| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139 | "use strict";var __importDefault = (this && this.__importDefault) || function (mod) {    return (mod && mod.__esModule) ? mod : { "default": mod };};Object.defineProperty(exports, "__esModule", { value: true });var distance_weight_1 = __importDefault(require("@turf/distance-weight"));var meta_1 = require("@turf/meta");/** * Moran's I measures patterns of attribute values associated with features. * The method reveal whether similar values tend to occur near each other, * or whether high or low values are interspersed. * * Moran's I > 0 means a clusterd pattern. * Moran's I < 0 means a dispersed pattern. * Moran's I = 0 means a random pattern. * * In order to test the significance of the result. The z score is calculated. * A positive enough z-score (ex. >1.96) indicates clustering, * while a negative enough z-score (ex. <-1.96) indicates a dispersed pattern. * * the z-score can be calculated based on a normal or random assumption. * * **Bibliography*** * * 1. [Moran's I](https://en.wikipedia.org/wiki/Moran%27s_I) * * 2. [pysal](http://pysal.readthedocs.io/en/latest/index.html) * * 3. Andy Mitchell, The ESRI Guide to GIS Analysis Volume 2: Spatial Measurements & Statistics. * * @name moranIndex * @param {FeatureCollection<any>} fc * @param {Object} options * @param {string} options.inputField the property name, must contain numeric values * @param {number} [options.threshold=100000] the distance threshold * @param {number} [options.p=2] the Minkowski p-norm distance parameter * @param {boolean} [options.binary=false] whether transfrom the distance to binary * @param {number} [options.alpha=-1] the distance decay parameter * @param {boolean} [options.standardization=true] wheter row standardization the distance * @returns {MoranIndex} * @example * * const bbox = [-65, 40, -63, 42]; * const dataset = turf.randomPoint(100, { bbox: bbox }); * * const result = turf.moranIndex(dataset, { *   inputField: 'CRIME', * }); */function default_1(fc, options) {    var inputField = options.inputField;    var threshold = options.threshold || 100000;    var p = options.p || 2;    var binary = options.binary || false;    var alpha = options.alpha || -1;    var standardization = options.standardization || true;    var weight = distance_weight_1.default(fc, {        alpha: alpha,        binary: binary,        p: p,        standardization: standardization,        threshold: threshold,    });    var y = [];    meta_1.featureEach(fc, function (feature) {        var feaProperties = feature.properties || {};        // validate inputField exists        y.push(feaProperties[inputField]);    });    var yMean = mean(y);    var yVar = variance(y);    var weightSum = 0;    var s0 = 0;    var s1 = 0;    var s2 = 0;    var n = weight.length;    // validate y.length is the same as weight.length    for (var i = 0; i < n; i++) {        var subS2 = 0;        for (var j = 0; j < n; j++) {            weightSum += weight[i][j] * (y[i] - yMean) * (y[j] - yMean);            s0 += weight[i][j];            s1 += Math.pow(weight[i][j] + weight[j][i], 2);            subS2 += weight[i][j] + weight[j][i];        }        s2 += Math.pow(subS2, 2);    }    s1 = 0.5 * s1;    var moranIndex = weightSum / s0 / yVar;    var expectedMoranIndex = -1 / (n - 1);    var vNum = n * n * s1 - n * s2 + 3 * (s0 * s0);    var vDen = (n - 1) * (n + 1) * (s0 * s0);    var vNorm = vNum / vDen - expectedMoranIndex * expectedMoranIndex;    var stdNorm = Math.sqrt(vNorm);    var zNorm = (moranIndex - expectedMoranIndex) / stdNorm;    return {        expectedMoranIndex: expectedMoranIndex,        moranIndex: moranIndex,        stdNorm: stdNorm,        zNorm: zNorm,    };}exports.default = default_1;/** * get mean of a list * @param {number[]} y * @returns {number} * */function mean(y) {    var sum = 0;    for (var _i = 0, y_1 = y; _i < y_1.length; _i++) {        var item = y_1[_i];        sum += item;    }    return sum / y.length;}/** * get variance of a list * @param {number[]} y * @returns {number} * */function variance(y) {    var yMean = mean(y);    var sum = 0;    for (var _i = 0, y_2 = y; _i < y_2.length; _i++) {        var item = y_2[_i];        sum += Math.pow(item - yMean, 2);    }    return sum / y.length;}/** * @typedef {Object} MoranIndex * @property {number} moranIndex the moran's Index of the observed feature set * @property {number} expectedMoranIndex the moran's Index of the random distribution * @property {number} stdNorm the standard devitaion of the random distribution * @property {number} zNorm the z-score of the observe samples with regard to the random distribution */
 |