123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567 |
- /* This file is automatically rebuilt by the Cesium build process. */
- function quickselect(arr, k, left, right, compare) {
- quickselectStep(arr, k, left || 0, right || (arr.length - 1), compare || defaultCompare);
- }
- function quickselectStep(arr, k, left, right, compare) {
- while (right > left) {
- if (right - left > 600) {
- var n = right - left + 1;
- var m = k - left + 1;
- var z = Math.log(n);
- var s = 0.5 * Math.exp(2 * z / 3);
- var sd = 0.5 * Math.sqrt(z * s * (n - s) / n) * (m - n / 2 < 0 ? -1 : 1);
- var newLeft = Math.max(left, Math.floor(k - m * s / n + sd));
- var newRight = Math.min(right, Math.floor(k + (n - m) * s / n + sd));
- quickselectStep(arr, k, newLeft, newRight, compare);
- }
- var t = arr[k];
- var i = left;
- var j = right;
- swap(arr, left, k);
- if (compare(arr[right], t) > 0) swap(arr, left, right);
- while (i < j) {
- swap(arr, i, j);
- i++;
- j--;
- while (compare(arr[i], t) < 0) i++;
- while (compare(arr[j], t) > 0) j--;
- }
- if (compare(arr[left], t) === 0) swap(arr, left, j);
- else {
- j++;
- swap(arr, j, right);
- }
- if (j <= k) left = j + 1;
- if (k <= j) right = j - 1;
- }
- }
- function swap(arr, i, j) {
- var tmp = arr[i];
- arr[i] = arr[j];
- arr[j] = tmp;
- }
- function defaultCompare(a, b) {
- return a < b ? -1 : a > b ? 1 : 0;
- }
- class RBush {
- constructor(maxEntries = 9) {
- // max entries in a node is 9 by default; min node fill is 40% for best performance
- this._maxEntries = Math.max(4, maxEntries);
- this._minEntries = Math.max(2, Math.ceil(this._maxEntries * 0.4));
- this.clear();
- }
- all() {
- return this._all(this.data, []);
- }
- search(bbox) {
- let node = this.data;
- const result = [];
- if (!intersects(bbox, node)) return result;
- const toBBox = this.toBBox;
- const nodesToSearch = [];
- while (node) {
- for (let i = 0; i < node.children.length; i++) {
- const child = node.children[i];
- const childBBox = node.leaf ? toBBox(child) : child;
- if (intersects(bbox, childBBox)) {
- if (node.leaf) result.push(child);
- else if (contains(bbox, childBBox)) this._all(child, result);
- else nodesToSearch.push(child);
- }
- }
- node = nodesToSearch.pop();
- }
- return result;
- }
- collides(bbox) {
- let node = this.data;
- if (!intersects(bbox, node)) return false;
- const nodesToSearch = [];
- while (node) {
- for (let i = 0; i < node.children.length; i++) {
- const child = node.children[i];
- const childBBox = node.leaf ? this.toBBox(child) : child;
- if (intersects(bbox, childBBox)) {
- if (node.leaf || contains(bbox, childBBox)) return true;
- nodesToSearch.push(child);
- }
- }
- node = nodesToSearch.pop();
- }
- return false;
- }
- load(data) {
- if (!(data && data.length)) return this;
- if (data.length < this._minEntries) {
- for (let i = 0; i < data.length; i++) {
- this.insert(data[i]);
- }
- return this;
- }
- // recursively build the tree with the given data from scratch using OMT algorithm
- let node = this._build(data.slice(), 0, data.length - 1, 0);
- if (!this.data.children.length) {
- // save as is if tree is empty
- this.data = node;
- } else if (this.data.height === node.height) {
- // split root if trees have the same height
- this._splitRoot(this.data, node);
- } else {
- if (this.data.height < node.height) {
- // swap trees if inserted one is bigger
- const tmpNode = this.data;
- this.data = node;
- node = tmpNode;
- }
- // insert the small tree into the large tree at appropriate level
- this._insert(node, this.data.height - node.height - 1, true);
- }
- return this;
- }
- insert(item) {
- if (item) this._insert(item, this.data.height - 1);
- return this;
- }
- clear() {
- this.data = createNode([]);
- return this;
- }
- remove(item, equalsFn) {
- if (!item) return this;
- let node = this.data;
- const bbox = this.toBBox(item);
- const path = [];
- const indexes = [];
- let i, parent, goingUp;
- // depth-first iterative tree traversal
- while (node || path.length) {
- if (!node) { // go up
- node = path.pop();
- parent = path[path.length - 1];
- i = indexes.pop();
- goingUp = true;
- }
- if (node.leaf) { // check current node
- const index = findItem(item, node.children, equalsFn);
- if (index !== -1) {
- // item found, remove the item and condense tree upwards
- node.children.splice(index, 1);
- path.push(node);
- this._condense(path);
- return this;
- }
- }
- if (!goingUp && !node.leaf && contains(node, bbox)) { // go down
- path.push(node);
- indexes.push(i);
- i = 0;
- parent = node;
- node = node.children[0];
- } else if (parent) { // go right
- i++;
- node = parent.children[i];
- goingUp = false;
- } else node = null; // nothing found
- }
- return this;
- }
- toBBox(item) { return item; }
- compareMinX(a, b) { return a.minX - b.minX; }
- compareMinY(a, b) { return a.minY - b.minY; }
- toJSON() { return this.data; }
- fromJSON(data) {
- this.data = data;
- return this;
- }
- _all(node, result) {
- const nodesToSearch = [];
- while (node) {
- if (node.leaf) result.push(...node.children);
- else nodesToSearch.push(...node.children);
- node = nodesToSearch.pop();
- }
- return result;
- }
- _build(items, left, right, height) {
- const N = right - left + 1;
- let M = this._maxEntries;
- let node;
- if (N <= M) {
- // reached leaf level; return leaf
- node = createNode(items.slice(left, right + 1));
- calcBBox(node, this.toBBox);
- return node;
- }
- if (!height) {
- // target height of the bulk-loaded tree
- height = Math.ceil(Math.log(N) / Math.log(M));
- // target number of root entries to maximize storage utilization
- M = Math.ceil(N / Math.pow(M, height - 1));
- }
- node = createNode([]);
- node.leaf = false;
- node.height = height;
- // split the items into M mostly square tiles
- const N2 = Math.ceil(N / M);
- const N1 = N2 * Math.ceil(Math.sqrt(M));
- multiSelect(items, left, right, N1, this.compareMinX);
- for (let i = left; i <= right; i += N1) {
- const right2 = Math.min(i + N1 - 1, right);
- multiSelect(items, i, right2, N2, this.compareMinY);
- for (let j = i; j <= right2; j += N2) {
- const right3 = Math.min(j + N2 - 1, right2);
- // pack each entry recursively
- node.children.push(this._build(items, j, right3, height - 1));
- }
- }
- calcBBox(node, this.toBBox);
- return node;
- }
- _chooseSubtree(bbox, node, level, path) {
- while (true) {
- path.push(node);
- if (node.leaf || path.length - 1 === level) break;
- let minArea = Infinity;
- let minEnlargement = Infinity;
- let targetNode;
- for (let i = 0; i < node.children.length; i++) {
- const child = node.children[i];
- const area = bboxArea(child);
- const enlargement = enlargedArea(bbox, child) - area;
- // choose entry with the least area enlargement
- if (enlargement < minEnlargement) {
- minEnlargement = enlargement;
- minArea = area < minArea ? area : minArea;
- targetNode = child;
- } else if (enlargement === minEnlargement) {
- // otherwise choose one with the smallest area
- if (area < minArea) {
- minArea = area;
- targetNode = child;
- }
- }
- }
- node = targetNode || node.children[0];
- }
- return node;
- }
- _insert(item, level, isNode) {
- const bbox = isNode ? item : this.toBBox(item);
- const insertPath = [];
- // find the best node for accommodating the item, saving all nodes along the path too
- const node = this._chooseSubtree(bbox, this.data, level, insertPath);
- // put the item into the node
- node.children.push(item);
- extend(node, bbox);
- // split on node overflow; propagate upwards if necessary
- while (level >= 0) {
- if (insertPath[level].children.length > this._maxEntries) {
- this._split(insertPath, level);
- level--;
- } else break;
- }
- // adjust bboxes along the insertion path
- this._adjustParentBBoxes(bbox, insertPath, level);
- }
- // split overflowed node into two
- _split(insertPath, level) {
- const node = insertPath[level];
- const M = node.children.length;
- const m = this._minEntries;
- this._chooseSplitAxis(node, m, M);
- const splitIndex = this._chooseSplitIndex(node, m, M);
- const newNode = createNode(node.children.splice(splitIndex, node.children.length - splitIndex));
- newNode.height = node.height;
- newNode.leaf = node.leaf;
- calcBBox(node, this.toBBox);
- calcBBox(newNode, this.toBBox);
- if (level) insertPath[level - 1].children.push(newNode);
- else this._splitRoot(node, newNode);
- }
- _splitRoot(node, newNode) {
- // split root node
- this.data = createNode([node, newNode]);
- this.data.height = node.height + 1;
- this.data.leaf = false;
- calcBBox(this.data, this.toBBox);
- }
- _chooseSplitIndex(node, m, M) {
- let index;
- let minOverlap = Infinity;
- let minArea = Infinity;
- for (let i = m; i <= M - m; i++) {
- const bbox1 = distBBox(node, 0, i, this.toBBox);
- const bbox2 = distBBox(node, i, M, this.toBBox);
- const overlap = intersectionArea(bbox1, bbox2);
- const area = bboxArea(bbox1) + bboxArea(bbox2);
- // choose distribution with minimum overlap
- if (overlap < minOverlap) {
- minOverlap = overlap;
- index = i;
- minArea = area < minArea ? area : minArea;
- } else if (overlap === minOverlap) {
- // otherwise choose distribution with minimum area
- if (area < minArea) {
- minArea = area;
- index = i;
- }
- }
- }
- return index || M - m;
- }
- // sorts node children by the best axis for split
- _chooseSplitAxis(node, m, M) {
- const compareMinX = node.leaf ? this.compareMinX : compareNodeMinX;
- const compareMinY = node.leaf ? this.compareMinY : compareNodeMinY;
- const xMargin = this._allDistMargin(node, m, M, compareMinX);
- const yMargin = this._allDistMargin(node, m, M, compareMinY);
- // if total distributions margin value is minimal for x, sort by minX,
- // otherwise it's already sorted by minY
- if (xMargin < yMargin) node.children.sort(compareMinX);
- }
- // total margin of all possible split distributions where each node is at least m full
- _allDistMargin(node, m, M, compare) {
- node.children.sort(compare);
- const toBBox = this.toBBox;
- const leftBBox = distBBox(node, 0, m, toBBox);
- const rightBBox = distBBox(node, M - m, M, toBBox);
- let margin = bboxMargin(leftBBox) + bboxMargin(rightBBox);
- for (let i = m; i < M - m; i++) {
- const child = node.children[i];
- extend(leftBBox, node.leaf ? toBBox(child) : child);
- margin += bboxMargin(leftBBox);
- }
- for (let i = M - m - 1; i >= m; i--) {
- const child = node.children[i];
- extend(rightBBox, node.leaf ? toBBox(child) : child);
- margin += bboxMargin(rightBBox);
- }
- return margin;
- }
- _adjustParentBBoxes(bbox, path, level) {
- // adjust bboxes along the given tree path
- for (let i = level; i >= 0; i--) {
- extend(path[i], bbox);
- }
- }
- _condense(path) {
- // go through the path, removing empty nodes and updating bboxes
- for (let i = path.length - 1, siblings; i >= 0; i--) {
- if (path[i].children.length === 0) {
- if (i > 0) {
- siblings = path[i - 1].children;
- siblings.splice(siblings.indexOf(path[i]), 1);
- } else this.clear();
- } else calcBBox(path[i], this.toBBox);
- }
- }
- }
- function findItem(item, items, equalsFn) {
- if (!equalsFn) return items.indexOf(item);
- for (let i = 0; i < items.length; i++) {
- if (equalsFn(item, items[i])) return i;
- }
- return -1;
- }
- // calculate node's bbox from bboxes of its children
- function calcBBox(node, toBBox) {
- distBBox(node, 0, node.children.length, toBBox, node);
- }
- // min bounding rectangle of node children from k to p-1
- function distBBox(node, k, p, toBBox, destNode) {
- if (!destNode) destNode = createNode(null);
- destNode.minX = Infinity;
- destNode.minY = Infinity;
- destNode.maxX = -Infinity;
- destNode.maxY = -Infinity;
- for (let i = k; i < p; i++) {
- const child = node.children[i];
- extend(destNode, node.leaf ? toBBox(child) : child);
- }
- return destNode;
- }
- function extend(a, b) {
- a.minX = Math.min(a.minX, b.minX);
- a.minY = Math.min(a.minY, b.minY);
- a.maxX = Math.max(a.maxX, b.maxX);
- a.maxY = Math.max(a.maxY, b.maxY);
- return a;
- }
- function compareNodeMinX(a, b) { return a.minX - b.minX; }
- function compareNodeMinY(a, b) { return a.minY - b.minY; }
- function bboxArea(a) { return (a.maxX - a.minX) * (a.maxY - a.minY); }
- function bboxMargin(a) { return (a.maxX - a.minX) + (a.maxY - a.minY); }
- function enlargedArea(a, b) {
- return (Math.max(b.maxX, a.maxX) - Math.min(b.minX, a.minX)) *
- (Math.max(b.maxY, a.maxY) - Math.min(b.minY, a.minY));
- }
- function intersectionArea(a, b) {
- const minX = Math.max(a.minX, b.minX);
- const minY = Math.max(a.minY, b.minY);
- const maxX = Math.min(a.maxX, b.maxX);
- const maxY = Math.min(a.maxY, b.maxY);
- return Math.max(0, maxX - minX) *
- Math.max(0, maxY - minY);
- }
- function contains(a, b) {
- return a.minX <= b.minX &&
- a.minY <= b.minY &&
- b.maxX <= a.maxX &&
- b.maxY <= a.maxY;
- }
- function intersects(a, b) {
- return b.minX <= a.maxX &&
- b.minY <= a.maxY &&
- b.maxX >= a.minX &&
- b.maxY >= a.minY;
- }
- function createNode(children) {
- return {
- children,
- height: 1,
- leaf: true,
- minX: Infinity,
- minY: Infinity,
- maxX: -Infinity,
- maxY: -Infinity
- };
- }
- // sort an array so that items come in groups of n unsorted items, with groups sorted between each other;
- // combines selection algorithm with binary divide & conquer approach
- function multiSelect(arr, left, right, n, compare) {
- const stack = [left, right];
- while (stack.length) {
- right = stack.pop();
- left = stack.pop();
- if (right - left <= n) continue;
- const mid = left + Math.ceil((right - left) / n / 2) * n;
- quickselect(arr, mid, left, right, compare);
- stack.push(left, mid, mid, right);
- }
- }
- export { RBush as default };
|