123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339 |
- "use strict";
- (function e(t, n, r) {
- function s(o, u) {
- if (!n[o]) {
- if (!t[o]) {
- var a = typeof require == "function" && require;if (!u && a) return a(o, !0);if (i) return i(o, !0);var f = new Error("Cannot find module '" + o + "'");throw f.code = "MODULE_NOT_FOUND", f;
- }var l = n[o] = { exports: {} };t[o][0].call(l.exports, function (e) {
- var n = t[o][1][e];return s(n ? n : e);
- }, l, l.exports, e, t, n, r);
- }return n[o].exports;
- }var i = typeof require == "function" && require;for (var o = 0; o < r.length; o++) {
- s(r[o]);
- }return s;
- })({ 1: [function (require, module, exports) {
- "use strict";
- (function () {
- var root = this;
- var previous_skmeans = root.skmeans;
- var skmeans = require('./main.js');
- if (typeof exports !== 'undefined') {
- if (typeof module !== 'undefined' && module.exports) {
- exports = module.exports = skmeans;
- }
- exports.skmeans = skmeans;
- }
- if (typeof window !== 'undefined') {
- window.skmeans = skmeans;
- }
- }).call(this);
- }, { "./main.js": 4 }], 2: [function (require, module, exports) {
- module.exports = {
- /**
- * Euclidean distance
- */
- eudist: function eudist(v1, v2, sqrt) {
- var len = v1.length;
- var sum = 0;
- for (var i = 0; i < len; i++) {
- var d = (v1[i] || 0) - (v2[i] || 0);
- sum += d * d;
- }
- // Square root not really needed
- return sqrt ? Math.sqrt(sum) : sum;
- },
- mandist: function mandist(v1, v2, sqrt) {
- var len = v1.length;
- var sum = 0;
- for (var i = 0; i < len; i++) {
- sum += Math.abs((v1[i] || 0) - (v2[i] || 0));
- }
- // Square root not really needed
- return sqrt ? Math.sqrt(sum) : sum;
- },
- /**
- * Unidimensional distance
- */
- dist: function dist(v1, v2, sqrt) {
- var d = Math.abs(v1 - v2);
- return sqrt ? d : d * d;
- }
- };
- }, {}], 3: [function (require, module, exports) {
- var Distance = require("./distance.js"),
- eudist = Distance.eudist,
- dist = Distance.dist;
- module.exports = {
- kmrand: function kmrand(data, k) {
- var map = {},
- ks = [],
- t = k << 2;
- var len = data.length;
- var multi = data[0].length > 0;
- while (ks.length < k && t-- > 0) {
- var d = data[Math.floor(Math.random() * len)];
- var key = multi ? d.join("_") : "" + d;
- if (!map[key]) {
- map[key] = true;
- ks.push(d);
- }
- }
- if (ks.length < k) throw new Error("Error initializating clusters");else return ks;
- },
- /**
- * K-means++ initial centroid selection
- */
- kmpp: function kmpp(data, k) {
- var distance = data[0].length ? eudist : dist;
- var ks = [],
- len = data.length;
- var multi = data[0].length > 0;
- var map = {};
- // First random centroid
- var c = data[Math.floor(Math.random() * len)];
- var key = multi ? c.join("_") : "" + c;
- ks.push(c);
- map[key] = true;
- // Retrieve next centroids
- while (ks.length < k) {
- // Min Distances between current centroids and data points
- var dists = [],
- lk = ks.length;
- var dsum = 0,
- prs = [];
- for (var i = 0; i < len; i++) {
- var min = Infinity;
- for (var j = 0; j < lk; j++) {
- var _dist = distance(data[i], ks[j]);
- if (_dist <= min) min = _dist;
- }
- dists[i] = min;
- }
- // Sum all min distances
- for (var _i = 0; _i < len; _i++) {
- dsum += dists[_i];
- }
- // Probabilities and cummulative prob (cumsum)
- for (var _i2 = 0; _i2 < len; _i2++) {
- prs[_i2] = { i: _i2, v: data[_i2], pr: dists[_i2] / dsum, cs: 0 };
- }
- // Sort Probabilities
- prs.sort(function (a, b) {
- return a.pr - b.pr;
- });
- // Cummulative Probabilities
- prs[0].cs = prs[0].pr;
- for (var _i3 = 1; _i3 < len; _i3++) {
- prs[_i3].cs = prs[_i3 - 1].cs + prs[_i3].pr;
- }
- // Randomize
- var rnd = Math.random();
- // Gets only the items whose cumsum >= rnd
- var idx = 0;
- while (idx < len - 1 && prs[idx++].cs < rnd) {}
- ks.push(prs[idx - 1].v);
- /*
- let done = false;
- while(!done) {
- // this is our new centroid
- c = prs[idx-1].v
- key = multi? c.join("_") : `${c}`;
- if(!map[key]) {
- map[key] = true;
- ks.push(c);
- done = true;
- }
- else {
- idx++;
- }
- }
- */
- }
- return ks;
- }
- };
- }, { "./distance.js": 2 }], 4: [function (require, module, exports) {
- /*jshint esversion: 6 */
- var Distance = require("./distance.js"),
- ClusterInit = require("./kinit.js"),
- eudist = Distance.eudist,
- mandist = Distance.mandist,
- dist = Distance.dist,
- kmrand = ClusterInit.kmrand,
- kmpp = ClusterInit.kmpp;
- var MAX = 10000;
- /**
- * Inits an array with values
- */
- function init(len, val, v) {
- v = v || [];
- for (var i = 0; i < len; i++) {
- v[i] = val;
- }return v;
- }
- function skmeans(data, k, initial, maxit) {
- var ks = [],
- old = [],
- idxs = [],
- dist = [];
- var conv = false,
- it = maxit || MAX;
- var len = data.length,
- vlen = data[0].length,
- multi = vlen > 0;
- var count = [];
- if (!initial) {
- var _idxs = {};
- while (ks.length < k) {
- var idx = Math.floor(Math.random() * len);
- if (!_idxs[idx]) {
- _idxs[idx] = true;
- ks.push(data[idx]);
- }
- }
- } else if (initial == "kmrand") {
- ks = kmrand(data, k);
- } else if (initial == "kmpp") {
- ks = kmpp(data, k);
- } else {
- ks = initial;
- }
- do {
- // Reset k count
- init(k, 0, count);
- // For each value in data, find the nearest centroid
- for (var i = 0; i < len; i++) {
- var min = Infinity,
- _idx = 0;
- for (var j = 0; j < k; j++) {
- // Multidimensional or unidimensional
- var dist = multi ? eudist(data[i], ks[j]) : Math.abs(data[i] - ks[j]);
- if (dist <= min) {
- min = dist;
- _idx = j;
- }
- }
- idxs[i] = _idx; // Index of the selected centroid for that value
- count[_idx]++; // Number of values for this centroid
- }
- // Recalculate centroids
- var sum = [],
- old = [],
- dif = 0;
- for (var _j = 0; _j < k; _j++) {
- // Multidimensional or unidimensional
- sum[_j] = multi ? init(vlen, 0, sum[_j]) : 0;
- old[_j] = ks[_j];
- }
- // If multidimensional
- if (multi) {
- for (var _j2 = 0; _j2 < k; _j2++) {
- ks[_j2] = [];
- } // Sum values and count for each centroid
- for (var _i4 = 0; _i4 < len; _i4++) {
- var _idx2 = idxs[_i4],
- // Centroid for that item
- vsum = sum[_idx2],
- // Sum values for this centroid
- vect = data[_i4]; // Current vector
- // Accumulate value on the centroid for current vector
- for (var h = 0; h < vlen; h++) {
- vsum[h] += vect[h];
- }
- }
- // Calculate the average for each centroid
- conv = true;
- for (var _j3 = 0; _j3 < k; _j3++) {
- var ksj = ks[_j3],
- // Current centroid
- sumj = sum[_j3],
- // Accumulated centroid values
- oldj = old[_j3],
- // Old centroid value
- cj = count[_j3]; // Number of elements for this centroid
- // New average
- for (var _h = 0; _h < vlen; _h++) {
- ksj[_h] = sumj[_h] / cj || 0; // New centroid
- }
- // Find if centroids have moved
- if (conv) {
- for (var _h2 = 0; _h2 < vlen; _h2++) {
- if (oldj[_h2] != ksj[_h2]) {
- conv = false;
- break;
- }
- }
- }
- }
- }
- // If unidimensional
- else {
- // Sum values and count for each centroid
- for (var _i5 = 0; _i5 < len; _i5++) {
- var _idx3 = idxs[_i5];
- sum[_idx3] += data[_i5];
- }
- // Calculate the average for each centroid
- for (var _j4 = 0; _j4 < k; _j4++) {
- ks[_j4] = sum[_j4] / count[_j4] || 0; // New centroid
- }
- // Find if centroids have moved
- conv = true;
- for (var _j5 = 0; _j5 < k; _j5++) {
- if (old[_j5] != ks[_j5]) {
- conv = false;
- break;
- }
- }
- }
- conv = conv || --it <= 0;
- } while (!conv);
- return {
- it: MAX - it,
- k: k,
- idxs: idxs,
- centroids: ks
- };
- }
- module.exports = skmeans;
- }, { "./distance.js": 2, "./kinit.js": 3 }] }, {}, [1]);
- //# sourceMappingURL=skmeans.js.map
|