| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140 | 
							- "use strict";
 
- var __importDefault = (this && this.__importDefault) || function (mod) {
 
-     return (mod && mod.__esModule) ? mod : { "default": mod };
 
- };
 
- Object.defineProperty(exports, "__esModule", { value: true });
 
- var center_mean_1 = __importDefault(require("@turf/center-mean"));
 
- var distance_1 = __importDefault(require("@turf/distance"));
 
- var centroid_1 = __importDefault(require("@turf/centroid"));
 
- var helpers_1 = require("@turf/helpers");
 
- var meta_1 = require("@turf/meta");
 
- /**
 
-  * Takes a {@link FeatureCollection} of points and calculates the median center,
 
-  * algorithimically. The median center is understood as the point that is
 
-  * requires the least total travel from all other points.
 
-  *
 
-  * Turfjs has four different functions for calculating the center of a set of
 
-  * data. Each is useful depending on circumstance.
 
-  *
 
-  * `@turf/center` finds the simple center of a dataset, by finding the
 
-  * midpoint between the extents of the data. That is, it divides in half the
 
-  * farthest east and farthest west point as well as the farthest north and
 
-  * farthest south.
 
-  *
 
-  * `@turf/center-of-mass` imagines that the dataset is a sheet of paper.
 
-  * The center of mass is where the sheet would balance on a fingertip.
 
-  *
 
-  * `@turf/center-mean` takes the averages of all the coordinates and
 
-  * produces a value that respects that. Unlike `@turf/center`, it is
 
-  * sensitive to clusters and outliers. It lands in the statistical middle of a
 
-  * dataset, not the geographical. It can also be weighted, meaning certain
 
-  * points are more important than others.
 
-  *
 
-  * `@turf/center-median` takes the mean center and tries to find, iteratively,
 
-  * a new point that requires the least amount of travel from all the points in
 
-  * the dataset. It is not as sensitive to outliers as `@turf/center-mean`, but it is
 
-  * attracted to clustered data. It, too, can be weighted.
 
-  *
 
-  * **Bibliography**
 
-  *
 
-  * Harold W. Kuhn and Robert E. Kuenne, “An Efficient Algorithm for the
 
-  * Numerical Solution of the Generalized Weber Problem in Spatial
 
-  * Economics,” _Journal of Regional Science_ 4, no. 2 (1962): 21–33,
 
-  * doi:{@link https://doi.org/10.1111/j.1467-9787.1962.tb00902.x}.
 
-  *
 
-  * James E. Burt, Gerald M. Barber, and David L. Rigby, _Elementary
 
-  * Statistics for Geographers_, 3rd ed., New York: The Guilford
 
-  * Press, 2009, 150–151.
 
-  *
 
-  * @name centerMedian
 
-  * @param {FeatureCollection<any>} features Any GeoJSON Feature Collection
 
-  * @param {Object} [options={}] Optional parameters
 
-  * @param {string} [options.weight] the property name used to weight the center
 
-  * @param {number} [options.tolerance=0.001] the difference in distance between candidate medians at which point the algorighim stops iterating.
 
-  * @param {number} [options.counter=10] how many attempts to find the median, should the tolerance be insufficient.
 
-  * @returns {Feature<Point>} The median center of the collection
 
-  * @example
 
-  * var points = turf.points([[0, 0], [1, 0], [0, 1], [5, 8]]);
 
-  * var medianCenter = turf.centerMedian(points);
 
-  *
 
-  * //addToMap
 
-  * var addToMap = [points, medianCenter]
 
-  */
 
- function centerMedian(features, options) {
 
-     if (options === void 0) { options = {}; }
 
-     // Optional params
 
-     options = options || {};
 
-     if (!helpers_1.isObject(options))
 
-         throw new Error("options is invalid");
 
-     var counter = options.counter || 10;
 
-     if (!helpers_1.isNumber(counter))
 
-         throw new Error("counter must be a number");
 
-     var weightTerm = options.weight;
 
-     // Calculate mean center:
 
-     var meanCenter = center_mean_1.default(features, { weight: options.weight });
 
-     // Calculate center of every feature:
 
-     var centroids = helpers_1.featureCollection([]);
 
-     meta_1.featureEach(features, function (feature) {
 
-         var _a;
 
-         centroids.features.push(centroid_1.default(feature, {
 
-             properties: { weight: (_a = feature.properties) === null || _a === void 0 ? void 0 : _a[weightTerm] },
 
-         }));
 
-     });
 
-     var properties = {
 
-         tolerance: options.tolerance,
 
-         medianCandidates: [],
 
-     };
 
-     return findMedian(meanCenter.geometry.coordinates, [0, 0], centroids, properties, counter);
 
- }
 
- /**
 
-  * Recursive function to find new candidate medians.
 
-  *
 
-  * @private
 
-  * @param {Position} candidateMedian current candidate median
 
-  * @param {Position} previousCandidate the previous candidate median
 
-  * @param {FeatureCollection<Point>} centroids the collection of centroids whose median we are determining
 
-  * @param {number} counter how many attempts to try before quitting.
 
-  * @returns {Feature<Point>} the median center of the dataset.
 
-  */
 
- function findMedian(candidateMedian, previousCandidate, centroids, properties, counter) {
 
-     var tolerance = properties.tolerance || 0.001;
 
-     var candidateXsum = 0;
 
-     var candidateYsum = 0;
 
-     var kSum = 0;
 
-     var centroidCount = 0;
 
-     meta_1.featureEach(centroids, function (theCentroid) {
 
-         var _a;
 
-         var weightValue = (_a = theCentroid.properties) === null || _a === void 0 ? void 0 : _a.weight;
 
-         var weight = weightValue === undefined || weightValue === null ? 1 : weightValue;
 
-         weight = Number(weight);
 
-         if (!helpers_1.isNumber(weight))
 
-             throw new Error("weight value must be a number");
 
-         if (weight > 0) {
 
-             centroidCount += 1;
 
-             var distanceFromCandidate = weight * distance_1.default(theCentroid, candidateMedian);
 
-             if (distanceFromCandidate === 0)
 
-                 distanceFromCandidate = 1;
 
-             var k = weight / distanceFromCandidate;
 
-             candidateXsum += theCentroid.geometry.coordinates[0] * k;
 
-             candidateYsum += theCentroid.geometry.coordinates[1] * k;
 
-             kSum += k;
 
-         }
 
-     });
 
-     if (centroidCount < 1)
 
-         throw new Error("no features to measure");
 
-     var candidateX = candidateXsum / kSum;
 
-     var candidateY = candidateYsum / kSum;
 
-     if (centroidCount === 1 ||
 
-         counter === 0 ||
 
-         (Math.abs(candidateX - previousCandidate[0]) < tolerance &&
 
-             Math.abs(candidateY - previousCandidate[1]) < tolerance)) {
 
-         return helpers_1.point([candidateX, candidateY], {
 
-             medianCandidates: properties.medianCandidates,
 
-         });
 
-     }
 
-     else {
 
-         properties.medianCandidates.push([candidateX, candidateY]);
 
-         return findMedian([candidateX, candidateY], candidateMedian, centroids, properties, counter - 1);
 
-     }
 
- }
 
- exports.default = centerMedian;
 
 
  |