| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824 | import Check from "./Check.js";import defaultValue from "./defaultValue.js";import defined from "./defined.js";import DeveloperError from "./DeveloperError.js";import CesiumMath from "./Math.js";/** * A 2D Cartesian point. * @alias Cartesian2 * @constructor * * @param {Number} [x=0.0] The X component. * @param {Number} [y=0.0] The Y component. * * @see Cartesian3 * @see Cartesian4 * @see Packable */function Cartesian2(x, y) {  /**   * The X component.   * @type {Number}   * @default 0.0   */  this.x = defaultValue(x, 0.0);  /**   * The Y component.   * @type {Number}   * @default 0.0   */  this.y = defaultValue(y, 0.0);}/** * Creates a Cartesian2 instance from x and y coordinates. * * @param {Number} x The x coordinate. * @param {Number} y The y coordinate. * @param {Cartesian2} [result] The object onto which to store the result. * @returns {Cartesian2} The modified result parameter or a new Cartesian2 instance if one was not provided. */Cartesian2.fromElements = function (x, y, result) {  if (!defined(result)) {    return new Cartesian2(x, y);  }  result.x = x;  result.y = y;  return result;};/** * Duplicates a Cartesian2 instance. * * @param {Cartesian2} cartesian The Cartesian to duplicate. * @param {Cartesian2} [result] The object onto which to store the result. * @returns {Cartesian2} The modified result parameter or a new Cartesian2 instance if one was not provided. (Returns undefined if cartesian is undefined) */Cartesian2.clone = function (cartesian, result) {  if (!defined(cartesian)) {    return undefined;  }  if (!defined(result)) {    return new Cartesian2(cartesian.x, cartesian.y);  }  result.x = cartesian.x;  result.y = cartesian.y;  return result;};/** * Creates a Cartesian2 instance from an existing Cartesian3.  This simply takes the * x and y properties of the Cartesian3 and drops z. * @function * * @param {Cartesian3} cartesian The Cartesian3 instance to create a Cartesian2 instance from. * @param {Cartesian2} [result] The object onto which to store the result. * @returns {Cartesian2} The modified result parameter or a new Cartesian2 instance if one was not provided. */Cartesian2.fromCartesian3 = Cartesian2.clone;/** * Creates a Cartesian2 instance from an existing Cartesian4.  This simply takes the * x and y properties of the Cartesian4 and drops z and w. * @function * * @param {Cartesian4} cartesian The Cartesian4 instance to create a Cartesian2 instance from. * @param {Cartesian2} [result] The object onto which to store the result. * @returns {Cartesian2} The modified result parameter or a new Cartesian2 instance if one was not provided. */Cartesian2.fromCartesian4 = Cartesian2.clone;/** * The number of elements used to pack the object into an array. * @type {Number} */Cartesian2.packedLength = 2;/** * Stores the provided instance into the provided array. * * @param {Cartesian2} value The value to pack. * @param {Number[]} array The array to pack into. * @param {Number} [startingIndex=0] The index into the array at which to start packing the elements. * * @returns {Number[]} The array that was packed into */Cartesian2.pack = function (value, array, startingIndex) {  //>>includeStart('debug', pragmas.debug);  Check.typeOf.object("value", value);  Check.defined("array", array);  //>>includeEnd('debug');  startingIndex = defaultValue(startingIndex, 0);  array[startingIndex++] = value.x;  array[startingIndex] = value.y;  return array;};/** * Retrieves an instance from a packed array. * * @param {Number[]} array The packed array. * @param {Number} [startingIndex=0] The starting index of the element to be unpacked. * @param {Cartesian2} [result] The object into which to store the result. * @returns {Cartesian2} The modified result parameter or a new Cartesian2 instance if one was not provided. */Cartesian2.unpack = function (array, startingIndex, result) {  //>>includeStart('debug', pragmas.debug);  Check.defined("array", array);  //>>includeEnd('debug');  startingIndex = defaultValue(startingIndex, 0);  if (!defined(result)) {    result = new Cartesian2();  }  result.x = array[startingIndex++];  result.y = array[startingIndex];  return result;};/** * Flattens an array of Cartesian2s into an array of components. * * @param {Cartesian2[]} array The array of cartesians to pack. * @param {Number[]} [result] The array onto which to store the result. If this is a typed array, it must have array.length * 2 components, else a {@link DeveloperError} will be thrown. If it is a regular array, it will be resized to have (array.length * 2) elements. * @returns {Number[]} The packed array. */Cartesian2.packArray = function (array, result) {  //>>includeStart('debug', pragmas.debug);  Check.defined("array", array);  //>>includeEnd('debug');  const length = array.length;  const resultLength = length * 2;  if (!defined(result)) {    result = new Array(resultLength);  } else if (!Array.isArray(result) && result.length !== resultLength) {    //>>includeStart('debug', pragmas.debug);    throw new DeveloperError(      "If result is a typed array, it must have exactly array.length * 2 elements"    );    //>>includeEnd('debug');  } else if (result.length !== resultLength) {    result.length = resultLength;  }  for (let i = 0; i < length; ++i) {    Cartesian2.pack(array[i], result, i * 2);  }  return result;};/** * Unpacks an array of cartesian components into an array of Cartesian2s. * * @param {Number[]} array The array of components to unpack. * @param {Cartesian2[]} [result] The array onto which to store the result. * @returns {Cartesian2[]} The unpacked array. */Cartesian2.unpackArray = function (array, result) {  //>>includeStart('debug', pragmas.debug);  Check.defined("array", array);  Check.typeOf.number.greaterThanOrEquals("array.length", array.length, 2);  if (array.length % 2 !== 0) {    throw new DeveloperError("array length must be a multiple of 2.");  }  //>>includeEnd('debug');  const length = array.length;  if (!defined(result)) {    result = new Array(length / 2);  } else {    result.length = length / 2;  }  for (let i = 0; i < length; i += 2) {    const index = i / 2;    result[index] = Cartesian2.unpack(array, i, result[index]);  }  return result;};/** * Creates a Cartesian2 from two consecutive elements in an array. * @function * * @param {Number[]} array The array whose two consecutive elements correspond to the x and y components, respectively. * @param {Number} [startingIndex=0] The offset into the array of the first element, which corresponds to the x component. * @param {Cartesian2} [result] The object onto which to store the result. * @returns {Cartesian2} The modified result parameter or a new Cartesian2 instance if one was not provided. * * @example * // Create a Cartesian2 with (1.0, 2.0) * const v = [1.0, 2.0]; * const p = Cesium.Cartesian2.fromArray(v); * * // Create a Cartesian2 with (1.0, 2.0) using an offset into an array * const v2 = [0.0, 0.0, 1.0, 2.0]; * const p2 = Cesium.Cartesian2.fromArray(v2, 2); */Cartesian2.fromArray = Cartesian2.unpack;/** * Computes the value of the maximum component for the supplied Cartesian. * * @param {Cartesian2} cartesian The cartesian to use. * @returns {Number} The value of the maximum component. */Cartesian2.maximumComponent = function (cartesian) {  //>>includeStart('debug', pragmas.debug);  Check.typeOf.object("cartesian", cartesian);  //>>includeEnd('debug');  return Math.max(cartesian.x, cartesian.y);};/** * Computes the value of the minimum component for the supplied Cartesian. * * @param {Cartesian2} cartesian The cartesian to use. * @returns {Number} The value of the minimum component. */Cartesian2.minimumComponent = function (cartesian) {  //>>includeStart('debug', pragmas.debug);  Check.typeOf.object("cartesian", cartesian);  //>>includeEnd('debug');  return Math.min(cartesian.x, cartesian.y);};/** * Compares two Cartesians and computes a Cartesian which contains the minimum components of the supplied Cartesians. * * @param {Cartesian2} first A cartesian to compare. * @param {Cartesian2} second A cartesian to compare. * @param {Cartesian2} result The object into which to store the result. * @returns {Cartesian2} A cartesian with the minimum components. */Cartesian2.minimumByComponent = function (first, second, result) {  //>>includeStart('debug', pragmas.debug);  Check.typeOf.object("first", first);  Check.typeOf.object("second", second);  Check.typeOf.object("result", result);  //>>includeEnd('debug');  result.x = Math.min(first.x, second.x);  result.y = Math.min(first.y, second.y);  return result;};/** * Compares two Cartesians and computes a Cartesian which contains the maximum components of the supplied Cartesians. * * @param {Cartesian2} first A cartesian to compare. * @param {Cartesian2} second A cartesian to compare. * @param {Cartesian2} result The object into which to store the result. * @returns {Cartesian2} A cartesian with the maximum components. */Cartesian2.maximumByComponent = function (first, second, result) {  //>>includeStart('debug', pragmas.debug);  Check.typeOf.object("first", first);  Check.typeOf.object("second", second);  Check.typeOf.object("result", result);  //>>includeEnd('debug');  result.x = Math.max(first.x, second.x);  result.y = Math.max(first.y, second.y);  return result;};/** * Constrain a value to lie between two values. * * @param {Cartesian2} value The value to clamp. * @param {Cartesian2} min The minimum bound. * @param {Cartesian2} max The maximum bound. * @param {Cartesian2} result The object into which to store the result. * @returns {Cartesian2} The clamped value such that min <= result <= max. */Cartesian2.clamp = function (value, min, max, result) {  //>>includeStart('debug', pragmas.debug);  Check.typeOf.object("value", value);  Check.typeOf.object("min", min);  Check.typeOf.object("max", max);  Check.typeOf.object("result", result);  //>>includeEnd('debug');  const x = CesiumMath.clamp(value.x, min.x, max.x);  const y = CesiumMath.clamp(value.y, min.y, max.y);  result.x = x;  result.y = y;  return result;};/** * Computes the provided Cartesian's squared magnitude. * * @param {Cartesian2} cartesian The Cartesian instance whose squared magnitude is to be computed. * @returns {Number} The squared magnitude. */Cartesian2.magnitudeSquared = function (cartesian) {  //>>includeStart('debug', pragmas.debug);  Check.typeOf.object("cartesian", cartesian);  //>>includeEnd('debug');  return cartesian.x * cartesian.x + cartesian.y * cartesian.y;};/** * Computes the Cartesian's magnitude (length). * * @param {Cartesian2} cartesian The Cartesian instance whose magnitude is to be computed. * @returns {Number} The magnitude. */Cartesian2.magnitude = function (cartesian) {  return Math.sqrt(Cartesian2.magnitudeSquared(cartesian));};const distanceScratch = new Cartesian2();/** * Computes the distance between two points. * * @param {Cartesian2} left The first point to compute the distance from. * @param {Cartesian2} right The second point to compute the distance to. * @returns {Number} The distance between two points. * * @example * // Returns 1.0 * const d = Cesium.Cartesian2.distance(new Cesium.Cartesian2(1.0, 0.0), new Cesium.Cartesian2(2.0, 0.0)); */Cartesian2.distance = function (left, right) {  //>>includeStart('debug', pragmas.debug);  Check.typeOf.object("left", left);  Check.typeOf.object("right", right);  //>>includeEnd('debug');  Cartesian2.subtract(left, right, distanceScratch);  return Cartesian2.magnitude(distanceScratch);};/** * Computes the squared distance between two points.  Comparing squared distances * using this function is more efficient than comparing distances using {@link Cartesian2#distance}. * * @param {Cartesian2} left The first point to compute the distance from. * @param {Cartesian2} right The second point to compute the distance to. * @returns {Number} The distance between two points. * * @example * // Returns 4.0, not 2.0 * const d = Cesium.Cartesian2.distance(new Cesium.Cartesian2(1.0, 0.0), new Cesium.Cartesian2(3.0, 0.0)); */Cartesian2.distanceSquared = function (left, right) {  //>>includeStart('debug', pragmas.debug);  Check.typeOf.object("left", left);  Check.typeOf.object("right", right);  //>>includeEnd('debug');  Cartesian2.subtract(left, right, distanceScratch);  return Cartesian2.magnitudeSquared(distanceScratch);};/** * Computes the normalized form of the supplied Cartesian. * * @param {Cartesian2} cartesian The Cartesian to be normalized. * @param {Cartesian2} result The object onto which to store the result. * @returns {Cartesian2} The modified result parameter. */Cartesian2.normalize = function (cartesian, result) {  //>>includeStart('debug', pragmas.debug);  Check.typeOf.object("cartesian", cartesian);  Check.typeOf.object("result", result);  //>>includeEnd('debug');  const magnitude = Cartesian2.magnitude(cartesian);  result.x = cartesian.x / magnitude;  result.y = cartesian.y / magnitude;  //>>includeStart('debug', pragmas.debug);  if (isNaN(result.x) || isNaN(result.y)) {    throw new DeveloperError("normalized result is not a number");  }  //>>includeEnd('debug');  return result;};/** * Computes the dot (scalar) product of two Cartesians. * * @param {Cartesian2} left The first Cartesian. * @param {Cartesian2} right The second Cartesian. * @returns {Number} The dot product. */Cartesian2.dot = function (left, right) {  //>>includeStart('debug', pragmas.debug);  Check.typeOf.object("left", left);  Check.typeOf.object("right", right);  //>>includeEnd('debug');  return left.x * right.x + left.y * right.y;};/** * Computes the magnitude of the cross product that would result from implicitly setting the Z coordinate of the input vectors to 0 * * @param {Cartesian2} left The first Cartesian. * @param {Cartesian2} right The second Cartesian. * @returns {Number} The cross product. */Cartesian2.cross = function (left, right) {  //>>includeStart('debug', pragmas.debug);  Check.typeOf.object("left", left);  Check.typeOf.object("right", right);  //>>includeEnd('debug');  return left.x * right.y - left.y * right.x;};/** * Computes the componentwise product of two Cartesians. * * @param {Cartesian2} left The first Cartesian. * @param {Cartesian2} right The second Cartesian. * @param {Cartesian2} result The object onto which to store the result. * @returns {Cartesian2} The modified result parameter. */Cartesian2.multiplyComponents = function (left, right, result) {  //>>includeStart('debug', pragmas.debug);  Check.typeOf.object("left", left);  Check.typeOf.object("right", right);  Check.typeOf.object("result", result);  //>>includeEnd('debug');  result.x = left.x * right.x;  result.y = left.y * right.y;  return result;};/** * Computes the componentwise quotient of two Cartesians. * * @param {Cartesian2} left The first Cartesian. * @param {Cartesian2} right The second Cartesian. * @param {Cartesian2} result The object onto which to store the result. * @returns {Cartesian2} The modified result parameter. */Cartesian2.divideComponents = function (left, right, result) {  //>>includeStart('debug', pragmas.debug);  Check.typeOf.object("left", left);  Check.typeOf.object("right", right);  Check.typeOf.object("result", result);  //>>includeEnd('debug');  result.x = left.x / right.x;  result.y = left.y / right.y;  return result;};/** * Computes the componentwise sum of two Cartesians. * * @param {Cartesian2} left The first Cartesian. * @param {Cartesian2} right The second Cartesian. * @param {Cartesian2} result The object onto which to store the result. * @returns {Cartesian2} The modified result parameter. */Cartesian2.add = function (left, right, result) {  //>>includeStart('debug', pragmas.debug);  Check.typeOf.object("left", left);  Check.typeOf.object("right", right);  Check.typeOf.object("result", result);  //>>includeEnd('debug');  result.x = left.x + right.x;  result.y = left.y + right.y;  return result;};/** * Computes the componentwise difference of two Cartesians. * * @param {Cartesian2} left The first Cartesian. * @param {Cartesian2} right The second Cartesian. * @param {Cartesian2} result The object onto which to store the result. * @returns {Cartesian2} The modified result parameter. */Cartesian2.subtract = function (left, right, result) {  //>>includeStart('debug', pragmas.debug);  Check.typeOf.object("left", left);  Check.typeOf.object("right", right);  Check.typeOf.object("result", result);  //>>includeEnd('debug');  result.x = left.x - right.x;  result.y = left.y - right.y;  return result;};/** * Multiplies the provided Cartesian componentwise by the provided scalar. * * @param {Cartesian2} cartesian The Cartesian to be scaled. * @param {Number} scalar The scalar to multiply with. * @param {Cartesian2} result The object onto which to store the result. * @returns {Cartesian2} The modified result parameter. */Cartesian2.multiplyByScalar = function (cartesian, scalar, result) {  //>>includeStart('debug', pragmas.debug);  Check.typeOf.object("cartesian", cartesian);  Check.typeOf.number("scalar", scalar);  Check.typeOf.object("result", result);  //>>includeEnd('debug');  result.x = cartesian.x * scalar;  result.y = cartesian.y * scalar;  return result;};/** * Divides the provided Cartesian componentwise by the provided scalar. * * @param {Cartesian2} cartesian The Cartesian to be divided. * @param {Number} scalar The scalar to divide by. * @param {Cartesian2} result The object onto which to store the result. * @returns {Cartesian2} The modified result parameter. */Cartesian2.divideByScalar = function (cartesian, scalar, result) {  //>>includeStart('debug', pragmas.debug);  Check.typeOf.object("cartesian", cartesian);  Check.typeOf.number("scalar", scalar);  Check.typeOf.object("result", result);  //>>includeEnd('debug');  result.x = cartesian.x / scalar;  result.y = cartesian.y / scalar;  return result;};/** * Negates the provided Cartesian. * * @param {Cartesian2} cartesian The Cartesian to be negated. * @param {Cartesian2} result The object onto which to store the result. * @returns {Cartesian2} The modified result parameter. */Cartesian2.negate = function (cartesian, result) {  //>>includeStart('debug', pragmas.debug);  Check.typeOf.object("cartesian", cartesian);  Check.typeOf.object("result", result);  //>>includeEnd('debug');  result.x = -cartesian.x;  result.y = -cartesian.y;  return result;};/** * Computes the absolute value of the provided Cartesian. * * @param {Cartesian2} cartesian The Cartesian whose absolute value is to be computed. * @param {Cartesian2} result The object onto which to store the result. * @returns {Cartesian2} The modified result parameter. */Cartesian2.abs = function (cartesian, result) {  //>>includeStart('debug', pragmas.debug);  Check.typeOf.object("cartesian", cartesian);  Check.typeOf.object("result", result);  //>>includeEnd('debug');  result.x = Math.abs(cartesian.x);  result.y = Math.abs(cartesian.y);  return result;};const lerpScratch = new Cartesian2();/** * Computes the linear interpolation or extrapolation at t using the provided cartesians. * * @param {Cartesian2} start The value corresponding to t at 0.0. * @param {Cartesian2} end The value corresponding to t at 1.0. * @param {Number} t The point along t at which to interpolate. * @param {Cartesian2} result The object onto which to store the result. * @returns {Cartesian2} The modified result parameter. */Cartesian2.lerp = function (start, end, t, result) {  //>>includeStart('debug', pragmas.debug);  Check.typeOf.object("start", start);  Check.typeOf.object("end", end);  Check.typeOf.number("t", t);  Check.typeOf.object("result", result);  //>>includeEnd('debug');  Cartesian2.multiplyByScalar(end, t, lerpScratch);  result = Cartesian2.multiplyByScalar(start, 1.0 - t, result);  return Cartesian2.add(lerpScratch, result, result);};const angleBetweenScratch = new Cartesian2();const angleBetweenScratch2 = new Cartesian2();/** * Returns the angle, in radians, between the provided Cartesians. * * @param {Cartesian2} left The first Cartesian. * @param {Cartesian2} right The second Cartesian. * @returns {Number} The angle between the Cartesians. */Cartesian2.angleBetween = function (left, right) {  //>>includeStart('debug', pragmas.debug);  Check.typeOf.object("left", left);  Check.typeOf.object("right", right);  //>>includeEnd('debug');  Cartesian2.normalize(left, angleBetweenScratch);  Cartesian2.normalize(right, angleBetweenScratch2);  return CesiumMath.acosClamped(    Cartesian2.dot(angleBetweenScratch, angleBetweenScratch2)  );};const mostOrthogonalAxisScratch = new Cartesian2();/** * Returns the axis that is most orthogonal to the provided Cartesian. * * @param {Cartesian2} cartesian The Cartesian on which to find the most orthogonal axis. * @param {Cartesian2} result The object onto which to store the result. * @returns {Cartesian2} The most orthogonal axis. */Cartesian2.mostOrthogonalAxis = function (cartesian, result) {  //>>includeStart('debug', pragmas.debug);  Check.typeOf.object("cartesian", cartesian);  Check.typeOf.object("result", result);  //>>includeEnd('debug');  const f = Cartesian2.normalize(cartesian, mostOrthogonalAxisScratch);  Cartesian2.abs(f, f);  if (f.x <= f.y) {    result = Cartesian2.clone(Cartesian2.UNIT_X, result);  } else {    result = Cartesian2.clone(Cartesian2.UNIT_Y, result);  }  return result;};/** * Compares the provided Cartesians componentwise and returns * <code>true</code> if they are equal, <code>false</code> otherwise. * * @param {Cartesian2} [left] The first Cartesian. * @param {Cartesian2} [right] The second Cartesian. * @returns {Boolean} <code>true</code> if left and right are equal, <code>false</code> otherwise. */Cartesian2.equals = function (left, right) {  return (    left === right ||    (defined(left) &&      defined(right) &&      left.x === right.x &&      left.y === right.y)  );};/** * @private */Cartesian2.equalsArray = function (cartesian, array, offset) {  return cartesian.x === array[offset] && cartesian.y === array[offset + 1];};/** * Compares the provided Cartesians componentwise and returns * <code>true</code> if they pass an absolute or relative tolerance test, * <code>false</code> otherwise. * * @param {Cartesian2} [left] The first Cartesian. * @param {Cartesian2} [right] The second Cartesian. * @param {Number} [relativeEpsilon=0] The relative epsilon tolerance to use for equality testing. * @param {Number} [absoluteEpsilon=relativeEpsilon] The absolute epsilon tolerance to use for equality testing. * @returns {Boolean} <code>true</code> if left and right are within the provided epsilon, <code>false</code> otherwise. */Cartesian2.equalsEpsilon = function (  left,  right,  relativeEpsilon,  absoluteEpsilon) {  return (    left === right ||    (defined(left) &&      defined(right) &&      CesiumMath.equalsEpsilon(        left.x,        right.x,        relativeEpsilon,        absoluteEpsilon      ) &&      CesiumMath.equalsEpsilon(        left.y,        right.y,        relativeEpsilon,        absoluteEpsilon      ))  );};/** * An immutable Cartesian2 instance initialized to (0.0, 0.0). * * @type {Cartesian2} * @constant */Cartesian2.ZERO = Object.freeze(new Cartesian2(0.0, 0.0));/** * An immutable Cartesian2 instance initialized to (1.0, 1.0). * * @type {Cartesian2} * @constant */Cartesian2.ONE = Object.freeze(new Cartesian2(1.0, 1.0));/** * An immutable Cartesian2 instance initialized to (1.0, 0.0). * * @type {Cartesian2} * @constant */Cartesian2.UNIT_X = Object.freeze(new Cartesian2(1.0, 0.0));/** * An immutable Cartesian2 instance initialized to (0.0, 1.0). * * @type {Cartesian2} * @constant */Cartesian2.UNIT_Y = Object.freeze(new Cartesian2(0.0, 1.0));/** * Duplicates this Cartesian2 instance. * * @param {Cartesian2} [result] The object onto which to store the result. * @returns {Cartesian2} The modified result parameter or a new Cartesian2 instance if one was not provided. */Cartesian2.prototype.clone = function (result) {  return Cartesian2.clone(this, result);};/** * Compares this Cartesian against the provided Cartesian componentwise and returns * <code>true</code> if they are equal, <code>false</code> otherwise. * * @param {Cartesian2} [right] The right hand side Cartesian. * @returns {Boolean} <code>true</code> if they are equal, <code>false</code> otherwise. */Cartesian2.prototype.equals = function (right) {  return Cartesian2.equals(this, right);};/** * Compares this Cartesian against the provided Cartesian componentwise and returns * <code>true</code> if they pass an absolute or relative tolerance test, * <code>false</code> otherwise. * * @param {Cartesian2} [right] The right hand side Cartesian. * @param {Number} [relativeEpsilon=0] The relative epsilon tolerance to use for equality testing. * @param {Number} [absoluteEpsilon=relativeEpsilon] The absolute epsilon tolerance to use for equality testing. * @returns {Boolean} <code>true</code> if they are within the provided epsilon, <code>false</code> otherwise. */Cartesian2.prototype.equalsEpsilon = function (  right,  relativeEpsilon,  absoluteEpsilon) {  return Cartesian2.equalsEpsilon(    this,    right,    relativeEpsilon,    absoluteEpsilon  );};/** * Creates a string representing this Cartesian in the format '(x, y)'. * * @returns {String} A string representing the provided Cartesian in the format '(x, y)'. */Cartesian2.prototype.toString = function () {  return `(${this.x}, ${this.y})`;};export default Cartesian2;
 |