| 12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505 | import Cartesian3 from "./Cartesian3.js";import Cartographic from "./Cartographic.js";import Check from "./Check.js";import defaultValue from "./defaultValue.js";import defined from "./defined.js";import Ellipsoid from "./Ellipsoid.js";import GeographicProjection from "./GeographicProjection.js";import Intersect from "./Intersect.js";import Interval from "./Interval.js";import CesiumMath from "./Math.js";import Matrix3 from "./Matrix3.js";import Matrix4 from "./Matrix4.js";import Rectangle from "./Rectangle.js";/** * A bounding sphere with a center and a radius. * @alias BoundingSphere * @constructor * * @param {Cartesian3} [center=Cartesian3.ZERO] The center of the bounding sphere. * @param {Number} [radius=0.0] The radius of the bounding sphere. * * @see AxisAlignedBoundingBox * @see BoundingRectangle * @see Packable */function BoundingSphere(center, radius) {  /**   * The center point of the sphere.   * @type {Cartesian3}   * @default {@link Cartesian3.ZERO}   */  this.center = Cartesian3.clone(defaultValue(center, Cartesian3.ZERO));  /**   * The radius of the sphere.   * @type {Number}   * @default 0.0   */  this.radius = defaultValue(radius, 0.0);}const fromPointsXMin = new Cartesian3();const fromPointsYMin = new Cartesian3();const fromPointsZMin = new Cartesian3();const fromPointsXMax = new Cartesian3();const fromPointsYMax = new Cartesian3();const fromPointsZMax = new Cartesian3();const fromPointsCurrentPos = new Cartesian3();const fromPointsScratch = new Cartesian3();const fromPointsRitterCenter = new Cartesian3();const fromPointsMinBoxPt = new Cartesian3();const fromPointsMaxBoxPt = new Cartesian3();const fromPointsNaiveCenterScratch = new Cartesian3();const volumeConstant = (4.0 / 3.0) * CesiumMath.PI;/** * Computes a tight-fitting bounding sphere enclosing a list of 3D Cartesian points. * The bounding sphere is computed by running two algorithms, a naive algorithm and * Ritter's algorithm. The smaller of the two spheres is used to ensure a tight fit. * * @param {Cartesian3[]} [positions] An array of points that the bounding sphere will enclose.  Each point must have <code>x</code>, <code>y</code>, and <code>z</code> properties. * @param {BoundingSphere} [result] The object onto which to store the result. * @returns {BoundingSphere} The modified result parameter or a new BoundingSphere instance if one was not provided. * * @see {@link http://help.agi.com/AGIComponents/html/BlogBoundingSphere.htm|Bounding Sphere computation article} */BoundingSphere.fromPoints = function (positions, result) {  if (!defined(result)) {    result = new BoundingSphere();  }  if (!defined(positions) || positions.length === 0) {    result.center = Cartesian3.clone(Cartesian3.ZERO, result.center);    result.radius = 0.0;    return result;  }  const currentPos = Cartesian3.clone(positions[0], fromPointsCurrentPos);  const xMin = Cartesian3.clone(currentPos, fromPointsXMin);  const yMin = Cartesian3.clone(currentPos, fromPointsYMin);  const zMin = Cartesian3.clone(currentPos, fromPointsZMin);  const xMax = Cartesian3.clone(currentPos, fromPointsXMax);  const yMax = Cartesian3.clone(currentPos, fromPointsYMax);  const zMax = Cartesian3.clone(currentPos, fromPointsZMax);  const numPositions = positions.length;  let i;  for (i = 1; i < numPositions; i++) {    Cartesian3.clone(positions[i], currentPos);    const x = currentPos.x;    const y = currentPos.y;    const z = currentPos.z;    // Store points containing the the smallest and largest components    if (x < xMin.x) {      Cartesian3.clone(currentPos, xMin);    }    if (x > xMax.x) {      Cartesian3.clone(currentPos, xMax);    }    if (y < yMin.y) {      Cartesian3.clone(currentPos, yMin);    }    if (y > yMax.y) {      Cartesian3.clone(currentPos, yMax);    }    if (z < zMin.z) {      Cartesian3.clone(currentPos, zMin);    }    if (z > zMax.z) {      Cartesian3.clone(currentPos, zMax);    }  }  // Compute x-, y-, and z-spans (Squared distances b/n each component's min. and max.).  const xSpan = Cartesian3.magnitudeSquared(    Cartesian3.subtract(xMax, xMin, fromPointsScratch)  );  const ySpan = Cartesian3.magnitudeSquared(    Cartesian3.subtract(yMax, yMin, fromPointsScratch)  );  const zSpan = Cartesian3.magnitudeSquared(    Cartesian3.subtract(zMax, zMin, fromPointsScratch)  );  // Set the diameter endpoints to the largest span.  let diameter1 = xMin;  let diameter2 = xMax;  let maxSpan = xSpan;  if (ySpan > maxSpan) {    maxSpan = ySpan;    diameter1 = yMin;    diameter2 = yMax;  }  if (zSpan > maxSpan) {    maxSpan = zSpan;    diameter1 = zMin;    diameter2 = zMax;  }  // Calculate the center of the initial sphere found by Ritter's algorithm  const ritterCenter = fromPointsRitterCenter;  ritterCenter.x = (diameter1.x + diameter2.x) * 0.5;  ritterCenter.y = (diameter1.y + diameter2.y) * 0.5;  ritterCenter.z = (diameter1.z + diameter2.z) * 0.5;  // Calculate the radius of the initial sphere found by Ritter's algorithm  let radiusSquared = Cartesian3.magnitudeSquared(    Cartesian3.subtract(diameter2, ritterCenter, fromPointsScratch)  );  let ritterRadius = Math.sqrt(radiusSquared);  // Find the center of the sphere found using the Naive method.  const minBoxPt = fromPointsMinBoxPt;  minBoxPt.x = xMin.x;  minBoxPt.y = yMin.y;  minBoxPt.z = zMin.z;  const maxBoxPt = fromPointsMaxBoxPt;  maxBoxPt.x = xMax.x;  maxBoxPt.y = yMax.y;  maxBoxPt.z = zMax.z;  const naiveCenter = Cartesian3.midpoint(    minBoxPt,    maxBoxPt,    fromPointsNaiveCenterScratch  );  // Begin 2nd pass to find naive radius and modify the ritter sphere.  let naiveRadius = 0;  for (i = 0; i < numPositions; i++) {    Cartesian3.clone(positions[i], currentPos);    // Find the furthest point from the naive center to calculate the naive radius.    const r = Cartesian3.magnitude(      Cartesian3.subtract(currentPos, naiveCenter, fromPointsScratch)    );    if (r > naiveRadius) {      naiveRadius = r;    }    // Make adjustments to the Ritter Sphere to include all points.    const oldCenterToPointSquared = Cartesian3.magnitudeSquared(      Cartesian3.subtract(currentPos, ritterCenter, fromPointsScratch)    );    if (oldCenterToPointSquared > radiusSquared) {      const oldCenterToPoint = Math.sqrt(oldCenterToPointSquared);      // Calculate new radius to include the point that lies outside      ritterRadius = (ritterRadius + oldCenterToPoint) * 0.5;      radiusSquared = ritterRadius * ritterRadius;      // Calculate center of new Ritter sphere      const oldToNew = oldCenterToPoint - ritterRadius;      ritterCenter.x =        (ritterRadius * ritterCenter.x + oldToNew * currentPos.x) /        oldCenterToPoint;      ritterCenter.y =        (ritterRadius * ritterCenter.y + oldToNew * currentPos.y) /        oldCenterToPoint;      ritterCenter.z =        (ritterRadius * ritterCenter.z + oldToNew * currentPos.z) /        oldCenterToPoint;    }  }  if (ritterRadius < naiveRadius) {    Cartesian3.clone(ritterCenter, result.center);    result.radius = ritterRadius;  } else {    Cartesian3.clone(naiveCenter, result.center);    result.radius = naiveRadius;  }  return result;};const defaultProjection = new GeographicProjection();const fromRectangle2DLowerLeft = new Cartesian3();const fromRectangle2DUpperRight = new Cartesian3();const fromRectangle2DSouthwest = new Cartographic();const fromRectangle2DNortheast = new Cartographic();/** * Computes a bounding sphere from a rectangle projected in 2D. * * @param {Rectangle} [rectangle] The rectangle around which to create a bounding sphere. * @param {Object} [projection=GeographicProjection] The projection used to project the rectangle into 2D. * @param {BoundingSphere} [result] The object onto which to store the result. * @returns {BoundingSphere} The modified result parameter or a new BoundingSphere instance if none was provided. */BoundingSphere.fromRectangle2D = function (rectangle, projection, result) {  return BoundingSphere.fromRectangleWithHeights2D(    rectangle,    projection,    0.0,    0.0,    result  );};/** * Computes a bounding sphere from a rectangle projected in 2D.  The bounding sphere accounts for the * object's minimum and maximum heights over the rectangle. * * @param {Rectangle} [rectangle] The rectangle around which to create a bounding sphere. * @param {Object} [projection=GeographicProjection] The projection used to project the rectangle into 2D. * @param {Number} [minimumHeight=0.0] The minimum height over the rectangle. * @param {Number} [maximumHeight=0.0] The maximum height over the rectangle. * @param {BoundingSphere} [result] The object onto which to store the result. * @returns {BoundingSphere} The modified result parameter or a new BoundingSphere instance if none was provided. */BoundingSphere.fromRectangleWithHeights2D = function (  rectangle,  projection,  minimumHeight,  maximumHeight,  result) {  if (!defined(result)) {    result = new BoundingSphere();  }  if (!defined(rectangle)) {    result.center = Cartesian3.clone(Cartesian3.ZERO, result.center);    result.radius = 0.0;    return result;  }  projection = defaultValue(projection, defaultProjection);  Rectangle.southwest(rectangle, fromRectangle2DSouthwest);  fromRectangle2DSouthwest.height = minimumHeight;  Rectangle.northeast(rectangle, fromRectangle2DNortheast);  fromRectangle2DNortheast.height = maximumHeight;  const lowerLeft = projection.project(    fromRectangle2DSouthwest,    fromRectangle2DLowerLeft  );  const upperRight = projection.project(    fromRectangle2DNortheast,    fromRectangle2DUpperRight  );  const width = upperRight.x - lowerLeft.x;  const height = upperRight.y - lowerLeft.y;  const elevation = upperRight.z - lowerLeft.z;  result.radius =    Math.sqrt(width * width + height * height + elevation * elevation) * 0.5;  const center = result.center;  center.x = lowerLeft.x + width * 0.5;  center.y = lowerLeft.y + height * 0.5;  center.z = lowerLeft.z + elevation * 0.5;  return result;};const fromRectangle3DScratch = [];/** * Computes a bounding sphere from a rectangle in 3D. The bounding sphere is created using a subsample of points * on the ellipsoid and contained in the rectangle. It may not be accurate for all rectangles on all types of ellipsoids. * * @param {Rectangle} [rectangle] The valid rectangle used to create a bounding sphere. * @param {Ellipsoid} [ellipsoid=Ellipsoid.WGS84] The ellipsoid used to determine positions of the rectangle. * @param {Number} [surfaceHeight=0.0] The height above the surface of the ellipsoid. * @param {BoundingSphere} [result] The object onto which to store the result. * @returns {BoundingSphere} The modified result parameter or a new BoundingSphere instance if none was provided. */BoundingSphere.fromRectangle3D = function (  rectangle,  ellipsoid,  surfaceHeight,  result) {  ellipsoid = defaultValue(ellipsoid, Ellipsoid.WGS84);  surfaceHeight = defaultValue(surfaceHeight, 0.0);  if (!defined(result)) {    result = new BoundingSphere();  }  if (!defined(rectangle)) {    result.center = Cartesian3.clone(Cartesian3.ZERO, result.center);    result.radius = 0.0;    return result;  }  const positions = Rectangle.subsample(    rectangle,    ellipsoid,    surfaceHeight,    fromRectangle3DScratch  );  return BoundingSphere.fromPoints(positions, result);};/** * Computes a tight-fitting bounding sphere enclosing a list of 3D points, where the points are * stored in a flat array in X, Y, Z, order.  The bounding sphere is computed by running two * algorithms, a naive algorithm and Ritter's algorithm. The smaller of the two spheres is used to * ensure a tight fit. * * @param {Number[]} [positions] An array of points that the bounding sphere will enclose.  Each point *        is formed from three elements in the array in the order X, Y, Z. * @param {Cartesian3} [center=Cartesian3.ZERO] The position to which the positions are relative, which need not be the *        origin of the coordinate system.  This is useful when the positions are to be used for *        relative-to-center (RTC) rendering. * @param {Number} [stride=3] The number of array elements per vertex.  It must be at least 3, but it may *        be higher.  Regardless of the value of this parameter, the X coordinate of the first position *        is at array index 0, the Y coordinate is at array index 1, and the Z coordinate is at array index *        2.  When stride is 3, the X coordinate of the next position then begins at array index 3.  If *        the stride is 5, however, two array elements are skipped and the next position begins at array *        index 5. * @param {BoundingSphere} [result] The object onto which to store the result. * @returns {BoundingSphere} The modified result parameter or a new BoundingSphere instance if one was not provided. * * @example * // Compute the bounding sphere from 3 positions, each specified relative to a center. * // In addition to the X, Y, and Z coordinates, the points array contains two additional * // elements per point which are ignored for the purpose of computing the bounding sphere. * const center = new Cesium.Cartesian3(1.0, 2.0, 3.0); * const points = [1.0, 2.0, 3.0, 0.1, 0.2, *               4.0, 5.0, 6.0, 0.1, 0.2, *               7.0, 8.0, 9.0, 0.1, 0.2]; * const sphere = Cesium.BoundingSphere.fromVertices(points, center, 5); * * @see {@link http://blogs.agi.com/insight3d/index.php/2008/02/04/a-bounding/|Bounding Sphere computation article} */BoundingSphere.fromVertices = function (positions, center, stride, result) {  if (!defined(result)) {    result = new BoundingSphere();  }  if (!defined(positions) || positions.length === 0) {    result.center = Cartesian3.clone(Cartesian3.ZERO, result.center);    result.radius = 0.0;    return result;  }  center = defaultValue(center, Cartesian3.ZERO);  stride = defaultValue(stride, 3);  //>>includeStart('debug', pragmas.debug);  Check.typeOf.number.greaterThanOrEquals("stride", stride, 3);  //>>includeEnd('debug');  const currentPos = fromPointsCurrentPos;  currentPos.x = positions[0] + center.x;  currentPos.y = positions[1] + center.y;  currentPos.z = positions[2] + center.z;  const xMin = Cartesian3.clone(currentPos, fromPointsXMin);  const yMin = Cartesian3.clone(currentPos, fromPointsYMin);  const zMin = Cartesian3.clone(currentPos, fromPointsZMin);  const xMax = Cartesian3.clone(currentPos, fromPointsXMax);  const yMax = Cartesian3.clone(currentPos, fromPointsYMax);  const zMax = Cartesian3.clone(currentPos, fromPointsZMax);  const numElements = positions.length;  let i;  for (i = 0; i < numElements; i += stride) {    const x = positions[i] + center.x;    const y = positions[i + 1] + center.y;    const z = positions[i + 2] + center.z;    currentPos.x = x;    currentPos.y = y;    currentPos.z = z;    // Store points containing the the smallest and largest components    if (x < xMin.x) {      Cartesian3.clone(currentPos, xMin);    }    if (x > xMax.x) {      Cartesian3.clone(currentPos, xMax);    }    if (y < yMin.y) {      Cartesian3.clone(currentPos, yMin);    }    if (y > yMax.y) {      Cartesian3.clone(currentPos, yMax);    }    if (z < zMin.z) {      Cartesian3.clone(currentPos, zMin);    }    if (z > zMax.z) {      Cartesian3.clone(currentPos, zMax);    }  }  // Compute x-, y-, and z-spans (Squared distances b/n each component's min. and max.).  const xSpan = Cartesian3.magnitudeSquared(    Cartesian3.subtract(xMax, xMin, fromPointsScratch)  );  const ySpan = Cartesian3.magnitudeSquared(    Cartesian3.subtract(yMax, yMin, fromPointsScratch)  );  const zSpan = Cartesian3.magnitudeSquared(    Cartesian3.subtract(zMax, zMin, fromPointsScratch)  );  // Set the diameter endpoints to the largest span.  let diameter1 = xMin;  let diameter2 = xMax;  let maxSpan = xSpan;  if (ySpan > maxSpan) {    maxSpan = ySpan;    diameter1 = yMin;    diameter2 = yMax;  }  if (zSpan > maxSpan) {    maxSpan = zSpan;    diameter1 = zMin;    diameter2 = zMax;  }  // Calculate the center of the initial sphere found by Ritter's algorithm  const ritterCenter = fromPointsRitterCenter;  ritterCenter.x = (diameter1.x + diameter2.x) * 0.5;  ritterCenter.y = (diameter1.y + diameter2.y) * 0.5;  ritterCenter.z = (diameter1.z + diameter2.z) * 0.5;  // Calculate the radius of the initial sphere found by Ritter's algorithm  let radiusSquared = Cartesian3.magnitudeSquared(    Cartesian3.subtract(diameter2, ritterCenter, fromPointsScratch)  );  let ritterRadius = Math.sqrt(radiusSquared);  // Find the center of the sphere found using the Naive method.  const minBoxPt = fromPointsMinBoxPt;  minBoxPt.x = xMin.x;  minBoxPt.y = yMin.y;  minBoxPt.z = zMin.z;  const maxBoxPt = fromPointsMaxBoxPt;  maxBoxPt.x = xMax.x;  maxBoxPt.y = yMax.y;  maxBoxPt.z = zMax.z;  const naiveCenter = Cartesian3.midpoint(    minBoxPt,    maxBoxPt,    fromPointsNaiveCenterScratch  );  // Begin 2nd pass to find naive radius and modify the ritter sphere.  let naiveRadius = 0;  for (i = 0; i < numElements; i += stride) {    currentPos.x = positions[i] + center.x;    currentPos.y = positions[i + 1] + center.y;    currentPos.z = positions[i + 2] + center.z;    // Find the furthest point from the naive center to calculate the naive radius.    const r = Cartesian3.magnitude(      Cartesian3.subtract(currentPos, naiveCenter, fromPointsScratch)    );    if (r > naiveRadius) {      naiveRadius = r;    }    // Make adjustments to the Ritter Sphere to include all points.    const oldCenterToPointSquared = Cartesian3.magnitudeSquared(      Cartesian3.subtract(currentPos, ritterCenter, fromPointsScratch)    );    if (oldCenterToPointSquared > radiusSquared) {      const oldCenterToPoint = Math.sqrt(oldCenterToPointSquared);      // Calculate new radius to include the point that lies outside      ritterRadius = (ritterRadius + oldCenterToPoint) * 0.5;      radiusSquared = ritterRadius * ritterRadius;      // Calculate center of new Ritter sphere      const oldToNew = oldCenterToPoint - ritterRadius;      ritterCenter.x =        (ritterRadius * ritterCenter.x + oldToNew * currentPos.x) /        oldCenterToPoint;      ritterCenter.y =        (ritterRadius * ritterCenter.y + oldToNew * currentPos.y) /        oldCenterToPoint;      ritterCenter.z =        (ritterRadius * ritterCenter.z + oldToNew * currentPos.z) /        oldCenterToPoint;    }  }  if (ritterRadius < naiveRadius) {    Cartesian3.clone(ritterCenter, result.center);    result.radius = ritterRadius;  } else {    Cartesian3.clone(naiveCenter, result.center);    result.radius = naiveRadius;  }  return result;};/** * Computes a tight-fitting bounding sphere enclosing a list of EncodedCartesian3s, where the points are * stored in parallel flat arrays in X, Y, Z, order.  The bounding sphere is computed by running two * algorithms, a naive algorithm and Ritter's algorithm. The smaller of the two spheres is used to * ensure a tight fit. * * @param {Number[]} [positionsHigh] An array of high bits of the encoded cartesians that the bounding sphere will enclose.  Each point *        is formed from three elements in the array in the order X, Y, Z. * @param {Number[]} [positionsLow] An array of low bits of the encoded cartesians that the bounding sphere will enclose.  Each point *        is formed from three elements in the array in the order X, Y, Z. * @param {BoundingSphere} [result] The object onto which to store the result. * @returns {BoundingSphere} The modified result parameter or a new BoundingSphere instance if one was not provided. * * @see {@link http://blogs.agi.com/insight3d/index.php/2008/02/04/a-bounding/|Bounding Sphere computation article} */BoundingSphere.fromEncodedCartesianVertices = function (  positionsHigh,  positionsLow,  result) {  if (!defined(result)) {    result = new BoundingSphere();  }  if (    !defined(positionsHigh) ||    !defined(positionsLow) ||    positionsHigh.length !== positionsLow.length ||    positionsHigh.length === 0  ) {    result.center = Cartesian3.clone(Cartesian3.ZERO, result.center);    result.radius = 0.0;    return result;  }  const currentPos = fromPointsCurrentPos;  currentPos.x = positionsHigh[0] + positionsLow[0];  currentPos.y = positionsHigh[1] + positionsLow[1];  currentPos.z = positionsHigh[2] + positionsLow[2];  const xMin = Cartesian3.clone(currentPos, fromPointsXMin);  const yMin = Cartesian3.clone(currentPos, fromPointsYMin);  const zMin = Cartesian3.clone(currentPos, fromPointsZMin);  const xMax = Cartesian3.clone(currentPos, fromPointsXMax);  const yMax = Cartesian3.clone(currentPos, fromPointsYMax);  const zMax = Cartesian3.clone(currentPos, fromPointsZMax);  const numElements = positionsHigh.length;  let i;  for (i = 0; i < numElements; i += 3) {    const x = positionsHigh[i] + positionsLow[i];    const y = positionsHigh[i + 1] + positionsLow[i + 1];    const z = positionsHigh[i + 2] + positionsLow[i + 2];    currentPos.x = x;    currentPos.y = y;    currentPos.z = z;    // Store points containing the the smallest and largest components    if (x < xMin.x) {      Cartesian3.clone(currentPos, xMin);    }    if (x > xMax.x) {      Cartesian3.clone(currentPos, xMax);    }    if (y < yMin.y) {      Cartesian3.clone(currentPos, yMin);    }    if (y > yMax.y) {      Cartesian3.clone(currentPos, yMax);    }    if (z < zMin.z) {      Cartesian3.clone(currentPos, zMin);    }    if (z > zMax.z) {      Cartesian3.clone(currentPos, zMax);    }  }  // Compute x-, y-, and z-spans (Squared distances b/n each component's min. and max.).  const xSpan = Cartesian3.magnitudeSquared(    Cartesian3.subtract(xMax, xMin, fromPointsScratch)  );  const ySpan = Cartesian3.magnitudeSquared(    Cartesian3.subtract(yMax, yMin, fromPointsScratch)  );  const zSpan = Cartesian3.magnitudeSquared(    Cartesian3.subtract(zMax, zMin, fromPointsScratch)  );  // Set the diameter endpoints to the largest span.  let diameter1 = xMin;  let diameter2 = xMax;  let maxSpan = xSpan;  if (ySpan > maxSpan) {    maxSpan = ySpan;    diameter1 = yMin;    diameter2 = yMax;  }  if (zSpan > maxSpan) {    maxSpan = zSpan;    diameter1 = zMin;    diameter2 = zMax;  }  // Calculate the center of the initial sphere found by Ritter's algorithm  const ritterCenter = fromPointsRitterCenter;  ritterCenter.x = (diameter1.x + diameter2.x) * 0.5;  ritterCenter.y = (diameter1.y + diameter2.y) * 0.5;  ritterCenter.z = (diameter1.z + diameter2.z) * 0.5;  // Calculate the radius of the initial sphere found by Ritter's algorithm  let radiusSquared = Cartesian3.magnitudeSquared(    Cartesian3.subtract(diameter2, ritterCenter, fromPointsScratch)  );  let ritterRadius = Math.sqrt(radiusSquared);  // Find the center of the sphere found using the Naive method.  const minBoxPt = fromPointsMinBoxPt;  minBoxPt.x = xMin.x;  minBoxPt.y = yMin.y;  minBoxPt.z = zMin.z;  const maxBoxPt = fromPointsMaxBoxPt;  maxBoxPt.x = xMax.x;  maxBoxPt.y = yMax.y;  maxBoxPt.z = zMax.z;  const naiveCenter = Cartesian3.midpoint(    minBoxPt,    maxBoxPt,    fromPointsNaiveCenterScratch  );  // Begin 2nd pass to find naive radius and modify the ritter sphere.  let naiveRadius = 0;  for (i = 0; i < numElements; i += 3) {    currentPos.x = positionsHigh[i] + positionsLow[i];    currentPos.y = positionsHigh[i + 1] + positionsLow[i + 1];    currentPos.z = positionsHigh[i + 2] + positionsLow[i + 2];    // Find the furthest point from the naive center to calculate the naive radius.    const r = Cartesian3.magnitude(      Cartesian3.subtract(currentPos, naiveCenter, fromPointsScratch)    );    if (r > naiveRadius) {      naiveRadius = r;    }    // Make adjustments to the Ritter Sphere to include all points.    const oldCenterToPointSquared = Cartesian3.magnitudeSquared(      Cartesian3.subtract(currentPos, ritterCenter, fromPointsScratch)    );    if (oldCenterToPointSquared > radiusSquared) {      const oldCenterToPoint = Math.sqrt(oldCenterToPointSquared);      // Calculate new radius to include the point that lies outside      ritterRadius = (ritterRadius + oldCenterToPoint) * 0.5;      radiusSquared = ritterRadius * ritterRadius;      // Calculate center of new Ritter sphere      const oldToNew = oldCenterToPoint - ritterRadius;      ritterCenter.x =        (ritterRadius * ritterCenter.x + oldToNew * currentPos.x) /        oldCenterToPoint;      ritterCenter.y =        (ritterRadius * ritterCenter.y + oldToNew * currentPos.y) /        oldCenterToPoint;      ritterCenter.z =        (ritterRadius * ritterCenter.z + oldToNew * currentPos.z) /        oldCenterToPoint;    }  }  if (ritterRadius < naiveRadius) {    Cartesian3.clone(ritterCenter, result.center);    result.radius = ritterRadius;  } else {    Cartesian3.clone(naiveCenter, result.center);    result.radius = naiveRadius;  }  return result;};/** * Computes a bounding sphere from the corner points of an axis-aligned bounding box.  The sphere * tighly and fully encompases the box. * * @param {Cartesian3} [corner] The minimum height over the rectangle. * @param {Cartesian3} [oppositeCorner] The maximum height over the rectangle. * @param {BoundingSphere} [result] The object onto which to store the result. * @returns {BoundingSphere} The modified result parameter or a new BoundingSphere instance if none was provided. * * @example * // Create a bounding sphere around the unit cube * const sphere = Cesium.BoundingSphere.fromCornerPoints(new Cesium.Cartesian3(-0.5, -0.5, -0.5), new Cesium.Cartesian3(0.5, 0.5, 0.5)); */BoundingSphere.fromCornerPoints = function (corner, oppositeCorner, result) {  //>>includeStart('debug', pragmas.debug);  Check.typeOf.object("corner", corner);  Check.typeOf.object("oppositeCorner", oppositeCorner);  //>>includeEnd('debug');  if (!defined(result)) {    result = new BoundingSphere();  }  const center = Cartesian3.midpoint(corner, oppositeCorner, result.center);  result.radius = Cartesian3.distance(center, oppositeCorner);  return result;};/** * Creates a bounding sphere encompassing an ellipsoid. * * @param {Ellipsoid} ellipsoid The ellipsoid around which to create a bounding sphere. * @param {BoundingSphere} [result] The object onto which to store the result. * @returns {BoundingSphere} The modified result parameter or a new BoundingSphere instance if none was provided. * * @example * const boundingSphere = Cesium.BoundingSphere.fromEllipsoid(ellipsoid); */BoundingSphere.fromEllipsoid = function (ellipsoid, result) {  //>>includeStart('debug', pragmas.debug);  Check.typeOf.object("ellipsoid", ellipsoid);  //>>includeEnd('debug');  if (!defined(result)) {    result = new BoundingSphere();  }  Cartesian3.clone(Cartesian3.ZERO, result.center);  result.radius = ellipsoid.maximumRadius;  return result;};const fromBoundingSpheresScratch = new Cartesian3();/** * Computes a tight-fitting bounding sphere enclosing the provided array of bounding spheres. * * @param {BoundingSphere[]} [boundingSpheres] The array of bounding spheres. * @param {BoundingSphere} [result] The object onto which to store the result. * @returns {BoundingSphere} The modified result parameter or a new BoundingSphere instance if none was provided. */BoundingSphere.fromBoundingSpheres = function (boundingSpheres, result) {  if (!defined(result)) {    result = new BoundingSphere();  }  if (!defined(boundingSpheres) || boundingSpheres.length === 0) {    result.center = Cartesian3.clone(Cartesian3.ZERO, result.center);    result.radius = 0.0;    return result;  }  const length = boundingSpheres.length;  if (length === 1) {    return BoundingSphere.clone(boundingSpheres[0], result);  }  if (length === 2) {    return BoundingSphere.union(boundingSpheres[0], boundingSpheres[1], result);  }  const positions = [];  let i;  for (i = 0; i < length; i++) {    positions.push(boundingSpheres[i].center);  }  result = BoundingSphere.fromPoints(positions, result);  const center = result.center;  let radius = result.radius;  for (i = 0; i < length; i++) {    const tmp = boundingSpheres[i];    radius = Math.max(      radius,      Cartesian3.distance(center, tmp.center, fromBoundingSpheresScratch) +        tmp.radius    );  }  result.radius = radius;  return result;};const fromOrientedBoundingBoxScratchU = new Cartesian3();const fromOrientedBoundingBoxScratchV = new Cartesian3();const fromOrientedBoundingBoxScratchW = new Cartesian3();/** * Computes a tight-fitting bounding sphere enclosing the provided oriented bounding box. * * @param {OrientedBoundingBox} orientedBoundingBox The oriented bounding box. * @param {BoundingSphere} [result] The object onto which to store the result. * @returns {BoundingSphere} The modified result parameter or a new BoundingSphere instance if none was provided. */BoundingSphere.fromOrientedBoundingBox = function (  orientedBoundingBox,  result) {  //>>includeStart('debug', pragmas.debug);  Check.defined("orientedBoundingBox", orientedBoundingBox);  //>>includeEnd('debug');  if (!defined(result)) {    result = new BoundingSphere();  }  const halfAxes = orientedBoundingBox.halfAxes;  const u = Matrix3.getColumn(halfAxes, 0, fromOrientedBoundingBoxScratchU);  const v = Matrix3.getColumn(halfAxes, 1, fromOrientedBoundingBoxScratchV);  const w = Matrix3.getColumn(halfAxes, 2, fromOrientedBoundingBoxScratchW);  Cartesian3.add(u, v, u);  Cartesian3.add(u, w, u);  result.center = Cartesian3.clone(orientedBoundingBox.center, result.center);  result.radius = Cartesian3.magnitude(u);  return result;};const scratchFromTransformationCenter = new Cartesian3();const scratchFromTransformationScale = new Cartesian3();/** * Computes a tight-fitting bounding sphere enclosing the provided affine transformation. * * @param {Matrix4} transformation The affine transformation. * @param {BoundingSphere} [result] The object onto which to store the result. * @returns {BoundingSphere} The modified result parameter or a new BoundingSphere instance if none was provided. */BoundingSphere.fromTransformation = function (transformation, result) {  //>>includeStart('debug', pragmas.debug);  Check.typeOf.object("transformation", transformation);  //>>includeEnd('debug');  if (!defined(result)) {    result = new BoundingSphere();  }  const center = Matrix4.getTranslation(    transformation,    scratchFromTransformationCenter  );  const scale = Matrix4.getScale(    transformation,    scratchFromTransformationScale  );  const radius = 0.5 * Cartesian3.magnitude(scale);  result.center = Cartesian3.clone(center, result.center);  result.radius = radius;  return result;};/** * Duplicates a BoundingSphere instance. * * @param {BoundingSphere} sphere The bounding sphere to duplicate. * @param {BoundingSphere} [result] The object onto which to store the result. * @returns {BoundingSphere} The modified result parameter or a new BoundingSphere instance if none was provided. (Returns undefined if sphere is undefined) */BoundingSphere.clone = function (sphere, result) {  if (!defined(sphere)) {    return undefined;  }  if (!defined(result)) {    return new BoundingSphere(sphere.center, sphere.radius);  }  result.center = Cartesian3.clone(sphere.center, result.center);  result.radius = sphere.radius;  return result;};/** * The number of elements used to pack the object into an array. * @type {Number} */BoundingSphere.packedLength = 4;/** * Stores the provided instance into the provided array. * * @param {BoundingSphere} value The value to pack. * @param {Number[]} array The array to pack into. * @param {Number} [startingIndex=0] The index into the array at which to start packing the elements. * * @returns {Number[]} The array that was packed into */BoundingSphere.pack = function (value, array, startingIndex) {  //>>includeStart('debug', pragmas.debug);  Check.typeOf.object("value", value);  Check.defined("array", array);  //>>includeEnd('debug');  startingIndex = defaultValue(startingIndex, 0);  const center = value.center;  array[startingIndex++] = center.x;  array[startingIndex++] = center.y;  array[startingIndex++] = center.z;  array[startingIndex] = value.radius;  return array;};/** * Retrieves an instance from a packed array. * * @param {Number[]} array The packed array. * @param {Number} [startingIndex=0] The starting index of the element to be unpacked. * @param {BoundingSphere} [result] The object into which to store the result. * @returns {BoundingSphere} The modified result parameter or a new BoundingSphere instance if one was not provided. */BoundingSphere.unpack = function (array, startingIndex, result) {  //>>includeStart('debug', pragmas.debug);  Check.defined("array", array);  //>>includeEnd('debug');  startingIndex = defaultValue(startingIndex, 0);  if (!defined(result)) {    result = new BoundingSphere();  }  const center = result.center;  center.x = array[startingIndex++];  center.y = array[startingIndex++];  center.z = array[startingIndex++];  result.radius = array[startingIndex];  return result;};const unionScratch = new Cartesian3();const unionScratchCenter = new Cartesian3();/** * Computes a bounding sphere that contains both the left and right bounding spheres. * * @param {BoundingSphere} left A sphere to enclose in a bounding sphere. * @param {BoundingSphere} right A sphere to enclose in a bounding sphere. * @param {BoundingSphere} [result] The object onto which to store the result. * @returns {BoundingSphere} The modified result parameter or a new BoundingSphere instance if none was provided. */BoundingSphere.union = function (left, right, result) {  //>>includeStart('debug', pragmas.debug);  Check.typeOf.object("left", left);  Check.typeOf.object("right", right);  //>>includeEnd('debug');  if (!defined(result)) {    result = new BoundingSphere();  }  const leftCenter = left.center;  const leftRadius = left.radius;  const rightCenter = right.center;  const rightRadius = right.radius;  const toRightCenter = Cartesian3.subtract(    rightCenter,    leftCenter,    unionScratch  );  const centerSeparation = Cartesian3.magnitude(toRightCenter);  if (leftRadius >= centerSeparation + rightRadius) {    // Left sphere wins.    left.clone(result);    return result;  }  if (rightRadius >= centerSeparation + leftRadius) {    // Right sphere wins.    right.clone(result);    return result;  }  // There are two tangent points, one on far side of each sphere.  const halfDistanceBetweenTangentPoints =    (leftRadius + centerSeparation + rightRadius) * 0.5;  // Compute the center point halfway between the two tangent points.  const center = Cartesian3.multiplyByScalar(    toRightCenter,    (-leftRadius + halfDistanceBetweenTangentPoints) / centerSeparation,    unionScratchCenter  );  Cartesian3.add(center, leftCenter, center);  Cartesian3.clone(center, result.center);  result.radius = halfDistanceBetweenTangentPoints;  return result;};const expandScratch = new Cartesian3();/** * Computes a bounding sphere by enlarging the provided sphere to contain the provided point. * * @param {BoundingSphere} sphere A sphere to expand. * @param {Cartesian3} point A point to enclose in a bounding sphere. * @param {BoundingSphere} [result] The object onto which to store the result. * @returns {BoundingSphere} The modified result parameter or a new BoundingSphere instance if none was provided. */BoundingSphere.expand = function (sphere, point, result) {  //>>includeStart('debug', pragmas.debug);  Check.typeOf.object("sphere", sphere);  Check.typeOf.object("point", point);  //>>includeEnd('debug');  result = BoundingSphere.clone(sphere, result);  const radius = Cartesian3.magnitude(    Cartesian3.subtract(point, result.center, expandScratch)  );  if (radius > result.radius) {    result.radius = radius;  }  return result;};/** * Determines which side of a plane a sphere is located. * * @param {BoundingSphere} sphere The bounding sphere to test. * @param {Plane} plane The plane to test against. * @returns {Intersect} {@link Intersect.INSIDE} if the entire sphere is on the side of the plane *                      the normal is pointing, {@link Intersect.OUTSIDE} if the entire sphere is *                      on the opposite side, and {@link Intersect.INTERSECTING} if the sphere *                      intersects the plane. */BoundingSphere.intersectPlane = function (sphere, plane) {  //>>includeStart('debug', pragmas.debug);  Check.typeOf.object("sphere", sphere);  Check.typeOf.object("plane", plane);  //>>includeEnd('debug');  const center = sphere.center;  const radius = sphere.radius;  const normal = plane.normal;  const distanceToPlane = Cartesian3.dot(normal, center) + plane.distance;  if (distanceToPlane < -radius) {    // The center point is negative side of the plane normal    return Intersect.OUTSIDE;  } else if (distanceToPlane < radius) {    // The center point is positive side of the plane, but radius extends beyond it; partial overlap    return Intersect.INTERSECTING;  }  return Intersect.INSIDE;};/** * Applies a 4x4 affine transformation matrix to a bounding sphere. * * @param {BoundingSphere} sphere The bounding sphere to apply the transformation to. * @param {Matrix4} transform The transformation matrix to apply to the bounding sphere. * @param {BoundingSphere} [result] The object onto which to store the result. * @returns {BoundingSphere} The modified result parameter or a new BoundingSphere instance if none was provided. */BoundingSphere.transform = function (sphere, transform, result) {  //>>includeStart('debug', pragmas.debug);  Check.typeOf.object("sphere", sphere);  Check.typeOf.object("transform", transform);  //>>includeEnd('debug');  if (!defined(result)) {    result = new BoundingSphere();  }  result.center = Matrix4.multiplyByPoint(    transform,    sphere.center,    result.center  );  result.radius = Matrix4.getMaximumScale(transform) * sphere.radius;  return result;};const distanceSquaredToScratch = new Cartesian3();/** * Computes the estimated distance squared from the closest point on a bounding sphere to a point. * * @param {BoundingSphere} sphere The sphere. * @param {Cartesian3} cartesian The point * @returns {Number} The distance squared from the bounding sphere to the point. Returns 0 if the point is inside the sphere. * * @example * // Sort bounding spheres from back to front * spheres.sort(function(a, b) { *     return Cesium.BoundingSphere.distanceSquaredTo(b, camera.positionWC) - Cesium.BoundingSphere.distanceSquaredTo(a, camera.positionWC); * }); */BoundingSphere.distanceSquaredTo = function (sphere, cartesian) {  //>>includeStart('debug', pragmas.debug);  Check.typeOf.object("sphere", sphere);  Check.typeOf.object("cartesian", cartesian);  //>>includeEnd('debug');  const diff = Cartesian3.subtract(    sphere.center,    cartesian,    distanceSquaredToScratch  );  const distance = Cartesian3.magnitude(diff) - sphere.radius;  if (distance <= 0.0) {    return 0.0;  }  return distance * distance;};/** * Applies a 4x4 affine transformation matrix to a bounding sphere where there is no scale * The transformation matrix is not verified to have a uniform scale of 1. * This method is faster than computing the general bounding sphere transform using {@link BoundingSphere.transform}. * * @param {BoundingSphere} sphere The bounding sphere to apply the transformation to. * @param {Matrix4} transform The transformation matrix to apply to the bounding sphere. * @param {BoundingSphere} [result] The object onto which to store the result. * @returns {BoundingSphere} The modified result parameter or a new BoundingSphere instance if none was provided. * * @example * const modelMatrix = Cesium.Transforms.eastNorthUpToFixedFrame(positionOnEllipsoid); * const boundingSphere = new Cesium.BoundingSphere(); * const newBoundingSphere = Cesium.BoundingSphere.transformWithoutScale(boundingSphere, modelMatrix); */BoundingSphere.transformWithoutScale = function (sphere, transform, result) {  //>>includeStart('debug', pragmas.debug);  Check.typeOf.object("sphere", sphere);  Check.typeOf.object("transform", transform);  //>>includeEnd('debug');  if (!defined(result)) {    result = new BoundingSphere();  }  result.center = Matrix4.multiplyByPoint(    transform,    sphere.center,    result.center  );  result.radius = sphere.radius;  return result;};const scratchCartesian3 = new Cartesian3();/** * The distances calculated by the vector from the center of the bounding sphere to position projected onto direction * plus/minus the radius of the bounding sphere. * <br> * If you imagine the infinite number of planes with normal direction, this computes the smallest distance to the * closest and farthest planes from position that intersect the bounding sphere. * * @param {BoundingSphere} sphere The bounding sphere to calculate the distance to. * @param {Cartesian3} position The position to calculate the distance from. * @param {Cartesian3} direction The direction from position. * @param {Interval} [result] A Interval to store the nearest and farthest distances. * @returns {Interval} The nearest and farthest distances on the bounding sphere from position in direction. */BoundingSphere.computePlaneDistances = function (  sphere,  position,  direction,  result) {  //>>includeStart('debug', pragmas.debug);  Check.typeOf.object("sphere", sphere);  Check.typeOf.object("position", position);  Check.typeOf.object("direction", direction);  //>>includeEnd('debug');  if (!defined(result)) {    result = new Interval();  }  const toCenter = Cartesian3.subtract(    sphere.center,    position,    scratchCartesian3  );  const mag = Cartesian3.dot(direction, toCenter);  result.start = mag - sphere.radius;  result.stop = mag + sphere.radius;  return result;};const projectTo2DNormalScratch = new Cartesian3();const projectTo2DEastScratch = new Cartesian3();const projectTo2DNorthScratch = new Cartesian3();const projectTo2DWestScratch = new Cartesian3();const projectTo2DSouthScratch = new Cartesian3();const projectTo2DCartographicScratch = new Cartographic();const projectTo2DPositionsScratch = new Array(8);for (let n = 0; n < 8; ++n) {  projectTo2DPositionsScratch[n] = new Cartesian3();}const projectTo2DProjection = new GeographicProjection();/** * Creates a bounding sphere in 2D from a bounding sphere in 3D world coordinates. * * @param {BoundingSphere} sphere The bounding sphere to transform to 2D. * @param {Object} [projection=GeographicProjection] The projection to 2D. * @param {BoundingSphere} [result] The object onto which to store the result. * @returns {BoundingSphere} The modified result parameter or a new BoundingSphere instance if none was provided. */BoundingSphere.projectTo2D = function (sphere, projection, result) {  //>>includeStart('debug', pragmas.debug);  Check.typeOf.object("sphere", sphere);  //>>includeEnd('debug');  projection = defaultValue(projection, projectTo2DProjection);  const ellipsoid = projection.ellipsoid;  let center = sphere.center;  const radius = sphere.radius;  let normal;  if (Cartesian3.equals(center, Cartesian3.ZERO)) {    // Bounding sphere is at the center. The geodetic surface normal is not    // defined here so pick the x-axis as a fallback.    normal = Cartesian3.clone(Cartesian3.UNIT_X, projectTo2DNormalScratch);  } else {    normal = ellipsoid.geodeticSurfaceNormal(center, projectTo2DNormalScratch);  }  const east = Cartesian3.cross(    Cartesian3.UNIT_Z,    normal,    projectTo2DEastScratch  );  Cartesian3.normalize(east, east);  const north = Cartesian3.cross(normal, east, projectTo2DNorthScratch);  Cartesian3.normalize(north, north);  Cartesian3.multiplyByScalar(normal, radius, normal);  Cartesian3.multiplyByScalar(north, radius, north);  Cartesian3.multiplyByScalar(east, radius, east);  const south = Cartesian3.negate(north, projectTo2DSouthScratch);  const west = Cartesian3.negate(east, projectTo2DWestScratch);  const positions = projectTo2DPositionsScratch;  // top NE corner  let corner = positions[0];  Cartesian3.add(normal, north, corner);  Cartesian3.add(corner, east, corner);  // top NW corner  corner = positions[1];  Cartesian3.add(normal, north, corner);  Cartesian3.add(corner, west, corner);  // top SW corner  corner = positions[2];  Cartesian3.add(normal, south, corner);  Cartesian3.add(corner, west, corner);  // top SE corner  corner = positions[3];  Cartesian3.add(normal, south, corner);  Cartesian3.add(corner, east, corner);  Cartesian3.negate(normal, normal);  // bottom NE corner  corner = positions[4];  Cartesian3.add(normal, north, corner);  Cartesian3.add(corner, east, corner);  // bottom NW corner  corner = positions[5];  Cartesian3.add(normal, north, corner);  Cartesian3.add(corner, west, corner);  // bottom SW corner  corner = positions[6];  Cartesian3.add(normal, south, corner);  Cartesian3.add(corner, west, corner);  // bottom SE corner  corner = positions[7];  Cartesian3.add(normal, south, corner);  Cartesian3.add(corner, east, corner);  const length = positions.length;  for (let i = 0; i < length; ++i) {    const position = positions[i];    Cartesian3.add(center, position, position);    const cartographic = ellipsoid.cartesianToCartographic(      position,      projectTo2DCartographicScratch    );    projection.project(cartographic, position);  }  result = BoundingSphere.fromPoints(positions, result);  // swizzle center components  center = result.center;  const x = center.x;  const y = center.y;  const z = center.z;  center.x = z;  center.y = x;  center.z = y;  return result;};/** * Determines whether or not a sphere is hidden from view by the occluder. * * @param {BoundingSphere} sphere The bounding sphere surrounding the occludee object. * @param {Occluder} occluder The occluder. * @returns {Boolean} <code>true</code> if the sphere is not visible; otherwise <code>false</code>. */BoundingSphere.isOccluded = function (sphere, occluder) {  //>>includeStart('debug', pragmas.debug);  Check.typeOf.object("sphere", sphere);  Check.typeOf.object("occluder", occluder);  //>>includeEnd('debug');  return !occluder.isBoundingSphereVisible(sphere);};/** * Compares the provided BoundingSphere componentwise and returns * <code>true</code> if they are equal, <code>false</code> otherwise. * * @param {BoundingSphere} [left] The first BoundingSphere. * @param {BoundingSphere} [right] The second BoundingSphere. * @returns {Boolean} <code>true</code> if left and right are equal, <code>false</code> otherwise. */BoundingSphere.equals = function (left, right) {  return (    left === right ||    (defined(left) &&      defined(right) &&      Cartesian3.equals(left.center, right.center) &&      left.radius === right.radius)  );};/** * Determines which side of a plane the sphere is located. * * @param {Plane} plane The plane to test against. * @returns {Intersect} {@link Intersect.INSIDE} if the entire sphere is on the side of the plane *                      the normal is pointing, {@link Intersect.OUTSIDE} if the entire sphere is *                      on the opposite side, and {@link Intersect.INTERSECTING} if the sphere *                      intersects the plane. */BoundingSphere.prototype.intersectPlane = function (plane) {  return BoundingSphere.intersectPlane(this, plane);};/** * Computes the estimated distance squared from the closest point on a bounding sphere to a point. * * @param {Cartesian3} cartesian The point * @returns {Number} The estimated distance squared from the bounding sphere to the point. * * @example * // Sort bounding spheres from back to front * spheres.sort(function(a, b) { *     return b.distanceSquaredTo(camera.positionWC) - a.distanceSquaredTo(camera.positionWC); * }); */BoundingSphere.prototype.distanceSquaredTo = function (cartesian) {  return BoundingSphere.distanceSquaredTo(this, cartesian);};/** * The distances calculated by the vector from the center of the bounding sphere to position projected onto direction * plus/minus the radius of the bounding sphere. * <br> * If you imagine the infinite number of planes with normal direction, this computes the smallest distance to the * closest and farthest planes from position that intersect the bounding sphere. * * @param {Cartesian3} position The position to calculate the distance from. * @param {Cartesian3} direction The direction from position. * @param {Interval} [result] A Interval to store the nearest and farthest distances. * @returns {Interval} The nearest and farthest distances on the bounding sphere from position in direction. */BoundingSphere.prototype.computePlaneDistances = function (  position,  direction,  result) {  return BoundingSphere.computePlaneDistances(    this,    position,    direction,    result  );};/** * Determines whether or not a sphere is hidden from view by the occluder. * * @param {Occluder} occluder The occluder. * @returns {Boolean} <code>true</code> if the sphere is not visible; otherwise <code>false</code>. */BoundingSphere.prototype.isOccluded = function (occluder) {  return BoundingSphere.isOccluded(this, occluder);};/** * Compares this BoundingSphere against the provided BoundingSphere componentwise and returns * <code>true</code> if they are equal, <code>false</code> otherwise. * * @param {BoundingSphere} [right] The right hand side BoundingSphere. * @returns {Boolean} <code>true</code> if they are equal, <code>false</code> otherwise. */BoundingSphere.prototype.equals = function (right) {  return BoundingSphere.equals(this, right);};/** * Duplicates this BoundingSphere instance. * * @param {BoundingSphere} [result] The object onto which to store the result. * @returns {BoundingSphere} The modified result parameter or a new BoundingSphere instance if none was provided. */BoundingSphere.prototype.clone = function (result) {  return BoundingSphere.clone(this, result);};/** * Computes the radius of the BoundingSphere. * @returns {Number} The radius of the BoundingSphere. */BoundingSphere.prototype.volume = function () {  const radius = this.radius;  return volumeConstant * radius * radius * radius;};export default BoundingSphere;
 |