123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263 |
- uniform sampler2D u_noiseTexture;
- uniform vec3 u_noiseTextureDimensions;
- uniform float u_noiseDetail;
- varying vec2 v_offset;
- varying vec3 v_maximumSize;
- varying vec4 v_color;
- varying float v_slice;
- varying float v_brightness;
- float wrap(float value, float rangeLength) {
- if(value < 0.0) {
- float absValue = abs(value);
- float modValue = mod(absValue, rangeLength);
- return mod(rangeLength - modValue, rangeLength);
- }
- return mod(value, rangeLength);
- }
- vec3 wrapVec(vec3 value, float rangeLength) {
- return vec3(wrap(value.x, rangeLength),
- wrap(value.y, rangeLength),
- wrap(value.z, rangeLength));
- }
- float textureSliceWidth = u_noiseTextureDimensions.x;
- float noiseTextureRows = u_noiseTextureDimensions.y;
- float inverseNoiseTextureRows = u_noiseTextureDimensions.z;
- float textureSliceWidthSquared = textureSliceWidth * textureSliceWidth;
- vec2 inverseNoiseTextureDimensions = vec2(noiseTextureRows / textureSliceWidthSquared,
- inverseNoiseTextureRows / textureSliceWidth);
- vec2 voxelToUV(vec3 voxelIndex) {
- vec3 wrappedIndex = wrapVec(voxelIndex, textureSliceWidth);
- float column = mod(wrappedIndex.z, textureSliceWidth * inverseNoiseTextureRows);
- float row = floor(wrappedIndex.z / textureSliceWidth * noiseTextureRows);
- float xPixelCoord = wrappedIndex.x + column * textureSliceWidth;
- float yPixelCoord = wrappedIndex.y + row * textureSliceWidth;
- return vec2(xPixelCoord, yPixelCoord) * inverseNoiseTextureDimensions;
- }
- // Interpolate a voxel with its neighbor (along the positive X-axis)
- vec4 lerpSamplesX(vec3 voxelIndex, float x) {
- vec2 uv0 = voxelToUV(voxelIndex);
- vec2 uv1 = voxelToUV(voxelIndex + vec3(1.0, 0.0, 0.0));
- vec4 sample0 = texture2D(u_noiseTexture, uv0);
- vec4 sample1 = texture2D(u_noiseTexture, uv1);
- return mix(sample0, sample1, x);
- }
- vec4 sampleNoiseTexture(vec3 position) {
- vec3 recenteredPos = position + vec3(textureSliceWidth / 2.0);
- vec3 lerpValue = fract(recenteredPos);
- vec3 voxelIndex = floor(recenteredPos);
- vec4 xLerp00 = lerpSamplesX(voxelIndex, lerpValue.x);
- vec4 xLerp01 = lerpSamplesX(voxelIndex + vec3(0.0, 0.0, 1.0), lerpValue.x);
- vec4 xLerp10 = lerpSamplesX(voxelIndex + vec3(0.0, 1.0, 0.0), lerpValue.x);
- vec4 xLerp11 = lerpSamplesX(voxelIndex + vec3(0.0, 1.0, 1.0), lerpValue.x);
- vec4 yLerp0 = mix(xLerp00, xLerp10, lerpValue.y);
- vec4 yLerp1 = mix(xLerp01, xLerp11, lerpValue.y);
- return mix(yLerp0, yLerp1, lerpValue.z);
- }
- // Intersection with a unit sphere with radius 0.5 at center (0, 0, 0).
- bool intersectSphere(vec3 origin, vec3 dir, float slice,
- out vec3 point, out vec3 normal) {
- float A = dot(dir, dir);
- float B = dot(origin, dir);
- float C = dot(origin, origin) - 0.25;
- float discriminant = (B * B) - (A * C);
- if(discriminant < 0.0) {
- return false;
- }
- float root = sqrt(discriminant);
- float t = (-B - root) / A;
- if(t < 0.0) {
- t = (-B + root) / A;
- }
- point = origin + t * dir;
- if(slice >= 0.0) {
- point.z = (slice / 2.0) - 0.5;
- if(length(point) > 0.5) {
- return false;
- }
- }
- normal = normalize(point);
- point -= czm_epsilon2 * normal;
- return true;
- }
- // Transforms the ray origin and direction into unit sphere space,
- // then transforms the result back into the ellipsoid's space.
- bool intersectEllipsoid(vec3 origin, vec3 dir, vec3 center, vec3 scale, float slice,
- out vec3 point, out vec3 normal) {
- if(scale.x <= 0.01 || scale.y < 0.01 || scale.z < 0.01) {
- return false;
- }
- vec3 o = (origin - center) / scale;
- vec3 d = dir / scale;
- vec3 p, n;
- bool intersected = intersectSphere(o, d, slice, p, n);
- if(intersected) {
- point = (p * scale) + center;
- normal = n;
- }
- return intersected;
- }
- // Assume that if phase shift is being called for octave i,
- // the frequency is of i - 1. This saves us from doing extra
- // division / multiplication operations.
- vec2 phaseShift2D(vec2 p, vec2 freq) {
- return (czm_pi / 2.0) * sin(freq.yx * p.yx);
- }
- vec2 phaseShift3D(vec3 p, vec2 freq) {
- return phaseShift2D(p.xy, freq) + czm_pi * vec2(sin(freq.x * p.z));
- }
- // The cloud texture function derived from Gardner's 1985 paper,
- // "Visual Simulation of Clouds."
- // https://www.cs.drexel.edu/~david/Classes/Papers/p297-gardner.pdf
- const float T0 = 0.6; // contrast of the texture pattern
- const float k = 0.1; // computed to produce a maximum value of 1
- const float C0 = 0.8; // coefficient
- const float FX0 = 0.6; // frequency X
- const float FY0 = 0.6; // frequency Y
- const int octaves = 5;
- float T(vec3 point) {
- vec2 sum = vec2(0.0);
- float Ci = C0;
- vec2 FXY = vec2(FX0, FY0);
- vec2 PXY = vec2(0.0);
- for(int i = 1; i <= octaves; i++) {
- PXY = phaseShift3D(point, FXY);
- Ci *= 0.707;
- FXY *= 2.0;
- vec2 sinTerm = sin(FXY * point.xy + PXY);
- sum += Ci * sinTerm + vec2(T0);
- }
- return k * sum.x * sum.y;
- }
- const float a = 0.5; // fraction of surface reflection due to ambient or scattered light,
- const float t = 0.4; // fraction of texture shading
- const float s = 0.25; // fraction of specular reflection
- float I(float Id, float Is, float It) {
- return (1.0 - a) * ((1.0 - t) * ((1.0 - s) * Id + s * Is) + t * It) + a;
- }
- const vec3 lightDir = normalize(vec3(0.2, -1.0, 0.7));
- vec4 drawCloud(vec3 rayOrigin, vec3 rayDir, vec3 cloudCenter, vec3 cloudScale, float cloudSlice,
- float brightness) {
- vec3 cloudPoint, cloudNormal;
- if(!intersectEllipsoid(rayOrigin, rayDir, cloudCenter, cloudScale, cloudSlice,
- cloudPoint, cloudNormal)) {
- return vec4(0.0);
- }
- float Id = clamp(dot(cloudNormal, -lightDir), 0.0, 1.0); // diffuse reflection
- float Is = max(pow(dot(-lightDir, -rayDir), 2.0), 0.0); // specular reflection
- float It = T(cloudPoint); // texture function
- float intensity = I(Id, Is, It);
- vec3 color = vec3(intensity * clamp(brightness, 0.1, 1.0));
- vec4 noise = sampleNoiseTexture(u_noiseDetail * cloudPoint);
- float W = noise.x;
- float W2 = noise.y;
- float W3 = noise.z;
- // The dot product between the cloud's normal and the ray's direction is greatest
- // in the center of the ellipsoid's surface. It decreases towards the edge.
- // Thus, it is used to blur the areas leading to the edges of the ellipsoid,
- // so that no harsh lines appear.
- // The first (and biggest) layer of worley noise is then subtracted from this.
- // The final result is scaled up so that the base cloud is not too translucent.
- float ndDot = clamp(dot(cloudNormal, -rayDir), 0.0, 1.0);
- float TR = pow(ndDot, 3.0) - W; // translucency
- TR *= 1.3;
- // Subtracting the second and third layers of worley noise is more complicated.
- // If these layers of noise were simply subtracted from the current translucency,
- // the shape derived from the first layer of noise would be completely deleted.
- // The erosion of this noise should thus be constricted to the edges of the cloud.
- // However, because the edges of the ellipsoid were already blurred away, mapping
- // the noise to (1.0 - ndDot) will have no impact on most of the cloud's appearance.
- // The value of (0.5 - ndDot) provides the best compromise.
- float minusDot = 0.5 - ndDot;
- // Even with the previous calculation, subtracting the second layer of wnoise
- // erode too much of the cloud. The addition of it, however, will detailed
- // volume to the cloud. As long as the noise is only added and not subtracted,
- // the results are aesthetically pleasing.
- // The minusDot product is mapped in a way that it is larger at the edges of
- // the ellipsoid, so a subtraction and min operation are used instead of
- // an addition and max one.
- TR -= min(minusDot * W2, 0.0);
- // The third level of worley noise is subtracted from the result, with some
- // modifications. First, a scalar is added to minusDot so that the noise
- // starts affecting the shape farther away from the center of the ellipsoid's
- // surface. Then, it is scaled down so its impact is not too intense.
- TR -= 0.8 * (minusDot + 0.25) * W3;
- // The texture function's shading does not correlate with the shape of the cloud
- // produced by the layers of noise, so an extra shading scalar is calculated.
- // The darkest areas of the cloud are assigned to be where the noise erodes
- // the cloud the most. This is then interpolated based on the translucency
- // and the diffuse shading term of that point in the cloud.
- float shading = mix(1.0 - 0.8 * W * W, 1.0, Id * TR);
- // To avoid values that are too dark, this scalar is increased by a small amount
- // and clamped so it never goes to zero.
- shading = clamp(shading + 0.2, 0.3, 1.0);
- // Finally, the contrast of the cloud's color is increased.
- vec3 finalColor = mix(vec3(0.5), shading * color, 1.15);
- return vec4(finalColor, clamp(TR, 0.0, 1.0)) * v_color;
- }
- void main() {
- #ifdef DEBUG_BILLBOARDS
- gl_FragColor = vec4(0.0, 0.5, 0.5, 1.0);
- #endif
- // To avoid calculations with high values,
- // we raycast from an arbitrarily smaller space.
- vec2 coordinate = v_maximumSize.xy * v_offset;
- vec3 ellipsoidScale = 0.82 * v_maximumSize;
- vec3 ellipsoidCenter = vec3(0.0);
- float zOffset = max(ellipsoidScale.z - 10.0, 0.0);
- vec3 eye = vec3(0, 0, -10.0 - zOffset);
- vec3 rayDir = normalize(vec3(coordinate, 1.0) - eye);
- vec3 rayOrigin = eye;
- #ifdef DEBUG_ELLIPSOIDS
- vec3 point, normal;
- if(intersectEllipsoid(rayOrigin, rayDir, ellipsoidCenter, ellipsoidScale, v_slice,
- point, normal)) {
- gl_FragColor = v_brightness * v_color;
- }
- #else
- #ifndef DEBUG_BILLBOARDS
- vec4 cloud = drawCloud(rayOrigin, rayDir,
- ellipsoidCenter, ellipsoidScale, v_slice, v_brightness);
- if(cloud.w < 0.01) {
- discard;
- }
- gl_FragColor = cloud;
- #endif
- #endif
- }
|