 = s1 - (_j - bvirt) + (_i - bvirt);
  405. _i = _0 - t1;
  406. bvirt = _0 - _i;
  407. a[1] = _0 - (_i + bvirt) + (bvirt - t1);
  408. u3 = _j + _i;
  409. bvirt = u3 - _j;
  410. a[2] = _j - (u3 - bvirt) + (_i - bvirt);
  411. a[3] = u3;
  412. s1 = ytail * bx;
  413. c = splitter * ytail;
  414. ahi = c - (c - ytail);
  415. alo = ytail - ahi;
  416. c = splitter * bx;
  417. bhi = c - (c - bx);
  418. blo = bx - bhi;
  419. s0 = alo * blo - (s1 - ahi * bhi - alo * bhi - ahi * blo);
  420. t1 = xtail * by;
  421. c = splitter * xtail;
  422. ahi = c - (c - xtail);
  423. alo = xtail - ahi;
  424. c = splitter * by;
  425. bhi = c - (c - by);
  426. blo = by - bhi;
  427. t0 = alo * blo - (t1 - ahi * bhi - alo * bhi - ahi * blo);
  428. _i = s0 - t0;
  429. bvirt = s0 - _i;
  430. b[0] = s0 - (_i + bvirt) + (bvirt - t0);
  431. _j = s1 + _i;
  432. bvirt = _j - s1;
  433. _0 = s1 - (_j - bvirt) + (_i - bvirt);
  434. _i = _0 - t1;
  435. bvirt = _0 - _i;
  436. b[1] = _0 - (_i + bvirt) + (bvirt - t1);
  437. u3 = _j + _i;
  438. bvirt = u3 - _j;
  439. b[2] = _j - (u3 - bvirt) + (_i - bvirt);
  440. b[3] = u3;
  441. return 4;
  442. }
  443. }
  444. }
  445. function tailadd(finlen, a, b, k, z) {
  446. let bvirt, c, ahi, alo, bhi, blo, _i, _j, _k, _0, s1, s0, u3;
  447. s1 = a * b;
  448. c = splitter * a;
  449. ahi = c - (c - a);
  450. alo = a - ahi;
  451. c = splitter * b;
  452. bhi = c - (c - b);
  453. blo = b - bhi;
  454. s0 = alo * blo - (s1 - ahi * bhi - alo * bhi - ahi * blo);
  455. c = splitter * k;
  456. bhi = c - (c - k);
  457. blo = k - bhi;
  458. _i = s0 * k;
  459. c = splitter * s0;
  460. ahi = c - (c - s0);
  461. alo = s0 - ahi;
  462. u$1[0] = alo * blo - (_i - ahi * bhi - alo * bhi - ahi * blo);
  463. _j = s1 * k;
  464. c = splitter * s1;
  465. ahi = c - (c - s1);
  466. alo = s1 - ahi;
  467. _0 = alo * blo - (_j - ahi * bhi - alo * bhi - ahi * blo);
  468. _k = _i + _0;
  469. bvirt = _k - _i;
  470. u$1[1] = _i - (_k - bvirt) + (_0 - bvirt);
  471. u3 = _j + _k;
  472. u$1[2] = _k - (u3 - _j);
  473. u$1[3] = u3;
  474. finlen = finadd(finlen, 4, u$1);
  475. if (z !== 0) {
  476. c = splitter * z;
  477. bhi = c - (c - z);
  478. blo = z - bhi;
  479. _i = s0 * z;
  480. c = splitter * s0;
  481. ahi = c - (c - s0);
  482. alo = s0 - ahi;
  483. u$1[0] = alo * blo - (_i - ahi * bhi - alo * bhi - ahi * blo);
  484. _j = s1 * z;
  485. c = splitter * s1;
  486. ahi = c - (c - s1);
  487. alo = s1 - ahi;
  488. _0 = alo * blo - (_j - ahi * bhi - alo * bhi - ahi * blo);
  489. _k = _i + _0;
  490. bvirt = _k - _i;
  491. u$1[1] = _i - (_k - bvirt) + (_0 - bvirt);
  492. u3 = _j + _k;
  493. u$1[2] = _k - (u3 - _j);
  494. u$1[3] = u3;
  495. finlen = finadd(finlen, 4, u$1);
  496. }
  497. return finlen;
  498. }
  499. function orient3dadapt(ax, ay, az, bx, by, bz, cx, cy, cz, dx, dy, dz, permanent) {
  500. let finlen;
  501. let adxtail, bdxtail, cdxtail;
  502. let adytail, bdytail, cdytail;
  503. let adztail, bdztail, cdztail;
  504. let bvirt, c, ahi, alo, bhi, blo, _i, _j, _0, s1, s0, t1, t0, u3;
  505. const adx = ax - dx;
  506. const bdx = bx - dx;
  507. const cdx = cx - dx;
  508. const ady = ay - dy;
  509. const bdy = by - dy;
  510. const cdy = cy - dy;
  511. const adz = az - dz;
  512. const bdz = bz - dz;
  513. const cdz = cz - dz;
  514. s1 = bdx * cdy;
  515. c = splitter * bdx;
  516. ahi = c - (c - bdx);
  517. alo = bdx - ahi;
  518. c = splitter * cdy;
  519. bhi = c - (c - cdy);
  520. blo = cdy - bhi;
  521. s0 = alo * blo - (s1 - ahi * bhi - alo * bhi - ahi * blo);
  522. t1 = cdx * bdy;
  523. c = splitter * cdx;
  524. ahi = c - (c - cdx);
  525. alo = cdx - ahi;
  526. c = splitter * bdy;
  527. bhi = c - (c - bdy);
  528. blo = bdy - bhi;
  529. t0 = alo * blo - (t1 - ahi * bhi - alo * bhi - ahi * blo);
  530. _i = s0 - t0;
  531. bvirt = s0 - _i;
  532. bc[0] = s0 - (_i + bvirt) + (bvirt - t0);
  533. _j = s1 + _i;
  534. bvirt = _j - s1;
  535. _0 = s1 - (_j - bvirt) + (_i - bvirt);
  536. _i = _0 - t1;
  537. bvirt = _0 - _i;
  538. bc[1] = _0 - (_i + bvirt) + (bvirt - t1);
  539. u3 = _j + _i;
  540. bvirt = u3 - _j;
  541. bc[2] = _j - (u3 - bvirt) + (_i - bvirt);
  542. bc[3] = u3;
  543. s1 = cdx * ady;
  544. c = splitter * cdx;
  545. ahi = c - (c - cdx);
  546. alo = cdx - ahi;
  547. c = splitter * ady;
  548. bhi = c - (c - ady);
  549. blo = ady - bhi;
  550. s0 = alo * blo - (s1 - ahi * bhi - alo * bhi - ahi * blo);
  551. t1 = adx * cdy;
  552. c = splitter * adx;
  553. ahi = c - (c - adx);
  554. alo = adx - ahi;
  555. c = splitter * cdy;
  556. bhi = c - (c - cdy);
  557. blo = cdy - bhi;
  558. t0 = alo * blo - (t1 - ahi * bhi - alo * bhi - ahi * blo);
  559. _i = s0 - t0;
  560. bvirt = s0 - _i;
  561. ca[0] = s0 - (_i + bvirt) + (bvirt - t0);
  562. _j = s1 + _i;
  563. bvirt = _j - s1;
  564. _0 = s1 - (_j - bvirt) + (_i - bvirt);
  565. _i = _0 - t1;
  566. bvirt = _0 - _i;
  567. ca[1] = _0 - (_i + bvirt) + (bvirt - t1);
  568. u3 = _j + _i;
  569. bvirt = u3 - _j;
  570. ca[2] = _j - (u3 - bvirt) + (_i - bvirt);
  571. ca[3] = u3;
  572. s1 = adx * bdy;
  573. c = splitter * adx;
  574. ahi = c - (c - adx);
  575. alo = adx - ahi;
  576. c = splitter * bdy;
  577. bhi = c - (c - bdy);
  578. blo = bdy - bhi;
  579. s0 = alo * blo - (s1 - ahi * bhi - alo * bhi - ahi * blo);
  580. t1 = bdx * ady;
  581. c = splitter * bdx;
  582. ahi = c - (c - bdx);
  583. alo = bdx - ahi;
  584. c = splitter * ady;
  585. bhi = c - (c - ady);
  586. blo = ady - bhi;
  587. t0 = alo * blo - (t1 - ahi * bhi - alo * bhi - ahi * blo);
  588. _i = s0 - t0;
  589. bvirt = s0 - _i;
  590. ab[0] = s0 - (_i + bvirt) + (bvirt - t0);
  591. _j = s1 + _i;
  592. bvirt = _j - s1;
  593. _0 = s1 - (_j - bvirt) + (_i - bvirt);
  594. _i = _0 - t1;
  595. bvirt = _0 - _i;
  596. ab[1] = _0 - (_i + bvirt) + (bvirt - t1);
  597. u3 = _j + _i;
  598. bvirt = u3 - _j;
  599. ab[2] = _j - (u3 - bvirt) + (_i - bvirt);
  600. ab[3] = u3;
  601. finlen = sum(
  602. sum(
  603. scale(4, bc, adz, _8), _8,
  604. scale(4, ca, bdz, _8b), _8b, _16), _16,
  605. scale(4, ab, cdz, _8), _8, fin);
  606. let det = estimate(finlen, fin);
  607. let errbound = o3derrboundB * permanent;
  608. if (det >= errbound || -det >= errbound) {
  609. return det;
  610. }
  611. bvirt = ax - adx;
  612. adxtail = ax - (adx + bvirt) + (bvirt - dx);
  613. bvirt = bx - bdx;
  614. bdxtail = bx - (bdx + bvirt) + (bvirt - dx);
  615. bvirt = cx - cdx;
  616. cdxtail = cx - (cdx + bvirt) + (bvirt - dx);
  617. bvirt = ay - ady;
  618. adytail = ay - (ady + bvirt) + (bvirt - dy);
  619. bvirt = by - bdy;
  620. bdytail = by - (bdy + bvirt) + (bvirt - dy);
  621. bvirt = cy - cdy;
  622. cdytail = cy - (cdy + bvirt) + (bvirt - dy);
  623. bvirt = az - adz;
  624. adztail = az - (adz + bvirt) + (bvirt - dz);
  625. bvirt = bz - bdz;
  626. bdztail = bz - (bdz + bvirt) + (bvirt - dz);
  627. bvirt = cz - cdz;
  628. cdztail = cz - (cdz + bvirt) + (bvirt - dz);
  629. if (adxtail === 0 && bdxtail === 0 && cdxtail === 0 &&
  630. adytail === 0 && bdytail === 0 && cdytail === 0 &&
  631. adztail === 0 && bdztail === 0 && cdztail === 0) {
  632. return det;
  633. }
  634. errbound = o3derrboundC * permanent + resulterrbound * Math.abs(det);
  635. det +=
  636. adz * (bdx * cdytail + cdy * bdxtail - (bdy * cdxtail + cdx * bdytail)) + adztail * (bdx * cdy - bdy * cdx) +
  637. bdz * (cdx * adytail + ady * cdxtail - (cdy * adxtail + adx * cdytail)) + bdztail * (cdx * ady - cdy * adx) +
  638. cdz * (adx * bdytail + bdy * adxtail - (ady * bdxtail + bdx * adytail)) + cdztail * (adx * bdy - ady * bdx);
  639. if (det >= errbound || -det >= errbound) {
  640. return det;
  641. }
  642. const at_len = tailinit(adxtail, adytail, bdx, bdy, cdx, cdy, at_b, at_c);
  643. const bt_len = tailinit(bdxtail, bdytail, cdx, cdy, adx, ady, bt_c, bt_a);
  644. const ct_len = tailinit(cdxtail, cdytail, adx, ady, bdx, bdy, ct_a, ct_b);
  645. const bctlen = sum(bt_len, bt_c, ct_len, ct_b, bct);
  646. finlen = finadd(finlen, scale(bctlen, bct, adz, _16), _16);
  647. const catlen = sum(ct_len, ct_a, at_len, at_c, cat);
  648. finlen = finadd(finlen, scale(catlen, cat, bdz, _16), _16);
  649. const abtlen = sum(at_len, at_b, bt_len, bt_a, abt);
  650. finlen = finadd(finlen, scale(abtlen, abt, cdz, _16), _16);
  651. if (adztail !== 0) {
  652. finlen = finadd(finlen, scale(4, bc, adztail, _12), _12);
  653. finlen = finadd(finlen, scale(bctlen, bct, adztail, _16), _16);
  654. }
  655. if (bdztail !== 0) {
  656. finlen = finadd(finlen, scale(4, ca, bdztail, _12), _12);
  657. finlen = finadd(finlen, scale(catlen, cat, bdztail, _16), _16);
  658. }
  659. if (cdztail !== 0) {
  660. finlen = finadd(finlen, scale(4, ab, cdztail, _12), _12);
  661. finlen = finadd(finlen, scale(abtlen, abt, cdztail, _16), _16);
  662. }
  663. if (adxtail !== 0) {
  664. if (bdytail !== 0) {
  665. finlen = tailadd(finlen, adxtail, bdytail, cdz, cdztail);
  666. }
  667. if (cdytail !== 0) {
  668. finlen = tailadd(finlen, -adxtail, cdytail, bdz, bdztail);
  669. }
  670. }
  671. if (bdxtail !== 0) {
  672. if (cdytail !== 0) {
  673. finlen = tailadd(finlen, bdxtail, cdytail, adz, adztail);
  674. }
  675. if (adytail !== 0) {
  676. finlen = tailadd(finlen, -bdxtail, adytail, cdz, cdztail);
  677. }
  678. }
  679. if (cdxtail !== 0) {
  680. if (adytail !== 0) {
  681. finlen = tailadd(finlen, cdxtail, adytail, bdz, bdztail);
  682. }
  683. if (bdytail !== 0) {
  684. finlen = tailadd(finlen, -cdxtail, bdytail, adz, adztail);
  685. }
  686. }
  687. return fin[finlen - 1];
  688. }
  689. function orient3d(ax, ay, az, bx, by, bz, cx, cy, cz, dx, dy, dz) {
  690. const adx = ax - dx;
  691. const bdx = bx - dx;
  692. const cdx = cx - dx;
  693. const ady = ay - dy;
  694. const bdy = by - dy;
  695. const cdy = cy - dy;
  696. const adz = az - dz;
  697. const bdz = bz - dz;
  698. const cdz = cz - dz;
  699. const bdxcdy = bdx * cdy;
  700. const cdxbdy = cdx * bdy;
  701. const cdxady = cdx * ady;
  702. const adxcdy = adx * cdy;
  703. const adxbdy = adx * bdy;
  704. const bdxady = bdx * ady;
  705. const det =
  706. adz * (bdxcdy - cdxbdy) +
  707. bdz * (cdxady - adxcdy) +
  708. cdz * (adxbdy - bdxady);
  709. const permanent =
  710. (Math.abs(bdxcdy) + Math.abs(cdxbdy)) * Math.abs(adz) +
  711. (Math.abs(cdxady) + Math.abs(adxcdy)) * Math.abs(bdz) +
  712. (Math.abs(adxbdy) + Math.abs(bdxady)) * Math.abs(cdz);
  713. const errbound = o3derrboundA * permanent;
  714. if (det > errbound || -det > errbound) {
  715. return det;
  716. }
  717. return orient3dadapt(ax, ay, az, bx, by, bz, cx, cy, cz, dx, dy, dz, permanent);
  718. }
  719. function orient3dfast(ax, ay, az, bx, by, bz, cx, cy, cz, dx, dy, dz) {
  720. const adx = ax - dx;
  721. const bdx = bx - dx;
  722. const cdx = cx - dx;
  723. const ady = ay - dy;
  724. const bdy = by - dy;
  725. const cdy = cy - dy;
  726. const adz = az - dz;
  727. const bdz = bz - dz;
  728. const cdz = cz - dz;
  729. return adx * (bdy * cdz - bdz * cdy) +
  730. bdx * (cdy * adz - cdz * ady) +
  731. cdx * (ady * bdz - adz * bdy);
  732. }
  733. const iccerrboundA = (10 + 96 * epsilon) * epsilon;
  734. const iccerrboundB = (4 + 48 * epsilon) * epsilon;
  735. const iccerrboundC = (44 + 576 * epsilon) * epsilon * epsilon;
  736. const bc$1 = vec(4);
  737. const ca$1 = vec(4);
  738. const ab$1 = vec(4);
  739. const aa = vec(4);
  740. const bb = vec(4);
  741. const cc = vec(4);
  742. const u$2 = vec(4);
  743. const v = vec(4);
  744. const axtbc = vec(8);
  745. const aytbc = vec(8);
  746. const bxtca = vec(8);
  747. const bytca = vec(8);
  748. const cxtab = vec(8);
  749. const cytab = vec(8);
  750. const abt$1 = vec(8);
  751. const bct$1 = vec(8);
  752. const cat$1 = vec(8);
  753. const abtt = vec(4);
  754. const bctt = vec(4);
  755. const catt = vec(4);
  756. const _8$1 = vec(8);
  757. const _16$1 = vec(16);
  758. const _16b = vec(16);
  759. const _16c = vec(16);
  760. const _32 = vec(32);
  761. const _32b = vec(32);
  762. const _48 = vec(48);
  763. const _64 = vec(64);
  764. let fin$1 = vec(1152);
  765. let fin2$1 = vec(1152);
  766. function finadd$1(finlen, a, alen) {
  767. finlen = sum(finlen, fin$1, a, alen, fin2$1);
  768. const tmp = fin$1; fin$1 = fin2$1; fin2$1 = tmp;
  769. return finlen;
  770. }
  771. function incircleadapt(ax, ay, bx, by, cx, cy, dx, dy, permanent) {
  772. let finlen;
  773. let adxtail, bdxtail, cdxtail, adytail, bdytail, cdytail;
  774. let axtbclen, aytbclen, bxtcalen, bytcalen, cxtablen, cytablen;
  775. let abtlen, bctlen, catlen;
  776. let abttlen, bcttlen, cattlen;
  777. let n1, n0;
  778. let bvirt, c, ahi, alo, bhi, blo, _i, _j, _0, s1, s0, t1, t0, u3;
  779. const adx = ax - dx;
  780. const bdx = bx - dx;
  781. const cdx = cx - dx;
  782. const ady = ay - dy;
  783. const bdy = by - dy;
  784. const cdy = cy - dy;
  785. s1 = bdx * cdy;
  786. c = splitter * bdx;
  787. ahi = c - (c - bdx);
  788. alo = bdx - ahi;
  789. c = splitter * cdy;
  790. bhi = c - (c - cdy);
  791. blo = cdy - bhi;
  792. s0 = alo * blo - (s1 - ahi * bhi - alo * bhi - ahi * blo);
  793. t1 = cdx * bdy;
  794. c = splitter * cdx;
  795. ahi = c - (c - cdx);
  796. alo = cdx - ahi;
  797. c = splitter * bdy;
  798. bhi = c - (c - bdy);
  799. blo = bdy - bhi;
  800. t0 = alo * blo - (t1 - ahi * bhi - alo * bhi - ahi * blo);
  801. _i = s0 - t0;
  802. bvirt = s0 - _i;
  803. bc$1[0] = s0 - (_i + bvirt) + (bvirt - t0);
  804. _j = s1 + _i;
  805. bvirt = _j - s1;
  806. _0 = s1 - (_j - bvirt) + (_i - bvirt);
  807. _i = _0 - t1;
  808. bvirt = _0 - _i;
  809. bc$1[1] = _0 - (_i + bvirt) + (bvirt - t1);
  810. u3 = _j + _i;
  811. bvirt = u3 - _j;
  812. bc$1[2] = _j - (u3 - bvirt) + (_i - bvirt);
  813. bc$1[3] = u3;
  814. s1 = cdx * ady;
  815. c = splitter * cdx;
  816. ahi = c - (c - cdx);
  817. alo = cdx - ahi;
  818. c = splitter * ady;
  819. bhi = c - (c - ady);
  820. blo = ady - bhi;
  821. s0 = alo * blo - (s1 - ahi * bhi - alo * bhi - ahi * blo);
  822. t1 = adx * cdy;
  823. c = splitter * adx;
  824. ahi = c - (c - adx);
  825. alo = adx - ahi;
  826. c = splitter * cdy;
  827. bhi = c - (c - cdy);
  828. blo = cdy - bhi;
  829. t0 = alo * blo - (t1 - ahi * bhi - alo * bhi - ahi * blo);
  830. _i = s0 - t0;
  831. bvirt = s0 - _i;
  832. ca$1[0] = s0 - (_i + bvirt) + (bvirt - t0);
  833. _j = s1 + _i;
  834. bvirt = _j - s1;
  835. _0 = s1 - (_j - bvirt) + (_i - bvirt);
  836. _i = _0 - t1;
  837. bvirt = _0 - _i;
  838. ca$1[1] = _0 - (_i + bvirt) + (bvirt - t1);
  839. u3 = _j + _i;
  840. bvirt = u3 - _j;
  841. ca$1[2] = _j - (u3 - bvirt) + (_i - bvirt);
  842. ca$1[3] = u3;
  843. s1 = adx * bdy;
  844. c = splitter * adx;
  845. ahi = c - (c - adx);
  846. alo = adx - ahi;
  847. c = splitter * bdy;
  848. bhi = c - (c - bdy);
  849. blo = bdy - bhi;
  850. s0 = alo * blo - (s1 - ahi * bhi - alo * bhi - ahi * blo);
  851. t1 = bdx * ady;
  852. c = splitter * bdx;
  853. ahi = c - (c - bdx);
  854. alo = bdx - ahi;
  855. c = splitter * ady;
  856. bhi = c - (c - ady);
  857. blo = ady - bhi;
  858. t0 = alo * blo - (t1 - ahi * bhi - alo * bhi - ahi * blo);
  859. _i = s0 - t0;
  860. bvirt = s0 - _i;
  861. ab$1[0] = s0 - (_i + bvirt) + (bvirt - t0);
  862. _j = s1 + _i;
  863. bvirt = _j - s1;
  864. _0 = s1 - (_j - bvirt) + (_i - bvirt);
  865. _i = _0 - t1;
  866. bvirt = _0 - _i;
  867. ab$1[1] = _0 - (_i + bvirt) + (bvirt - t1);
  868. u3 = _j + _i;
  869. bvirt = u3 - _j;
  870. ab$1[2] = _j - (u3 - bvirt) + (_i - bvirt);
  871. ab$1[3] = u3;
  872. finlen = sum(
  873. sum(
  874. sum(
  875. scale(scale(4, bc$1, adx, _8$1), _8$1, adx, _16$1), _16$1,
  876. scale(scale(4, bc$1, ady, _8$1), _8$1, ady, _16b), _16b, _32), _32,
  877. sum(
  878. scale(scale(4, ca$1, bdx, _8$1), _8$1, bdx, _16$1), _16$1,
  879. scale(scale(4, ca$1, bdy, _8$1), _8$1, bdy, _16b), _16b, _32b), _32b, _64), _64,
  880. sum(
  881. scale(scale(4, ab$1, cdx, _8$1), _8$1, cdx, _16$1), _16$1,
  882. scale(scale(4, ab$1, cdy, _8$1), _8$1, cdy, _16b), _16b, _32), _32, fin$1);
  883. let det = estimate(finlen, fin$1);
  884. let errbound = iccerrboundB * permanent;
  885. if (det >= errbound || -det >= errbound) {
  886. return det;
  887. }
  888. bvirt = ax - adx;
  889. adxtail = ax - (adx + bvirt) + (bvirt - dx);
  890. bvirt = ay - ady;
  891. adytail = ay - (ady + bvirt) + (bvirt - dy);
  892. bvirt = bx - bdx;
  893. bdxtail = bx - (bdx + bvirt) + (bvirt - dx);
  894. bvirt = by - bdy;
  895. bdytail = by - (bdy + bvirt) + (bvirt - dy);
  896. bvirt = cx - cdx;
  897. cdxtail = cx - (cdx + bvirt) + (bvirt - dx);
  898. bvirt = cy - cdy;
  899. cdytail = cy - (cdy + bvirt) + (bvirt - dy);
  900. if (adxtail === 0 && bdxtail === 0 && cdxtail === 0 && adytail === 0 && bdytail === 0 && cdytail === 0) {
  901. return det;
  902. }
  903. errbound = iccerrboundC * permanent + resulterrbound * Math.abs(det);
  904. det += ((adx * adx + ady * ady) * ((bdx * cdytail + cdy * bdxtail) - (bdy * cdxtail + cdx * bdytail)) +
  905. 2 * (adx * adxtail + ady * adytail) * (bdx * cdy - bdy * cdx)) +
  906. ((bdx * bdx + bdy * bdy) * ((cdx * adytail + ady * cdxtail) - (cdy * adxtail + adx * cdytail)) +
  907. 2 * (bdx * bdxtail + bdy * bdytail) * (cdx * ady - cdy * adx)) +
  908. ((cdx * cdx + cdy * cdy) * ((adx * bdytail + bdy * adxtail) - (ady * bdxtail + bdx * adytail)) +
  909. 2 * (cdx * cdxtail + cdy * cdytail) * (adx * bdy - ady * bdx));
  910. if (det >= errbound || -det >= errbound) {
  911. return det;
  912. }
  913. if (bdxtail !== 0 || bdytail !== 0 || cdxtail !== 0 || cdytail !== 0) {
  914. s1 = adx * adx;
  915. c = splitter * adx;
  916. ahi = c - (c - adx);
  917. alo = adx - ahi;
  918. s0 = alo * alo - (s1 - ahi * ahi - (ahi + ahi) * alo);
  919. t1 = ady * ady;
  920. c = splitter * ady;
  921. ahi = c - (c - ady);
  922. alo = ady - ahi;
  923. t0 = alo * alo - (t1 - ahi * ahi - (ahi + ahi) * alo);
  924. _i = s0 + t0;
  925. bvirt = _i - s0;
  926. aa[0] = s0 - (_i - bvirt) + (t0 - bvirt);
  927. _j = s1 + _i;
  928. bvirt = _j - s1;
  929. _0 = s1 - (_j - bvirt) + (_i - bvirt);
  930. _i = _0 + t1;
  931. bvirt = _i - _0;
  932. aa[1] = _0 - (_i - bvirt) + (t1 - bvirt);
  933. u3 = _j + _i;
  934. bvirt = u3 - _j;
  935. aa[2] = _j - (u3 - bvirt) + (_i - bvirt);
  936. aa[3] = u3;
  937. }
  938. if (cdxtail !== 0 || cdytail !== 0 || adxtail !== 0 || adytail !== 0) {
  939. s1 = bdx * bdx;
  940. c = splitter * bdx;
  941. ahi = c - (c - bdx);
  942. alo = bdx - ahi;
  943. s0 = alo * alo - (s1 - ahi * ahi - (ahi + ahi) * alo);
  944. t1 = bdy * bdy;
  945. c = splitter * bdy;
  946. ahi = c - (c - bdy);
  947. alo = bdy - ahi;
  948. t0 = alo * alo - (t1 - ahi * ahi - (ahi + ahi) * alo);
  949. _i = s0 + t0;
  950. bvirt = _i - s0;
  951. bb[0] = s0 - (_i - bvirt) + (t0 - bvirt);
  952. _j = s1 + _i;
  953. bvirt = _j - s1;
  954. _0 = s1 - (_j - bvirt) + (_i - bvirt);
  955. _i = _0 + t1;
  956. bvirt = _i - _0;
  957. bb[1] = _0 - (_i - bvirt) + (t1 - bvirt);
  958. u3 = _j + _i;
  959. bvirt = u3 - _j;
  960. bb[2] = _j - (u3 - bvirt) + (_i - bvirt);
  961. bb[3] = u3;
  962. }
  963. if (adxtail !== 0 || adytail !== 0 || bdxtail !== 0 || bdytail !== 0) {
  964. s1 = cdx * cdx;
  965. c = splitter * cdx;
  966. ahi = c - (c - cdx);
  967. alo = cdx - ahi;
  968. s0 = alo * alo - (s1 - ahi * ahi - (ahi + ahi) * alo);
  969. t1 = cdy * cdy;
  970. c = splitter * cdy;
  971. ahi = c - (c - cdy);
  972. alo = cdy - ahi;
  973. t0 = alo * alo - (t1 - ahi * ahi - (ahi + ahi) * alo);
  974. _i = s0 + t0;
  975. bvirt = _i - s0;
  976. cc[0] = s0 - (_i - bvirt) + (t0 - bvirt);
  977. _j = s1 + _i;
  978. bvirt = _j - s1;
  979. _0 = s1 - (_j - bvirt) + (_i - bvirt);
  980. _i = _0 + t1;
  981. bvirt = _i - _0;
  982. cc[1] = _0 - (_i - bvirt) + (t1 - bvirt);
  983. u3 = _j + _i;
  984. bvirt = u3 - _j;
  985. cc[2] = _j - (u3 - bvirt) + (_i - bvirt);
  986. cc[3] = u3;
  987. }
  988. if (adxtail !== 0) {
  989. axtbclen = scale(4, bc$1, adxtail, axtbc);
  990. finlen = finadd$1(finlen, sum_three(
  991. scale(axtbclen, axtbc, 2 * adx, _16$1), _16$1,
  992. scale(scale(4, cc, adxtail, _8$1), _8$1, bdy, _16b), _16b,
  993. scale(scale(4, bb, adxtail, _8$1), _8$1, -cdy, _16c), _16c, _32, _48), _48);
  994. }
  995. if (adytail !== 0) {
  996. aytbclen = scale(4, bc$1, adytail, aytbc);
  997. finlen = finadd$1(finlen, sum_three(
  998. scale(aytbclen, aytbc, 2 * ady, _16$1), _16$1,
  999. scale(scale(4, bb, adytail, _8$1), _8$1, cdx, _16b), _16b,
  1000. scale(scale(4, cc, adytail, _8$1), _8$1, -bdx, _16c), _16c, _32, _48), _48);
  1001. }
  1002. if (bdxtail !== 0) {
  1003. bxtcalen = scale(4, ca$1, bdxtail, bxtca);
  1004. finlen = finadd$1(finlen, sum_three(
  1005. scale(bxtcalen, bxtca, 2 * bdx, _16$1), _16$1,
  1006. scale(scale(4, aa, bdxtail, _8$1), _8$1, cdy, _16b), _16b,
  1007. scale(scale(4, cc, bdxtail, _8$1), _8$1, -ady, _16c), _16c, _32, _48), _48);
  1008. }
  1009. if (bdytail !== 0) {
  1010. bytcalen = scale(4, ca$1, bdytail, bytca);
  1011. finlen = finadd$1(finlen, sum_three(
  1012. scale(bytcalen, bytca, 2 * bdy, _16$1), _16$1,
  1013. scale(scale(4, cc, bdytail, _8$1), _8$1, adx, _16b), _16b,
  1014. scale(scale(4, aa, bdytail, _8$1), _8$1, -cdx, _16c), _16c, _32, _48), _48);
  1015. }
  1016. if (cdxtail !== 0) {
  1017. cxtablen = scale(4, ab$1, cdxtail, cxtab);
  1018. finlen = finadd$1(finlen, sum_three(
  1019. scale(cxtablen, cxtab, 2 * cdx, _16$1), _16$1,
  1020. scale(scale(4, bb, cdxtail, _8$1), _8$1, ady, _16b), _16b,
  1021. scale(scale(4, aa, cdxtail, _8$1), _8$1, -bdy, _16c), _16c, _32, _48), _48);
  1022. }
  1023. if (cdytail !== 0) {
  1024. cytablen = scale(4, ab$1, cdytail, cytab);
  1025. finlen = finadd$1(finlen, sum_three(
  1026. scale(cytablen, cytab, 2 * cdy, _16$1), _16$1,
  1027. scale(scale(4, aa, cdytail, _8$1), _8$1, bdx, _16b), _16b,
  1028. scale(scale(4, bb, cdytail, _8$1), _8$1, -adx, _16c), _16c, _32, _48), _48);
  1029. }
  1030. if (adxtail !== 0 || adytail !== 0) {
  1031. if (bdxtail !== 0 || bdytail !== 0 || cdxtail !== 0 || cdytail !== 0) {
  1032. s1 = bdxtail * cdy;
  1033. c = splitter * bdxtail;
  1034. ahi = c - (c - bdxtail);
  1035. alo = bdxtail - ahi;
  1036. c = splitter * cdy;
  1037. bhi = c - (c - cdy);
  1038. blo = cdy - bhi;
  1039. s0 = alo * blo - (s1 - ahi * bhi - alo * bhi - ahi * blo);
  1040. t1 = bdx * cdytail;
  1041. c = splitter * bdx;
  1042. ahi = c - (c - bdx);
  1043. alo = bdx - ahi;
  1044. c = splitter * cdytail;
  1045. bhi = c - (c - cdytail);
  1046. blo = cdytail - bhi;
  1047. t0 = alo * blo - (t1 - ahi * bhi - alo * bhi - ahi * blo);
  1048. _i = s0 + t0;
  1049. bvirt = _i - s0;
  1050. u$2[0] = s0 - (_i - bvirt) + (t0 - bvirt);
  1051. _j = s1 + _i;
  1052. bvirt = _j - s1;
  1053. _0 = s1 - (_j - bvirt) + (_i - bvirt);
  1054. _i = _0 + t1;
  1055. bvirt = _i - _0;
  1056. u$2[1] = _0 - (_i - bvirt) + (t1 - bvirt);
  1057. u3 = _j + _i;
  1058. bvirt = u3 - _j;
  1059. u$2[2] = _j - (u3 - bvirt) + (_i - bvirt);
  1060. u$2[3] = u3;
  1061. s1 = cdxtail * -bdy;
  1062. c = splitter * cdxtail;
  1063. ahi = c - (c - cdxtail);
  1064. alo = cdxtail - ahi;
  1065. c = splitter * -bdy;
  1066. bhi = c - (c - -bdy);
  1067. blo = -bdy - bhi;
  1068. s0 = alo * blo - (s1 - ahi * bhi - alo * bhi - ahi * blo);
  1069. t1 = cdx * -bdytail;
  1070. c = splitter * cdx;
  1071. ahi = c - (c - cdx);
  1072. alo = cdx - ahi;
  1073. c = splitter * -bdytail;
  1074. bhi = c - (c - -bdytail);
  1075. blo = -bdytail - bhi;
  1076. t0 = alo * blo - (t1 - ahi * bhi - alo * bhi - ahi * blo);
  1077. _i = s0 + t0;
  1078. bvirt = _i - s0;
  1079. v[0] = s0 - (_i - bvirt) + (t0 - bvirt);
  1080. _j = s1 + _i;
  1081. bvirt = _j - s1;
  1082. _0 = s1 - (_j - bvirt) + (_i - bvirt);
  1083. _i = _0 + t1;
  1084. bvirt = _i - _0;
  1085. v[1] = _0 - (_i - bvirt) + (t1 - bvirt);
  1086. u3 = _j + _i;
  1087. bvirt = u3 - _j;
  1088. v[2] = _j - (u3 - bvirt) + (_i - bvirt);
  1089. v[3] = u3;
  1090. bctlen = sum(4, u$2, 4, v, bct$1);
  1091. s1 = bdxtail * cdytail;
  1092. c = splitter * bdxtail;
  1093. ahi = c - (c - bdxtail);
  1094. alo = bdxtail - ahi;
  1095. c = splitter * cdytail;
  1096. bhi = c - (c - cdytail);
  1097. blo = cdytail - bhi;
  1098. s0 = alo * blo - (s1 - ahi * bhi - alo * bhi - ahi * blo);
  1099. t1 = cdxtail * bdytail;
  1100. c = splitter * cdxtail;
  1101. ahi = c - (c - cdxtail);
  1102. alo = cdxtail - ahi;
  1103. c = splitter * bdytail;
  1104. bhi = c - (c - bdytail);
  1105. blo = bdytail - bhi;
  1106. t0 = alo * blo - (t1 - ahi * bhi - alo * bhi - ahi * blo);
  1107. _i = s0 - t0;
  1108. bvirt = s0 - _i;
  1109. bctt[0] = s0 - (_i + bvirt) + (bvirt - t0);
  1110. _j = s1 + _i;
  1111. bvirt = _j - s1;
  1112. _0 = s1 - (_j - bvirt) + (_i - bvirt);
  1113. _i = _0 - t1;
  1114. bvirt = _0 - _i;
  1115. bctt[1] = _0 - (_i + bvirt) + (bvirt - t1);
  1116. u3 = _j + _i;
  1117. bvirt = u3 - _j;
  1118. bctt[2] = _j - (u3 - bvirt) + (_i - bvirt);
  1119. bctt[3] = u3;
  1120. bcttlen = 4;
  1121. } else {
  1122. bct$1[0] = 0;
  1123. bctlen = 1;
  1124. bctt[0] = 0;
  1125. bcttlen = 1;
  1126. }
  1127. if (adxtail !== 0) {
  1128. const len = scale(bctlen, bct$1, adxtail, _16c);
  1129. finlen = finadd$1(finlen, sum(
  1130. scale(axtbclen, axtbc, adxtail, _16$1), _16$1,
  1131. scale(len, _16c, 2 * adx, _32), _32, _48), _48);
  1132. const len2 = scale(bcttlen, bctt, adxtail, _8$1);
  1133. finlen = finadd$1(finlen, sum_three(
  1134. scale(len2, _8$1, 2 * adx, _16$1), _16$1,
  1135. scale(len2, _8$1, adxtail, _16b), _16b,
  1136. scale(len, _16c, adxtail, _32), _32, _32b, _64), _64);
  1137. if (bdytail !== 0) {
  1138. finlen = finadd$1(finlen, scale(scale(4, cc, adxtail, _8$1), _8$1, bdytail, _16$1), _16$1);
  1139. }
  1140. if (cdytail !== 0) {
  1141. finlen = finadd$1(finlen, scale(scale(4, bb, -adxtail, _8$1), _8$1, cdytail, _16$1), _16$1);
  1142. }
  1143. }
  1144. if (adytail !== 0) {
  1145. const len = scale(bctlen, bct$1, adytail, _16c);
  1146. finlen = finadd$1(finlen, sum(
  1147. scale(aytbclen, aytbc, adytail, _16$1), _16$1,
  1148. scale(len, _16c, 2 * ady, _32), _32, _48), _48);
  1149. const len2 = scale(bcttlen, bctt, adytail, _8$1);
  1150. finlen = finadd$1(finlen, sum_three(
  1151. scale(len2, _8$1, 2 * ady, _16$1), _16$1,
  1152. scale(len2, _8$1, adytail, _16b), _16b,
  1153. scale(len, _16c, adytail, _32), _32, _32b, _64), _64);
  1154. }
  1155. }
  1156. if (bdxtail !== 0 || bdytail !== 0) {
  1157. if (cdxtail !== 0 || cdytail !== 0 || adxtail !== 0 || adytail !== 0) {
  1158. s1 = cdxtail * ady;
  1159. c = splitter * cdxtail;
  1160. ahi = c - (c - cdxtail);
  1161. alo = cdxtail - ahi;
  1162. c = splitter * ady;
  1163. bhi = c - (c - ady);
  1164. blo = ady - bhi;
  1165. s0 = alo * blo - (s1 - ahi * bhi - alo * bhi - ahi * blo);
  1166. t1 = cdx * adytail;
  1167. c = splitter * cdx;
  1168. ahi = c - (c - cdx);
  1169. alo = cdx - ahi;
  1170. c = splitter * adytail;
  1171. bhi = c - (c - adytail);
  1172. blo = adytail - bhi;
  1173. t0 = alo * blo - (t1 - ahi * bhi - alo * bhi - ahi * blo);
  1174. _i = s0 + t0;
  1175. bvirt = _i - s0;
  1176. u$2[0] = s0 - (_i - bvirt) + (t0 - bvirt);
  1177. _j = s1 + _i;
  1178. bvirt = _j - s1;
  1179. _0 = s1 - (_j - bvirt) + (_i - bvirt);
  1180. _i = _0 + t1;
  1181. bvirt = _i - _0;
  1182. u$2[1] = _0 - (_i - bvirt) + (t1 - bvirt);
  1183. u3 = _j + _i;
  1184. bvirt = u3 - _j;
  1185. u$2[2] = _j - (u3 - bvirt) + (_i - bvirt);
  1186. u$2[3] = u3;
  1187. n1 = -cdy;
  1188. n0 = -cdytail;
  1189. s1 = adxtail * n1;
  1190. c = splitter * adxtail;
  1191. ahi = c - (c - adxtail);
  1192. alo = adxtail - ahi;
  1193. c = splitter * n1;
  1194. bhi = c - (c - n1);
  1195. blo = n1 - bhi;
  1196. s0 = alo * blo - (s1 - ahi * bhi - alo * bhi - ahi * blo);
  1197. t1 = adx * n0;
  1198. c = splitter * adx;
  1199. ahi = c - (c - adx);
  1200. alo = adx - ahi;
  1201. c = splitter * n0;
  1202. bhi = c - (c - n0);
  1203. blo = n0 - bhi;
  1204. t0 = alo * blo - (t1 - ahi * bhi - alo * bhi - ahi * blo);
  1205. _i = s0 + t0;
  1206. bvirt = _i - s0;
  1207. v[0] = s0 - (_i - bvirt) + (t0 - bvirt);
  1208. _j = s1 + _i;
  1209. bvirt = _j - s1;
  1210. _0 = s1 - (_j - bvirt) + (_i - bvirt);
  1211. _i = _0 + t1;
  1212. bvirt = _i - _0;
  1213. v[1] = _0 - (_i - bvirt) + (t1 - bvirt);
  1214. u3 = _j + _i;
  1215. bvirt = u3 - _j;
  1216. v[2] = _j - (u3 - bvirt) + (_i - bvirt);
  1217. v[3] = u3;
  1218. catlen = sum(4, u$2, 4, v, cat$1);
  1219. s1 = cdxtail * adytail;
  1220. c = splitter * cdxtail;
  1221. ahi = c - (c - cdxtail);
  1222. alo = cdxtail - ahi;
  1223. c = splitter * adytail;
  1224. bhi = c - (c - adytail);
  1225. blo = adytail - bhi;
  1226. s0 = alo * blo - (s1 - ahi * bhi - alo * bhi - ahi * blo);
  1227. t1 = adxtail * cdytail;
  1228. c = splitter * adxtail;
  1229. ahi = c - (c - adxtail);
  1230. alo = adxtail - ahi;
  1231. c = splitter * cdytail;
  1232. bhi = c - (c - cdytail);
  1233. blo = cdytail - bhi;
  1234. t0 = alo * blo - (t1 - ahi * bhi - alo * bhi - ahi * blo);
  1235. _i = s0 - t0;
  1236. bvirt = s0 - _i;
  1237. catt[0] = s0 - (_i + bvirt) + (bvirt - t0);
  1238. _j = s1 + _i;
  1239. bvirt = _j - s1;
  1240. _0 = s1 - (_j - bvirt) + (_i - bvirt);
  1241. _i = _0 - t1;
  1242. bvirt = _0 - _i;
  1243. catt[1] = _0 - (_i + bvirt) + (bvirt - t1);
  1244. u3 = _j + _i;
  1245. bvirt = u3 - _j;
  1246. catt[2] = _j - (u3 - bvirt) + (_i - bvirt);
  1247. catt[3] = u3;
  1248. cattlen = 4;
  1249. } else {
  1250. cat$1[0] = 0;
  1251. catlen = 1;
  1252. catt[0] = 0;
  1253. cattlen = 1;
  1254. }
  1255. if (bdxtail !== 0) {
  1256. const len = scale(catlen, cat$1, bdxtail, _16c);
  1257. finlen = finadd$1(finlen, sum(
  1258. scale(bxtcalen, bxtca, bdxtail, _16$1), _16$1,
  1259. scale(len, _16c, 2 * bdx, _32), _32, _48), _48);
  1260. const len2 = scale(cattlen, catt, bdxtail, _8$1);
  1261. finlen = finadd$1(finlen, sum_three(
  1262. scale(len2, _8$1, 2 * bdx, _16$1), _16$1,
  1263. scale(len2, _8$1, bdxtail, _16b), _16b,
  1264. scale(len, _16c, bdxtail, _32), _32, _32b, _64), _64);
  1265. if (cdytail !== 0) {
  1266. finlen = finadd$1(finlen, scale(scale(4, aa, bdxtail, _8$1), _8$1, cdytail, _16$1), _16$1);
  1267. }
  1268. if (adytail !== 0) {
  1269. finlen = finadd$1(finlen, scale(scale(4, cc, -bdxtail, _8$1), _8$1, adytail, _16$1), _16$1);
  1270. }
  1271. }
  1272. if (bdytail !== 0) {
  1273. const len = scale(catlen, cat$1, bdytail, _16c);
  1274. finlen = finadd$1(finlen, sum(
  1275. scale(bytcalen, bytca, bdytail, _16$1), _16$1,
  1276. scale(len, _16c, 2 * bdy, _32), _32, _48), _48);
  1277. const len2 = scale(cattlen, catt, bdytail, _8$1);
  1278. finlen = finadd$1(finlen, sum_three(
  1279. scale(len2, _8$1, 2 * bdy, _16$1), _16$1,
  1280. scale(len2, _8$1, bdytail, _16b), _16b,
  1281. scale(len, _16c, bdytail, _32), _32, _32b, _64), _64);
  1282. }
  1283. }
  1284. if (cdxtail !== 0 || cdytail !== 0) {
  1285. if (adxtail !== 0 || adytail !== 0 || bdxtail !== 0 || bdytail !== 0) {
  1286. s1 = adxtail * bdy;
  1287. c = splitter * adxtail;
  1288. ahi = c - (c - adxtail);
  1289. alo = adxtail - ahi;
  1290. c = splitter * bdy;
  1291. bhi = c - (c - bdy);
  1292. blo = bdy - bhi;
  1293. s0 = alo * blo - (s1 - ahi * bhi - alo * bhi - ahi * blo);
  1294. t1 = adx * bdytail;
  1295. c = splitter * adx;
  1296. ahi = c - (c - adx);
  1297. alo = adx - ahi;
  1298. c = splitter * bdytail;
  1299. bhi = c - (c - bdytail);
  1300. blo = bdytail - bhi;
  1301. t0 = alo * blo - (t1 - ahi * bhi - alo * bhi - ahi * blo);
  1302. _i = s0 + t0;
  1303. bvirt = _i - s0;
  1304. u$2[0] = s0 - (_i - bvirt) + (t0 - bvirt);
  1305. _j = s1 + _i;
  1306. bvirt = _j - s1;
  1307. _0 = s1 - (_j - bvirt) + (_i - bvirt);
  1308. _i = _0 + t1;
  1309. bvirt = _i - _0;
  1310. u$2[1] = _0 - (_i - bvirt) + (t1 - bvirt);
  1311. u3 = _j + _i;
  1312. bvirt = u3 - _j;
  1313. u$2[2] = _j - (u3 - bvirt) + (_i - bvirt);
  1314. u$2[3] = u3;
  1315. n1 = -ady;
  1316. n0 = -adytail;
  1317. s1 = bdxtail * n1;
  1318. c = splitter * bdxtail;
  1319. ahi = c - (c - bdxtail);
  1320. alo = bdxtail - ahi;
  1321. c = splitter * n1;
  1322. bhi = c - (c - n1);
  1323. blo = n1 - bhi;
  1324. s0 = alo * blo - (s1 - ahi * bhi - alo * bhi - ahi * blo);
  1325. t1 = bdx * n0;
  1326. c = splitter * bdx;
  1327. ahi = c - (c - bdx);
  1328. alo = bdx - ahi;
  1329. c = splitter * n0;
  1330. bhi = c - (c - n0);
  1331. blo = n0 - bhi;
  1332. t0 = alo * blo - (t1 - ahi * bhi - alo * bhi - ahi * blo);
  1333. _i = s0 + t0;
  1334. bvirt = _i - s0;
  1335. v[0] = s0 - (_i - bvirt) + (t0 - bvirt);
  1336. _j = s1 + _i;
  1337. bvirt = _j - s1;
  1338. _0 = s1 - (_j - bvirt) + (_i - bvirt);
  1339. _i = _0 + t1;
  1340. bvirt = _i - _0;
  1341. v[1] = _0 - (_i - bvirt) + (t1 - bvirt);
  1342. u3 = _j + _i;
  1343. bvirt = u3 - _j;
  1344. v[2] = _j - (u3 - bvirt) + (_i - bvirt);
  1345. v[3] = u3;
  1346. abtlen = sum(4, u$2, 4, v, abt$1);
  1347. s1 = adxtail * bdytail;
  1348. c = splitter * adxtail;
  1349. ahi = c - (c - adxtail);
  1350. alo = adxtail - ahi;
  1351. c = splitter * bdytail;
  1352. bhi = c - (c - bdytail);
  1353. blo = bdytail - bhi;
  1354. s0 = alo * blo - (s1 - ahi * bhi - alo * bhi - ahi * blo);
  1355. t1 = bdxtail * adytail;
  1356. c = splitter * bdxtail;
  1357. ahi = c - (c - bdxtail);
  1358. alo = bdxtail - ahi;
  1359. c = splitter * adytail;
  1360. bhi = c - (c - adytail);
  1361. blo = adytail - bhi;
  1362. t0 = alo * blo - (t1 - ahi * bhi - alo * bhi - ahi * blo);
  1363. _i = s0 - t0;
  1364. bvirt = s0 - _i;
  1365. abtt[0] = s0 - (_i + bvirt) + (bvirt - t0);
  1366. _j = s1 + _i;
  1367. bvirt = _j - s1;
  1368. _0 = s1 - (_j - bvirt) + (_i - bvirt);
  1369. _i = _0 - t1;
  1370. bvirt = _0 - _i;
  1371. abtt[1] = _0 - (_i + bvirt) + (bvirt - t1);
  1372. u3 = _j + _i;
  1373. bvirt = u3 - _j;
  1374. abtt[2] = _j - (u3 - bvirt) + (_i - bvirt);
  1375. abtt[3] = u3;
  1376. abttlen = 4;
  1377. } else {
  1378. abt$1[0] = 0;
  1379. abtlen = 1;
  1380. abtt[0] = 0;
  1381. abttlen = 1;
  1382. }
  1383. if (cdxtail !== 0) {
  1384. const len = scale(abtlen, abt$1, cdxtail, _16c);
  1385. finlen = finadd$1(finlen, sum(
  1386. scale(cxtablen, cxtab, cdxtail, _16$1), _16$1,
  1387. scale(len, _16c, 2 * cdx, _32), _32, _48), _48);
  1388. const len2 = scale(abttlen, abtt, cdxtail, _8$1);
  1389. finlen = finadd$1(finlen, sum_three(
  1390. scale(len2, _8$1, 2 * cdx, _16$1), _16$1,
  1391. scale(len2, _8$1, cdxtail, _16b), _16b,
  1392. scale(len, _16c, cdxtail, _32), _32, _32b, _64), _64);
  1393. if (adytail !== 0) {
  1394. finlen = finadd$1(finlen, scale(scale(4, bb, cdxtail, _8$1), _8$1, adytail, _16$1), _16$1);
  1395. }
  1396. if (bdytail !== 0) {
  1397. finlen = finadd$1(finlen, scale(scale(4, aa, -cdxtail, _8$1), _8$1, bdytail, _16$1), _16$1);
  1398. }
  1399. }
  1400. if (cdytail !== 0) {
  1401. const len = scale(abtlen, abt$1, cdytail, _16c);
  1402. finlen = finadd$1(finlen, sum(
  1403. scale(cytablen, cytab, cdytail, _16$1), _16$1,
  1404. scale(len, _16c, 2 * cdy, _32), _32, _48), _48);
  1405. const len2 = scale(abttlen, abtt, cdytail, _8$1);
  1406. finlen = finadd$1(finlen, sum_three(
  1407. scale(len2, _8$1, 2 * cdy, _16$1), _16$1,
  1408. scale(len2, _8$1, cdytail, _16b), _16b,
  1409. scale(len, _16c, cdytail, _32), _32, _32b, _64), _64);
  1410. }
  1411. }
  1412. return fin$1[finlen - 1];
  1413. }
  1414. function incircle(ax, ay, bx, by, cx, cy, dx, dy) {
  1415. const adx = ax - dx;
  1416. const bdx = bx - dx;
  1417. const cdx = cx - dx;
  1418. const ady = ay - dy;
  1419. const bdy = by - dy;
  1420. const cdy = cy - dy;
  1421. const bdxcdy = bdx * cdy;
  1422. const cdxbdy = cdx * bdy;
  1423. const alift = adx * adx + ady * ady;
  1424. const cdxady = cdx * ady;
  1425. const adxcdy = adx * cdy;
  1426. const blift = bdx * bdx + bdy * bdy;
  1427. const adxbdy = adx * bdy;
  1428. const bdxady = bdx * ady;
  1429. const clift = cdx * cdx + cdy * cdy;
  1430. const det =
  1431. alift * (bdxcdy - cdxbdy) +
  1432. blift * (cdxady - adxcdy) +
  1433. clift * (adxbdy - bdxady);
  1434. const permanent =
  1435. (Math.abs(bdxcdy) + Math.abs(cdxbdy)) * alift +
  1436. (Math.abs(cdxady) + Math.abs(adxcdy)) * blift +
  1437. (Math.abs(adxbdy) + Math.abs(bdxady)) * clift;
  1438. const errbound = iccerrboundA * permanent;
  1439. if (det > errbound || -det > errbound) {
  1440. return det;
  1441. }
  1442. return incircleadapt(ax, ay, bx, by, cx, cy, dx, dy, permanent);
  1443. }
  1444. function incirclefast(ax, ay, bx, by, cx, cy, dx, dy) {
  1445. const adx = ax - dx;
  1446. const ady = ay - dy;
  1447. const bdx = bx - dx;
  1448. const bdy = by - dy;
  1449. const cdx = cx - dx;
  1450. const cdy = cy - dy;
  1451. const abdet = adx * bdy - bdx * ady;
  1452. const bcdet = bdx * cdy - cdx * bdy;
  1453. const cadet = cdx * ady - adx * cdy;
  1454. const alift = adx * adx + ady * ady;
  1455. const blift = bdx * bdx + bdy * bdy;
  1456. const clift = cdx * cdx + cdy * cdy;
  1457. return alift * bcdet + blift * cadet + clift * abdet;
  1458. }
  1459. const isperrboundA = (16 + 224 * epsilon) * epsilon;
  1460. const isperrboundB = (5 + 72 * epsilon) * epsilon;
  1461. const isperrboundC = (71 + 1408 * epsilon) * epsilon * epsilon;
  1462. const ab$2 = vec(4);
  1463. const bc$2 = vec(4);
  1464. const cd = vec(4);
  1465. const de = vec(4);
  1466. const ea = vec(4);
  1467. const ac = vec(4);
  1468. const bd = vec(4);
  1469. const ce = vec(4);
  1470. const da = vec(4);
  1471. const eb = vec(4);
  1472. const abc = vec(24);
  1473. const bcd = vec(24);
  1474. const cde = vec(24);
  1475. const dea = vec(24);
  1476. const eab = vec(24);
  1477. const abd = vec(24);
  1478. const bce = vec(24);
  1479. const cda = vec(24);
  1480. const deb = vec(24);
  1481. const eac = vec(24);
  1482. const adet = vec(1152);
  1483. const bdet = vec(1152);
  1484. const cdet = vec(1152);
  1485. const ddet = vec(1152);
  1486. const edet = vec(1152);
  1487. const abdet = vec(2304);
  1488. const cddet = vec(2304);
  1489. const cdedet = vec(3456);
  1490. const deter = vec(5760);
  1491. const _8$2 = vec(8);
  1492. const _8b$1 = vec(8);
  1493. const _8c = vec(8);
  1494. const _16$2 = vec(16);
  1495. const _24 = vec(24);
  1496. const _48$1 = vec(48);
  1497. const _48b = vec(48);
  1498. const _96 = vec(96);
  1499. const _192 = vec(192);
  1500. const _384x = vec(384);
  1501. const _384y = vec(384);
  1502. const _384z = vec(384);
  1503. const _768 = vec(768);
  1504. function sum_three_scale(a, b, c, az, bz, cz, out) {
  1505. return sum_three(
  1506. scale(4, a, az, _8$2), _8$2,
  1507. scale(4, b, bz, _8b$1), _8b$1,
  1508. scale(4, c, cz, _8c), _8c, _16$2, out);
  1509. }
  1510. function liftexact(alen, a, blen, b, clen, c, dlen, d, x, y, z, out) {
  1511. const len = sum(
  1512. sum(alen, a, blen, b, _48$1), _48$1,
  1513. negate(sum(clen, c, dlen, d, _48b), _48b), _48b, _96);
  1514. return sum_three(
  1515. scale(scale(len, _96, x, _192), _192, x, _384x), _384x,
  1516. scale(scale(len, _96, y, _192), _192, y, _384y), _384y,
  1517. scale(scale(len, _96, z, _192), _192, z, _384z), _384z, _768, out);
  1518. }
  1519. function insphereexact(ax, ay, az, bx, by, bz, cx, cy, cz, dx, dy, dz, ex, ey, ez) {
  1520. let bvirt, c, ahi, alo, bhi, blo, _i, _j, _0, s1, s0, t1, t0, u3;
  1521. s1 = ax * by;
  1522. c = splitter * ax;
  1523. ahi = c - (c - ax);
  1524. alo = ax - ahi;
  1525. c = splitter * by;
  1526. bhi = c - (c - by);
  1527. blo = by - bhi;
  1528. s0 = alo * blo - (s1 - ahi * bhi - alo * bhi - ahi * blo);
  1529. t1 = bx * ay;
  1530. c = splitter * bx;
  1531. ahi = c - (c - bx);
  1532. alo = bx - ahi;
  1533. c = splitter * ay;
  1534. bhi = c - (c - ay);
  1535. blo = ay - bhi;
  1536. t0 = alo * blo - (t1 - ahi * bhi - alo * bhi - ahi * blo);
  1537. _i = s0 - t0;
  1538. bvirt = s0 - _i;
  1539. ab$2[0] = s0 - (_i + bvirt) + (bvirt - t0);
  1540. _j = s1 + _i;
  1541. bvirt = _j - s1;
  1542. _0 = s1 - (_j - bvirt) + (_i - bvirt);
  1543. _i = _0 - t1;
  1544. bvirt = _0 - _i;
  1545. ab$2[1] = _0 - (_i + bvirt) + (bvirt - t1);
  1546. u3 = _j + _i;
  1547. bvirt = u3 - _j;
  1548. ab$2[2] = _j - (u3 - bvirt) + (_i - bvirt);
  1549. ab$2[3] = u3;
  1550. s1 = bx * cy;
  1551. c = splitter * bx;
  1552. ahi = c - (c - bx);
  1553. alo = bx - ahi;
  1554. c = splitter * cy;
  1555. bhi = c - (c - cy);
  1556. blo = cy - bhi;
  1557. s0 = alo * blo - (s1 - ahi * bhi - alo * bhi - ahi * blo);
  1558. t1 = cx * by;
  1559. c = splitter * cx;
  1560. ahi = c - (c - cx);
  1561. alo = cx - ahi;
  1562. c = splitter * by;
  1563. bhi = c - (c - by);
  1564. blo = by - bhi;
  1565. t0 = alo * blo - (t1 - ahi * bhi - alo * bhi - ahi * blo);
  1566. _i = s0 - t0;
  1567. bvirt = s0 - _i;
  1568. bc$2[0] = s0 - (_i + bvirt) + (bvirt - t0);
  1569. _j = s1 + _i;
  1570. bvirt = _j - s1;
  1571. _0 = s1 - (_j - bvirt) + (_i - bvirt);
  1572. _i = _0 - t1;
  1573. bvirt = _0 - _i;
  1574. bc$2[1] = _0 - (_i + bvirt) + (bvirt - t1);
  1575. u3 = _j + _i;
  1576. bvirt = u3 - _j;
  1577. bc$2[2] = _j - (u3 - bvirt) + (_i - bvirt);
  1578. bc$2[3] = u3;
  1579. s1 = cx * dy;
  1580. c = splitter * cx;
  1581. ahi = c - (c - cx);
  1582. alo = cx - ahi;
  1583. c = splitter * dy;
  1584. bhi = c - (c - dy);
  1585. blo = dy - bhi;
  1586. s0 = alo * blo - (s1 - ahi * bhi - alo * bhi - ahi * blo);
  1587. t1 = dx * cy;
  1588. c = splitter * dx;
  1589. ahi = c - (c - dx);
  1590. alo = dx - ahi;
  1591. c = splitter * cy;
  1592. bhi = c - (c - cy);
  1593. blo = cy - bhi;
  1594. t0 = alo * blo - (t1 - ahi * bhi - alo * bhi - ahi * blo);
  1595. _i = s0 - t0;
  1596. bvirt = s0 - _i;
  1597. cd[0] = s0 - (_i + bvirt) + (bvirt - t0);
  1598. _j = s1 + _i;
  1599. bvirt = _j - s1;
  1600. _0 = s1 - (_j - bvirt) + (_i - bvirt);
  1601. _i = _0 - t1;
  1602. bvirt = _0 - _i;
  1603. cd[1] = _0 - (_i + bvirt) + (bvirt - t1);
  1604. u3 = _j + _i;
  1605. bvirt = u3 - _j;
  1606. cd[2] = _j - (u3 - bvirt) + (_i - bvirt);
  1607. cd[3] = u3;
  1608. s1 = dx * ey;
  1609. c = splitter * dx;
  1610. ahi = c - (c - dx);
  1611. alo = dx - ahi;
  1612. c = splitter * ey;
  1613. bhi = c - (c - ey);
  1614. blo = ey - bhi;
  1615. s0 = alo * blo - (s1 - ahi * bhi - alo * bhi - ahi * blo);
  1616. t1 = ex * dy;
  1617. c = splitter * ex;
  1618. ahi = c - (c - ex);
  1619. alo = ex - ahi;
  1620. c = splitter * dy;
  1621. bhi = c - (c - dy);
  1622. blo = dy - bhi;
  1623. t0 = alo * blo - (t1 - ahi * bhi - alo * bhi - ahi * blo);
  1624. _i = s0 - t0;
  1625. bvirt = s0 - _i;
  1626. de[0] = s0 - (_i + bvirt) + (bvirt - t0);
  1627. _j = s1 + _i;
  1628. bvirt = _j - s1;
  1629. _0 = s1 - (_j - bvirt) + (_i - bvirt);
  1630. _i = _0 - t1;
  1631. bvirt = _0 - _i;
  1632. de[1] = _0 - (_i + bvirt) + (bvirt - t1);
  1633. u3 = _j + _i;
  1634. bvirt = u3 - _j;
  1635. de[2] = _j - (u3 - bvirt) + (_i - bvirt);
  1636. de[3] = u3;
  1637. s1 = ex * ay;
  1638. c = splitter * ex;
  1639. ahi = c - (c - ex);
  1640. alo = ex - ahi;
  1641. c = splitter * ay;
  1642. bhi = c - (c - ay);
  1643. blo = ay - bhi;
  1644. s0 = alo * blo - (s1 - ahi * bhi - alo * bhi - ahi * blo);
  1645. t1 = ax * ey;
  1646. c = splitter * ax;
  1647. ahi = c - (c - ax);
  1648. alo = ax - ahi;
  1649. c = splitter * ey;
  1650. bhi = c - (c - ey);
  1651. blo = ey - bhi;
  1652. t0 = alo * blo - (t1 - ahi * bhi - alo * bhi - ahi * blo);
  1653. _i = s0 - t0;
  1654. bvirt = s0 - _i;
  1655. ea[0] = s0 - (_i + bvirt) + (bvirt - t0);
  1656. _j = s1 + _i;
  1657. bvirt = _j - s1;
  1658. _0 = s1 - (_j - bvirt) + (_i - bvirt);
  1659. _i = _0 - t1;
  1660. bvirt = _0 - _i;
  1661. ea[1] = _0 - (_i + bvirt) + (bvirt - t1);
  1662. u3 = _j + _i;
  1663. bvirt = u3 - _j;
  1664. ea[2] = _j - (u3 - bvirt) + (_i - bvirt);
  1665. ea[3] = u3;
  1666. s1 = ax * cy;
  1667. c = splitter * ax;
  1668. ahi = c - (c - ax);
  1669. alo = ax - ahi;
  1670. c = splitter * cy;
  1671. bhi = c - (c - cy);
  1672. blo = cy - bhi;
  1673. s0 = alo * blo - (s1 - ahi * bhi - alo * bhi - ahi * blo);
  1674. t1 = cx * ay;
  1675. c = splitter * cx;
  1676. ahi = c - (c - cx);
  1677. alo = cx - ahi;
  1678. c = splitter * ay;
  1679. bhi = c - (c - ay);
  1680. blo = ay - bhi;
  1681. t0 = alo * blo - (t1 - ahi * bhi - alo * bhi - ahi * blo);
  1682. _i = s0 - t0;
  1683. bvirt = s0 - _i;
  1684. ac[0] = s0 - (_i + bvirt) + (bvirt - t0);
  1685. _j = s1 + _i;
  1686. bvirt = _j - s1;
  1687. _0 = s1 - (_j - bvirt) + (_i - bvirt);
  1688. _i = _0 - t1;
  1689. bvirt = _0 - _i;
  1690. ac[1] = _0 - (_i + bvirt) + (bvirt - t1);
  1691. u3 = _j + _i;
  1692. bvirt = u3 - _j;
  1693. ac[2] = _j - (u3 - bvirt) + (_i - bvirt);
  1694. ac[3] = u3;
  1695. s1 = bx * dy;
  1696. c = splitter * bx;
  1697. ahi = c - (c - bx);
  1698. alo = bx - ahi;
  1699. c = splitter * dy;
  1700. bhi = c - (c - dy);
  1701. blo = dy - bhi;
  1702. s0 = alo * blo - (s1 - ahi * bhi - alo * bhi - ahi * blo);
  1703. t1 = dx * by;
  1704. c = splitter * dx;
  1705. ahi = c - (c - dx);
  1706. alo = dx - ahi;
  1707. c = splitter * by;
  1708. bhi = c - (c - by);
  1709. blo = by - bhi;
  1710. t0 = alo * blo - (t1 - ahi * bhi - alo * bhi - ahi * blo);
  1711. _i = s0 - t0;
  1712. bvirt = s0 - _i;
  1713. bd[0] = s0 - (_i + bvirt) + (bvirt - t0);
  1714. _j = s1 + _i;
  1715. bvirt = _j - s1;
  1716. _0 = s1 - (_j - bvirt) + (_i - bvirt);
  1717. _i = _0 - t1;
  1718. bvirt = _0 - _i;
  1719. bd[1] = _0 - (_i + bvirt) + (bvirt - t1);
  1720. u3 = _j + _i;
  1721. bvirt = u3 - _j;
  1722. bd[2] = _j - (u3 - bvirt) + (_i - bvirt);
  1723. bd[3] = u3;
  1724. s1 = cx * ey;
  1725. c = splitter * cx;
  1726. ahi = c - (c - cx);
  1727. alo = cx - ahi;
  1728. c = splitter * ey;
  1729. bhi = c - (c - ey);
  1730. blo = ey - bhi;
  1731. s0 = alo * blo - (s1 - ahi * bhi - alo * bhi - ahi * blo);
  1732. t1 = ex * cy;
  1733. c = splitter * ex;
  1734. ahi = c - (c - ex);
  1735. alo = ex - ahi;
  1736. c = splitter * cy;
  1737. bhi = c - (c - cy);
  1738. blo = cy - bhi;
  1739. t0 = alo * blo - (t1 - ahi * bhi - alo * bhi - ahi * blo);
  1740. _i = s0 - t0;
  1741. bvirt = s0 - _i;
  1742. ce[0] = s0 - (_i + bvirt) + (bvirt - t0);
  1743. _j = s1 + _i;
  1744. bvirt = _j - s1;
  1745. _0 = s1 - (_j - bvirt) + (_i - bvirt);
  1746. _i = _0 - t1;
  1747. bvirt = _0 - _i;
  1748. ce[1] = _0 - (_i + bvirt) + (bvirt - t1);
  1749. u3 = _j + _i;
  1750. bvirt = u3 - _j;
  1751. ce[2] = _j - (u3 - bvirt) + (_i - bvirt);
  1752. ce[3] = u3;
  1753. s1 = dx * ay;
  1754. c = splitter * dx;
  1755. ahi = c - (c - dx);
  1756. alo = dx - ahi;
  1757. c = splitter * ay;
  1758. bhi = c - (c - ay);
  1759. blo = ay - bhi;
  1760. s0 = alo * blo - (s1 - ahi * bhi - alo * bhi - ahi * blo);
  1761. t1 = ax * dy;
  1762. c = splitter * ax;
  1763. ahi = c - (c - ax);
  1764. alo = ax - ahi;
  1765. c = splitter * dy;
  1766. bhi = c - (c - dy);
  1767. blo = dy - bhi;
  1768. t0 = alo * blo - (t1 - ahi * bhi - alo * bhi - ahi * blo);
  1769. _i = s0 - t0;
  1770. bvirt = s0 - _i;
  1771. da[0] = s0 - (_i + bvirt) + (bvirt - t0);
  1772. _j = s1 + _i;
  1773. bvirt = _j - s1;
  1774. _0 = s1 - (_j - bvirt) + (_i - bvirt);
  1775. _i = _0 - t1;
  1776. bvirt = _0 - _i;
  1777. da[1] = _0 - (_i + bvirt) + (bvirt - t1);
  1778. u3 = _j + _i;
  1779. bvirt = u3 - _j;
  1780. da[2] = _j - (u3 - bvirt) + (_i - bvirt);
  1781. da[3] = u3;
  1782. s1 = ex * by;
  1783. c = splitter * ex;
  1784. ahi = c - (c - ex);
  1785. alo = ex - ahi;
  1786. c = splitter * by;
  1787. bhi = c - (c - by);
  1788. blo = by - bhi;
  1789. s0 = alo * blo - (s1 - ahi * bhi - alo * bhi - ahi * blo);
  1790. t1 = bx * ey;
  1791. c = splitter * bx;
  1792. ahi = c - (c - bx);
  1793. alo = bx - ahi;
  1794. c = splitter * ey;
  1795. bhi = c - (c - ey);
  1796. blo = ey - bhi;
  1797. t0 = alo * blo - (t1 - ahi * bhi - alo * bhi - ahi * blo);
  1798. _i = s0 - t0;
  1799. bvirt = s0 - _i;
  1800. eb[0] = s0 - (_i + bvirt) + (bvirt - t0);
  1801. _j = s1 + _i;
  1802. bvirt = _j - s1;
  1803. _0 = s1 - (_j - bvirt) + (_i - bvirt);
  1804. _i = _0 - t1;
  1805. bvirt = _0 - _i;
  1806. eb[1] = _0 - (_i + bvirt) + (bvirt - t1);
  1807. u3 = _j + _i;
  1808. bvirt = u3 - _j;
  1809. eb[2] = _j - (u3 - bvirt) + (_i - bvirt);
  1810. eb[3] = u3;
  1811. const abclen = sum_three_scale(ab$2, bc$2, ac, cz, az, -bz, abc);
  1812. const bcdlen = sum_three_scale(bc$2, cd, bd, dz, bz, -cz, bcd);
  1813. const cdelen = sum_three_scale(cd, de, ce, ez, cz, -dz, cde);
  1814. const dealen = sum_three_scale(de, ea, da, az, dz, -ez, dea);
  1815. const eablen = sum_three_scale(ea, ab$2, eb, bz, ez, -az, eab);
  1816. const abdlen = sum_three_scale(ab$2, bd, da, dz, az, bz, abd);
  1817. const bcelen = sum_three_scale(bc$2, ce, eb, ez, bz, cz, bce);
  1818. const cdalen = sum_three_scale(cd, da, ac, az, cz, dz, cda);
  1819. const deblen = sum_three_scale(de, eb, bd, bz, dz, ez, deb);
  1820. const eaclen = sum_three_scale(ea, ac, ce, cz, ez, az, eac);
  1821. const deterlen = sum_three(
  1822. liftexact(cdelen, cde, bcelen, bce, deblen, deb, bcdlen, bcd, ax, ay, az, adet), adet,
  1823. liftexact(dealen, dea, cdalen, cda, eaclen, eac, cdelen, cde, bx, by, bz, bdet), bdet,
  1824. sum_three(
  1825. liftexact(eablen, eab, deblen, deb, abdlen, abd, dealen, dea, cx, cy, cz, cdet), cdet,
  1826. liftexact(abclen, abc, eaclen, eac, bcelen, bce, eablen, eab, dx, dy, dz, ddet), ddet,
  1827. liftexact(bcdlen, bcd, abdlen, abd, cdalen, cda, abclen, abc, ex, ey, ez, edet), edet, cddet, cdedet), cdedet, abdet, deter);
  1828. return deter[deterlen - 1];
  1829. }
  1830. const xdet = vec(96);
  1831. const ydet = vec(96);
  1832. const zdet = vec(96);
  1833. const fin$2 = vec(1152);
  1834. function liftadapt(a, b, c, az, bz, cz, x, y, z, out) {
  1835. const len = sum_three_scale(a, b, c, az, bz, cz, _24);
  1836. return sum_three(
  1837. scale(scale(len, _24, x, _48$1), _48$1, x, xdet), xdet,
  1838. scale(scale(len, _24, y, _48$1), _48$1, y, ydet), ydet,
  1839. scale(scale(len, _24, z, _48$1), _48$1, z, zdet), zdet, _192, out);
  1840. }
  1841. function insphereadapt(ax, ay, az, bx, by, bz, cx, cy, cz, dx, dy, dz, ex, ey, ez, permanent) {
  1842. let ab3, bc3, cd3, da3, ac3, bd3;
  1843. let aextail, bextail, cextail, dextail;
  1844. let aeytail, beytail, ceytail, deytail;
  1845. let aeztail, beztail, ceztail, deztail;
  1846. let bvirt, c, ahi, alo, bhi, blo, _i, _j, _0, s1, s0, t1, t0;
  1847. const aex = ax - ex;
  1848. const bex = bx - ex;
  1849. const cex = cx - ex;
  1850. const dex = dx - ex;
  1851. const aey = ay - ey;
  1852. const bey = by - ey;
  1853. const cey = cy - ey;
  1854. const dey = dy - ey;
  1855. const aez = az - ez;
  1856. const bez = bz - ez;
  1857. const cez = cz - ez;
  1858. const dez = dz - ez;
  1859. s1 = aex * bey;
  1860. c = splitter * aex;
  1861. ahi = c - (c - aex);
  1862. alo = aex - ahi;
  1863. c = splitter * bey;
  1864. bhi = c - (c - bey);
  1865. blo = bey - bhi;
  1866. s0 = alo * blo - (s1 - ahi * bhi - alo * bhi - ahi * blo);
  1867. t1 = bex * aey;
  1868. c = splitter * bex;
  1869. ahi = c - (c - bex);
  1870. alo = bex - ahi;
  1871. c = splitter * aey;
  1872. bhi = c - (c - aey);
  1873. blo = aey - bhi;
  1874. t0 = alo * blo - (t1 - ahi * bhi - alo * bhi - ahi * blo);
  1875. _i = s0 - t0;
  1876. bvirt = s0 - _i;
  1877. ab$2[0] = s0 - (_i + bvirt) + (bvirt - t0);
  1878. _j = s1 + _i;
  1879. bvirt = _j - s1;
  1880. _0 = s1 - (_j - bvirt) + (_i - bvirt);
  1881. _i = _0 - t1;
  1882. bvirt = _0 - _i;
  1883. ab$2[1] = _0 - (_i + bvirt) + (bvirt - t1);
  1884. ab3 = _j + _i;
  1885. bvirt = ab3 - _j;
  1886. ab$2[2] = _j - (ab3 - bvirt) + (_i - bvirt);
  1887. ab$2[3] = ab3;
  1888. s1 = bex * cey;
  1889. c = splitter * bex;
  1890. ahi = c - (c - bex);
  1891. alo = bex - ahi;
  1892. c = splitter * cey;
  1893. bhi = c - (c - cey);
  1894. blo = cey - bhi;
  1895. s0 = alo * blo - (s1 - ahi * bhi - alo * bhi - ahi * blo);
  1896. t1 = cex * bey;
  1897. c = splitter * cex;
  1898. ahi = c - (c - cex);
  1899. alo = cex - ahi;
  1900. c = splitter * bey;
  1901. bhi = c - (c - bey);
  1902. blo = bey - bhi;
  1903. t0 = alo * blo - (t1 - ahi * bhi - alo * bhi - ahi * blo);
  1904. _i = s0 - t0;
  1905. bvirt = s0 - _i;
  1906. bc$2[0] = s0 - (_i + bvirt) + (bvirt - t0);
  1907. _j = s1 + _i;
  1908. bvirt = _j - s1;
  1909. _0 = s1 - (_j - bvirt) + (_i - bvirt);
  1910. _i = _0 - t1;
  1911. bvirt = _0 - _i;
  1912. bc$2[1] = _0 - (_i + bvirt) + (bvirt - t1);
  1913. bc3 = _j + _i;
  1914. bvirt = bc3 - _j;
  1915. bc$2[2] = _j - (bc3 - bvirt) + (_i - bvirt);
  1916. bc$2[3] = bc3;
  1917. s1 = cex * dey;
  1918. c = splitter * cex;
  1919. ahi = c - (c - cex);
  1920. alo = cex - ahi;
  1921. c = splitter * dey;
  1922. bhi = c - (c - dey);
  1923. blo = dey - bhi;
  1924. s0 = alo * blo - (s1 - ahi * bhi - alo * bhi - ahi * blo);
  1925. t1 = dex * cey;
  1926. c = splitter * dex;
  1927. ahi = c - (c - dex);
  1928. alo = dex - ahi;
  1929. c = splitter * cey;
  1930. bhi = c - (c - cey);
  1931. blo = cey - bhi;
  1932. t0 = alo * blo - (t1 - ahi * bhi - alo * bhi - ahi * blo);
  1933. _i = s0 - t0;
  1934. bvirt = s0 - _i;
  1935. cd[0] = s0 - (_i + bvirt) + (bvirt - t0);
  1936. _j = s1 + _i;
  1937. bvirt = _j - s1;
  1938. _0 = s1 - (_j - bvirt) + (_i - bvirt);
  1939. _i = _0 - t1;
  1940. bvirt = _0 - _i;
  1941. cd[1] = _0 - (_i + bvirt) + (bvirt - t1);
  1942. cd3 = _j + _i;
  1943. bvirt = cd3 - _j;
  1944. cd[2] = _j - (cd3 - bvirt) + (_i - bvirt);
  1945. cd[3] = cd3;
  1946. s1 = dex * aey;
  1947. c = splitter * dex;
  1948. ahi = c - (c - dex);
  1949. alo = dex - ahi;
  1950. c = splitter * aey;
  1951. bhi = c - (c - aey);
  1952. blo = aey - bhi;
  1953. s0 = alo * blo - (s1 - ahi * bhi - alo * bhi - ahi * blo);
  1954. t1 = aex * dey;
  1955. c = splitter * aex;
  1956. ahi = c - (c - aex);
  1957. alo = aex - ahi;
  1958. c = splitter * dey;
  1959. bhi = c - (c - dey);
  1960. blo = dey - bhi;
  1961. t0 = alo * blo - (t1 - ahi * bhi - alo * bhi - ahi * blo);
  1962. _i = s0 - t0;
  1963. bvirt = s0 - _i;
  1964. da[0] = s0 - (_i + bvirt) + (bvirt - t0);
  1965. _j = s1 + _i;
  1966. bvirt = _j - s1;
  1967. _0 = s1 - (_j - bvirt) + (_i - bvirt);
  1968. _i = _0 - t1;
  1969. bvirt = _0 - _i;
  1970. da[1] = _0 - (_i + bvirt) + (bvirt - t1);
  1971. da3 = _j + _i;
  1972. bvirt = da3 - _j;
  1973. da[2] = _j - (da3 - bvirt) + (_i - bvirt);
  1974. da[3] = da3;
  1975. s1 = aex * cey;
  1976. c = splitter * aex;
  1977. ahi = c - (c - aex);
  1978. alo = aex - ahi;
  1979. c = splitter * cey;
  1980. bhi = c - (c - cey);
  1981. blo = cey - bhi;
  1982. s0 = alo * blo - (s1 - ahi * bhi - alo * bhi - ahi * blo);
  1983. t1 = cex * aey;
  1984. c = splitter * cex;
  1985. ahi = c - (c - cex);
  1986. alo = cex - ahi;
  1987. c = splitter * aey;
  1988. bhi = c - (c - aey);
  1989. blo = aey - bhi;
  1990. t0 = alo * blo - (t1 - ahi * bhi - alo * bhi - ahi * blo);
  1991. _i = s0 - t0;
  1992. bvirt = s0 - _i;
  1993. ac[0] = s0 - (_i + bvirt) + (bvirt - t0);
  1994. _j = s1 + _i;
  1995. bvirt = _j - s1;
  1996. _0 = s1 - (_j - bvirt) + (_i - bvirt);
  1997. _i = _0 - t1;
  1998. bvirt = _0 - _i;
  1999. ac[1] = _0 - (_i + bvirt) + (bvirt - t1);
  2000. ac3 = _j + _i;
  2001. bvirt = ac3 - _j;
  2002. ac[2] = _j - (ac3 - bvirt) + (_i - bvirt);
  2003. ac[3] = ac3;
  2004. s1 = bex * dey;
  2005. c = splitter * bex;
  2006. ahi = c - (c - bex);
  2007. alo = bex - ahi;
  2008. c = splitter * dey;
  2009. bhi = c - (c - dey);
  2010. blo = dey - bhi;
  2011. s0 = alo * blo - (s1 - ahi * bhi - alo * bhi - ahi * blo);
  2012. t1 = dex * bey;
  2013. c = splitter * dex;
  2014. ahi = c - (c - dex);
  2015. alo = dex - ahi;
  2016. c = splitter * bey;
  2017. bhi = c - (c - bey);
  2018. blo = bey - bhi;
  2019. t0 = alo * blo - (t1 - ahi * bhi - alo * bhi - ahi * blo);
  2020. _i = s0 - t0;
  2021. bvirt = s0 - _i;
  2022. bd[0] = s0 - (_i + bvirt) + (bvirt - t0);
  2023. _j = s1 + _i;
  2024. bvirt = _j - s1;
  2025. _0 = s1 - (_j - bvirt) + (_i - bvirt);
  2026. _i = _0 - t1;
  2027. bvirt = _0 - _i;
  2028. bd[1] = _0 - (_i + bvirt) + (bvirt - t1);
  2029. bd3 = _j + _i;
  2030. bvirt = bd3 - _j;
  2031. bd[2] = _j - (bd3 - bvirt) + (_i - bvirt);
  2032. bd[3] = bd3;
  2033. const finlen = sum(
  2034. sum(
  2035. negate(liftadapt(bc$2, cd, bd, dez, bez, -cez, aex, aey, aez, adet), adet), adet,
  2036. liftadapt(cd, da, ac, aez, cez, dez, bex, bey, bez, bdet), bdet, abdet), abdet,
  2037. sum(
  2038. negate(liftadapt(da, ab$2, bd, bez, dez, aez, cex, cey, cez, cdet), cdet), cdet,
  2039. liftadapt(ab$2, bc$2, ac, cez, aez, -bez, dex, dey, dez, ddet), ddet, cddet), cddet, fin$2);
  2040. let det = estimate(finlen, fin$2);
  2041. let errbound = isperrboundB * permanent;
  2042. if (det >= errbound || -det >= errbound) {
  2043. return det;
  2044. }
  2045. bvirt = ax - aex;
  2046. aextail = ax - (aex + bvirt) + (bvirt - ex);
  2047. bvirt = ay - aey;
  2048. aeytail = ay - (aey + bvirt) + (bvirt - ey);
  2049. bvirt = az - aez;
  2050. aeztail = az - (aez + bvirt) + (bvirt - ez);
  2051. bvirt = bx - bex;
  2052. bextail = bx - (bex + bvirt) + (bvirt - ex);
  2053. bvirt = by - bey;
  2054. beytail = by - (bey + bvirt) + (bvirt - ey);
  2055. bvirt = bz - bez;
  2056. beztail = bz - (bez + bvirt) + (bvirt - ez);
  2057. bvirt = cx - cex;
  2058. cextail = cx - (cex + bvirt) + (bvirt - ex);
  2059. bvirt = cy - cey;
  2060. ceytail = cy - (cey + bvirt) + (bvirt - ey);
  2061. bvirt = cz - cez;
  2062. ceztail = cz - (cez + bvirt) + (bvirt - ez);
  2063. bvirt = dx - dex;
  2064. dextail = dx - (dex + bvirt) + (bvirt - ex);
  2065. bvirt = dy - dey;
  2066. deytail = dy - (dey + bvirt) + (bvirt - ey);
  2067. bvirt = dz - dez;
  2068. deztail = dz - (dez + bvirt) + (bvirt - ez);
  2069. if (aextail === 0 && aeytail === 0 && aeztail === 0 &&
  2070. bextail === 0 && beytail === 0 && beztail === 0 &&
  2071. cextail === 0 && ceytail === 0 && ceztail === 0 &&
  2072. dextail === 0 && deytail === 0 && deztail === 0) {
  2073. return det;
  2074. }
  2075. errbound = isperrboundC * permanent + resulterrbound * Math.abs(det);
  2076. const abeps = (aex * beytail + bey * aextail) - (aey * bextail + bex * aeytail);
  2077. const bceps = (bex * ceytail + cey * bextail) - (bey * cextail + cex * beytail);
  2078. const cdeps = (cex * deytail + dey * cextail) - (cey * dextail + dex * ceytail);
  2079. const daeps = (dex * aeytail + aey * dextail) - (dey * aextail + aex * deytail);
  2080. const aceps = (aex * ceytail + cey * aextail) - (aey * cextail + cex * aeytail);
  2081. const bdeps = (bex * deytail + dey * bextail) - (bey * dextail + dex * beytail);
  2082. det +=
  2083. (((bex * bex + bey * bey + bez * bez) * ((cez * daeps + dez * aceps + aez * cdeps) +
  2084. (ceztail * da3 + deztail * ac3 + aeztail * cd3)) + (dex * dex + dey * dey + dez * dez) *
  2085. ((aez * bceps - bez * aceps + cez * abeps) + (aeztail * bc3 - beztail * ac3 + ceztail * ab3))) -
  2086. ((aex * aex + aey * aey + aez * aez) * ((bez * cdeps - cez * bdeps + dez * bceps) +
  2087. (beztail * cd3 - ceztail * bd3 + deztail * bc3)) + (cex * cex + cey * cey + cez * cez) *
  2088. ((dez * abeps + aez * bdeps + bez * daeps) + (deztail * ab3 + aeztail * bd3 + beztail * da3)))) +
  2089. 2 * (((bex * bextail + bey * beytail + bez * beztail) * (cez * da3 + dez * ac3 + aez * cd3) +
  2090. (dex * dextail + dey * deytail + dez * deztail) * (aez * bc3 - bez * ac3 + cez * ab3)) -
  2091. ((aex * aextail + aey * aeytail + aez * aeztail) * (bez * cd3 - cez * bd3 + dez * bc3) +
  2092. (cex * cextail + cey * ceytail + cez * ceztail) * (dez * ab3 + aez * bd3 + bez * da3)));
  2093. if (det >= errbound || -det >= errbound) {
  2094. return det;
  2095. }
  2096. return insphereexact(ax, ay, az, bx, by, bz, cx, cy, cz, dx, dy, dz, ex, ey, ez);
  2097. }
  2098. function insphere(ax, ay, az, bx, by, bz, cx, cy, cz, dx, dy, dz, ex, ey, ez) {
  2099. const aex = ax - ex;
  2100. const bex = bx - ex;
  2101. const cex = cx - ex;
  2102. const dex = dx - ex;
  2103. const aey = ay - ey;
  2104. const bey = by - ey;
  2105. const cey = cy - ey;
  2106. const dey = dy - ey;
  2107. const aez = az - ez;
  2108. const bez = bz - ez;
  2109. const cez = cz - ez;
  2110. const dez = dz - ez;
  2111. const aexbey = aex * bey;
  2112. const bexaey = bex * aey;
  2113. const ab = aexbey - bexaey;
  2114. const bexcey = bex * cey;
  2115. const cexbey = cex * bey;
  2116. const bc = bexcey - cexbey;
  2117. const cexdey = cex * dey;
  2118. const dexcey = dex * cey;
  2119. const cd = cexdey - dexcey;
  2120. const dexaey = dex * aey;
  2121. const aexdey = aex * dey;
  2122. const da = dexaey - aexdey;
  2123. const aexcey = aex * cey;
  2124. const cexaey = cex * aey;
  2125. const ac = aexcey - cexaey;
  2126. const bexdey = bex * dey;
  2127. const dexbey = dex * bey;
  2128. const bd = bexdey - dexbey;
  2129. const abc = aez * bc - bez * ac + cez * ab;
  2130. const bcd = bez * cd - cez * bd + dez * bc;
  2131. const cda = cez * da + dez * ac + aez * cd;
  2132. const dab = dez * ab + aez * bd + bez * da;
  2133. const alift = aex * aex + aey * aey + aez * aez;
  2134. const blift = bex * bex + bey * bey + bez * bez;
  2135. const clift = cex * cex + cey * cey + cez * cez;
  2136. const dlift = dex * dex + dey * dey + dez * dez;
  2137. const det = (clift * dab - dlift * abc) + (alift * bcd - blift * cda);
  2138. const aezplus = Math.abs(aez);
  2139. const bezplus = Math.abs(bez);
  2140. const cezplus = Math.abs(cez);
  2141. const dezplus = Math.abs(dez);
  2142. const aexbeyplus = Math.abs(aexbey);
  2143. const bexaeyplus = Math.abs(bexaey);
  2144. const bexceyplus = Math.abs(bexcey);
  2145. const cexbeyplus = Math.abs(cexbey);
  2146. const cexdeyplus = Math.abs(cexdey);
  2147. const dexceyplus = Math.abs(dexcey);
  2148. const dexaeyplus = Math.abs(dexaey);
  2149. const aexdeyplus = Math.abs(aexdey);
  2150. const aexceyplus = Math.abs(aexcey);
  2151. const cexaeyplus = Math.abs(cexaey);
  2152. const bexdeyplus = Math.abs(bexdey);
  2153. const dexbeyplus = Math.abs(dexbey);
  2154. const permanent =
  2155. ((cexdeyplus + dexceyplus) * bezplus + (dexbeyplus + bexdeyplus) * cezplus + (bexceyplus + cexbeyplus) * dezplus) * alift +
  2156. ((dexaeyplus + aexdeyplus) * cezplus + (aexceyplus + cexaeyplus) * dezplus + (cexdeyplus + dexceyplus) * aezplus) * blift +
  2157. ((aexbeyplus + bexaeyplus) * dezplus + (bexdeyplus + dexbeyplus) * aezplus + (dexaeyplus + aexdeyplus) * bezplus) * clift +
  2158. ((bexceyplus + cexbeyplus) * aezplus + (cexaeyplus + aexceyplus) * bezplus + (aexbeyplus + bexaeyplus) * cezplus) * dlift;
  2159. const errbound = isperrboundA * permanent;
  2160. if (det > errbound || -det > errbound) {
  2161. return det;
  2162. }
  2163. return -insphereadapt(ax, ay, az, bx, by, bz, cx, cy, cz, dx, dy, dz, ex, ey, ez, permanent);
  2164. }
  2165. function inspherefast(pax, pay, paz, pbx, pby, pbz, pcx, pcy, pcz, pdx, pdy, pdz, pex, pey, pez) {
  2166. const aex = pax - pex;
  2167. const bex = pbx - pex;
  2168. const cex = pcx - pex;
  2169. const dex = pdx - pex;
  2170. const aey = pay - pey;
  2171. const bey = pby - pey;
  2172. const cey = pcy - pey;
  2173. const dey = pdy - pey;
  2174. const aez = paz - pez;
  2175. const bez = pbz - pez;
  2176. const cez = pcz - pez;
  2177. const dez = pdz - pez;
  2178. const ab = aex * bey - bex * aey;
  2179. const bc = bex * cey - cex * bey;
  2180. const cd = cex * dey - dex * cey;
  2181. const da = dex * aey - aex * dey;
  2182. const ac = aex * cey - cex * aey;
  2183. const bd = bex * dey - dex * bey;
  2184. const abc = aez * bc - bez * ac + cez * ab;
  2185. const bcd = bez * cd - cez * bd + dez * bc;
  2186. const cda = cez * da + dez * ac + aez * cd;
  2187. const dab = dez * ab + aez * bd + bez * da;
  2188. const alift = aex * aex + aey * aey + aez * aez;
  2189. const blift = bex * bex + bey * bey + bez * bez;
  2190. const clift = cex * cex + cey * cey + cez * cez;
  2191. const dlift = dex * dex + dey * dey + dez * dez;
  2192. return (clift * dab - dlift * abc) + (alift * bcd - blift * cda);
  2193. }
  2194. exports.incircle = incircle;
  2195. exports.incirclefast = incirclefast;
  2196. exports.insphere = insphere;
  2197. exports.inspherefast = inspherefast;
  2198. exports.orient2d = orient2d;
  2199. exports.orient2dfast = orient2dfast;
  2200. exports.orient3d = orient3d;
  2201. exports.orient3dfast = orient3dfast;
  2202. Object.defineProperty(exports, '__esModule', { value: true });
  2203. }));