| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481 | import arrayFill from "./arrayFill.js";import BoundingSphere from "./BoundingSphere.js";import Cartesian2 from "./Cartesian2.js";import Cartesian3 from "./Cartesian3.js";import ComponentDatatype from "./ComponentDatatype.js";import CylinderGeometryLibrary from "./CylinderGeometryLibrary.js";import defaultValue from "./defaultValue.js";import defined from "./defined.js";import DeveloperError from "./DeveloperError.js";import Geometry from "./Geometry.js";import GeometryAttribute from "./GeometryAttribute.js";import GeometryAttributes from "./GeometryAttributes.js";import GeometryOffsetAttribute from "./GeometryOffsetAttribute.js";import IndexDatatype from "./IndexDatatype.js";import CesiumMath from "./Math.js";import PrimitiveType from "./PrimitiveType.js";import VertexFormat from "./VertexFormat.js";const radiusScratch = new Cartesian2();const normalScratch = new Cartesian3();const bitangentScratch = new Cartesian3();const tangentScratch = new Cartesian3();const positionScratch = new Cartesian3();/** * A description of a cylinder. * * @alias CylinderGeometry * @constructor * * @param {Object} options Object with the following properties: * @param {Number} options.length The length of the cylinder. * @param {Number} options.topRadius The radius of the top of the cylinder. * @param {Number} options.bottomRadius The radius of the bottom of the cylinder. * @param {Number} [options.slices=128] The number of edges around the perimeter of the cylinder. * @param {VertexFormat} [options.vertexFormat=VertexFormat.DEFAULT] The vertex attributes to be computed. * * @exception {DeveloperError} options.slices must be greater than or equal to 3. * * @see CylinderGeometry.createGeometry * * @example * // create cylinder geometry * const cylinder = new Cesium.CylinderGeometry({ *     length: 200000, *     topRadius: 80000, *     bottomRadius: 200000, * }); * const geometry = Cesium.CylinderGeometry.createGeometry(cylinder); */function CylinderGeometry(options) {  options = defaultValue(options, defaultValue.EMPTY_OBJECT);  const length = options.length;  const topRadius = options.topRadius;  const bottomRadius = options.bottomRadius;  const vertexFormat = defaultValue(options.vertexFormat, VertexFormat.DEFAULT);  const slices = defaultValue(options.slices, 128);  //>>includeStart('debug', pragmas.debug);  if (!defined(length)) {    throw new DeveloperError("options.length must be defined.");  }  if (!defined(topRadius)) {    throw new DeveloperError("options.topRadius must be defined.");  }  if (!defined(bottomRadius)) {    throw new DeveloperError("options.bottomRadius must be defined.");  }  if (slices < 3) {    throw new DeveloperError(      "options.slices must be greater than or equal to 3."    );  }  if (    defined(options.offsetAttribute) &&    options.offsetAttribute === GeometryOffsetAttribute.TOP  ) {    throw new DeveloperError(      "GeometryOffsetAttribute.TOP is not a supported options.offsetAttribute for this geometry."    );  }  //>>includeEnd('debug');  this._length = length;  this._topRadius = topRadius;  this._bottomRadius = bottomRadius;  this._vertexFormat = VertexFormat.clone(vertexFormat);  this._slices = slices;  this._offsetAttribute = options.offsetAttribute;  this._workerName = "createCylinderGeometry";}/** * The number of elements used to pack the object into an array. * @type {Number} */CylinderGeometry.packedLength = VertexFormat.packedLength + 5;/** * Stores the provided instance into the provided array. * * @param {CylinderGeometry} value The value to pack. * @param {Number[]} array The array to pack into. * @param {Number} [startingIndex=0] The index into the array at which to start packing the elements. * * @returns {Number[]} The array that was packed into */CylinderGeometry.pack = function (value, array, startingIndex) {  //>>includeStart('debug', pragmas.debug);  if (!defined(value)) {    throw new DeveloperError("value is required");  }  if (!defined(array)) {    throw new DeveloperError("array is required");  }  //>>includeEnd('debug');  startingIndex = defaultValue(startingIndex, 0);  VertexFormat.pack(value._vertexFormat, array, startingIndex);  startingIndex += VertexFormat.packedLength;  array[startingIndex++] = value._length;  array[startingIndex++] = value._topRadius;  array[startingIndex++] = value._bottomRadius;  array[startingIndex++] = value._slices;  array[startingIndex] = defaultValue(value._offsetAttribute, -1);  return array;};const scratchVertexFormat = new VertexFormat();const scratchOptions = {  vertexFormat: scratchVertexFormat,  length: undefined,  topRadius: undefined,  bottomRadius: undefined,  slices: undefined,  offsetAttribute: undefined,};/** * Retrieves an instance from a packed array. * * @param {Number[]} array The packed array. * @param {Number} [startingIndex=0] The starting index of the element to be unpacked. * @param {CylinderGeometry} [result] The object into which to store the result. * @returns {CylinderGeometry} The modified result parameter or a new CylinderGeometry instance if one was not provided. */CylinderGeometry.unpack = function (array, startingIndex, result) {  //>>includeStart('debug', pragmas.debug);  if (!defined(array)) {    throw new DeveloperError("array is required");  }  //>>includeEnd('debug');  startingIndex = defaultValue(startingIndex, 0);  const vertexFormat = VertexFormat.unpack(    array,    startingIndex,    scratchVertexFormat  );  startingIndex += VertexFormat.packedLength;  const length = array[startingIndex++];  const topRadius = array[startingIndex++];  const bottomRadius = array[startingIndex++];  const slices = array[startingIndex++];  const offsetAttribute = array[startingIndex];  if (!defined(result)) {    scratchOptions.length = length;    scratchOptions.topRadius = topRadius;    scratchOptions.bottomRadius = bottomRadius;    scratchOptions.slices = slices;    scratchOptions.offsetAttribute =      offsetAttribute === -1 ? undefined : offsetAttribute;    return new CylinderGeometry(scratchOptions);  }  result._vertexFormat = VertexFormat.clone(vertexFormat, result._vertexFormat);  result._length = length;  result._topRadius = topRadius;  result._bottomRadius = bottomRadius;  result._slices = slices;  result._offsetAttribute =    offsetAttribute === -1 ? undefined : offsetAttribute;  return result;};/** * Computes the geometric representation of a cylinder, including its vertices, indices, and a bounding sphere. * * @param {CylinderGeometry} cylinderGeometry A description of the cylinder. * @returns {Geometry|undefined} The computed vertices and indices. */CylinderGeometry.createGeometry = function (cylinderGeometry) {  let length = cylinderGeometry._length;  const topRadius = cylinderGeometry._topRadius;  const bottomRadius = cylinderGeometry._bottomRadius;  const vertexFormat = cylinderGeometry._vertexFormat;  const slices = cylinderGeometry._slices;  if (    length <= 0 ||    topRadius < 0 ||    bottomRadius < 0 ||    (topRadius === 0 && bottomRadius === 0)  ) {    return;  }  const twoSlices = slices + slices;  const threeSlices = slices + twoSlices;  const numVertices = twoSlices + twoSlices;  const positions = CylinderGeometryLibrary.computePositions(    length,    topRadius,    bottomRadius,    slices,    true  );  const st = vertexFormat.st ? new Float32Array(numVertices * 2) : undefined;  const normals = vertexFormat.normal    ? new Float32Array(numVertices * 3)    : undefined;  const tangents = vertexFormat.tangent    ? new Float32Array(numVertices * 3)    : undefined;  const bitangents = vertexFormat.bitangent    ? new Float32Array(numVertices * 3)    : undefined;  let i;  const computeNormal =    vertexFormat.normal || vertexFormat.tangent || vertexFormat.bitangent;  if (computeNormal) {    const computeTangent = vertexFormat.tangent || vertexFormat.bitangent;    let normalIndex = 0;    let tangentIndex = 0;    let bitangentIndex = 0;    const theta = Math.atan2(bottomRadius - topRadius, length);    const normal = normalScratch;    normal.z = Math.sin(theta);    const normalScale = Math.cos(theta);    let tangent = tangentScratch;    let bitangent = bitangentScratch;    for (i = 0; i < slices; i++) {      const angle = (i / slices) * CesiumMath.TWO_PI;      const x = normalScale * Math.cos(angle);      const y = normalScale * Math.sin(angle);      if (computeNormal) {        normal.x = x;        normal.y = y;        if (computeTangent) {          tangent = Cartesian3.normalize(            Cartesian3.cross(Cartesian3.UNIT_Z, normal, tangent),            tangent          );        }        if (vertexFormat.normal) {          normals[normalIndex++] = normal.x;          normals[normalIndex++] = normal.y;          normals[normalIndex++] = normal.z;          normals[normalIndex++] = normal.x;          normals[normalIndex++] = normal.y;          normals[normalIndex++] = normal.z;        }        if (vertexFormat.tangent) {          tangents[tangentIndex++] = tangent.x;          tangents[tangentIndex++] = tangent.y;          tangents[tangentIndex++] = tangent.z;          tangents[tangentIndex++] = tangent.x;          tangents[tangentIndex++] = tangent.y;          tangents[tangentIndex++] = tangent.z;        }        if (vertexFormat.bitangent) {          bitangent = Cartesian3.normalize(            Cartesian3.cross(normal, tangent, bitangent),            bitangent          );          bitangents[bitangentIndex++] = bitangent.x;          bitangents[bitangentIndex++] = bitangent.y;          bitangents[bitangentIndex++] = bitangent.z;          bitangents[bitangentIndex++] = bitangent.x;          bitangents[bitangentIndex++] = bitangent.y;          bitangents[bitangentIndex++] = bitangent.z;        }      }    }    for (i = 0; i < slices; i++) {      if (vertexFormat.normal) {        normals[normalIndex++] = 0;        normals[normalIndex++] = 0;        normals[normalIndex++] = -1;      }      if (vertexFormat.tangent) {        tangents[tangentIndex++] = 1;        tangents[tangentIndex++] = 0;        tangents[tangentIndex++] = 0;      }      if (vertexFormat.bitangent) {        bitangents[bitangentIndex++] = 0;        bitangents[bitangentIndex++] = -1;        bitangents[bitangentIndex++] = 0;      }    }    for (i = 0; i < slices; i++) {      if (vertexFormat.normal) {        normals[normalIndex++] = 0;        normals[normalIndex++] = 0;        normals[normalIndex++] = 1;      }      if (vertexFormat.tangent) {        tangents[tangentIndex++] = 1;        tangents[tangentIndex++] = 0;        tangents[tangentIndex++] = 0;      }      if (vertexFormat.bitangent) {        bitangents[bitangentIndex++] = 0;        bitangents[bitangentIndex++] = 1;        bitangents[bitangentIndex++] = 0;      }    }  }  const numIndices = 12 * slices - 12;  const indices = IndexDatatype.createTypedArray(numVertices, numIndices);  let index = 0;  let j = 0;  for (i = 0; i < slices - 1; i++) {    indices[index++] = j;    indices[index++] = j + 2;    indices[index++] = j + 3;    indices[index++] = j;    indices[index++] = j + 3;    indices[index++] = j + 1;    j += 2;  }  indices[index++] = twoSlices - 2;  indices[index++] = 0;  indices[index++] = 1;  indices[index++] = twoSlices - 2;  indices[index++] = 1;  indices[index++] = twoSlices - 1;  for (i = 1; i < slices - 1; i++) {    indices[index++] = twoSlices + i + 1;    indices[index++] = twoSlices + i;    indices[index++] = twoSlices;  }  for (i = 1; i < slices - 1; i++) {    indices[index++] = threeSlices;    indices[index++] = threeSlices + i;    indices[index++] = threeSlices + i + 1;  }  let textureCoordIndex = 0;  if (vertexFormat.st) {    const rad = Math.max(topRadius, bottomRadius);    for (i = 0; i < numVertices; i++) {      const position = Cartesian3.fromArray(positions, i * 3, positionScratch);      st[textureCoordIndex++] = (position.x + rad) / (2.0 * rad);      st[textureCoordIndex++] = (position.y + rad) / (2.0 * rad);    }  }  const attributes = new GeometryAttributes();  if (vertexFormat.position) {    attributes.position = new GeometryAttribute({      componentDatatype: ComponentDatatype.DOUBLE,      componentsPerAttribute: 3,      values: positions,    });  }  if (vertexFormat.normal) {    attributes.normal = new GeometryAttribute({      componentDatatype: ComponentDatatype.FLOAT,      componentsPerAttribute: 3,      values: normals,    });  }  if (vertexFormat.tangent) {    attributes.tangent = new GeometryAttribute({      componentDatatype: ComponentDatatype.FLOAT,      componentsPerAttribute: 3,      values: tangents,    });  }  if (vertexFormat.bitangent) {    attributes.bitangent = new GeometryAttribute({      componentDatatype: ComponentDatatype.FLOAT,      componentsPerAttribute: 3,      values: bitangents,    });  }  if (vertexFormat.st) {    attributes.st = new GeometryAttribute({      componentDatatype: ComponentDatatype.FLOAT,      componentsPerAttribute: 2,      values: st,    });  }  radiusScratch.x = length * 0.5;  radiusScratch.y = Math.max(bottomRadius, topRadius);  const boundingSphere = new BoundingSphere(    Cartesian3.ZERO,    Cartesian2.magnitude(radiusScratch)  );  if (defined(cylinderGeometry._offsetAttribute)) {    length = positions.length;    const applyOffset = new Uint8Array(length / 3);    const offsetValue =      cylinderGeometry._offsetAttribute === GeometryOffsetAttribute.NONE        ? 0        : 1;    arrayFill(applyOffset, offsetValue);    attributes.applyOffset = new GeometryAttribute({      componentDatatype: ComponentDatatype.UNSIGNED_BYTE,      componentsPerAttribute: 1,      values: applyOffset,    });  }  return new Geometry({    attributes: attributes,    indices: indices,    primitiveType: PrimitiveType.TRIANGLES,    boundingSphere: boundingSphere,    offsetAttribute: cylinderGeometry._offsetAttribute,  });};let unitCylinderGeometry;/** * Returns the geometric representation of a unit cylinder, including its vertices, indices, and a bounding sphere. * @returns {Geometry} The computed vertices and indices. * * @private */CylinderGeometry.getUnitCylinder = function () {  if (!defined(unitCylinderGeometry)) {    unitCylinderGeometry = CylinderGeometry.createGeometry(      new CylinderGeometry({        topRadius: 1.0,        bottomRadius: 1.0,        length: 1.0,        vertexFormat: VertexFormat.POSITION_ONLY,      })    );  }  return unitCylinderGeometry;};export default CylinderGeometry;
 |