| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804 | import Cartesian3 from "./Cartesian3.js";import Cartographic from "./Cartographic.js";import Check from "./Check.js";import defaultValue from "./defaultValue.js";import defined from "./defined.js";import DeveloperError from "./DeveloperError.js";import CesiumMath from "./Math.js";import scaleToGeodeticSurface from "./scaleToGeodeticSurface.js";function initialize(ellipsoid, x, y, z) {  x = defaultValue(x, 0.0);  y = defaultValue(y, 0.0);  z = defaultValue(z, 0.0);  //>>includeStart('debug', pragmas.debug);  Check.typeOf.number.greaterThanOrEquals("x", x, 0.0);  Check.typeOf.number.greaterThanOrEquals("y", y, 0.0);  Check.typeOf.number.greaterThanOrEquals("z", z, 0.0);  //>>includeEnd('debug');  ellipsoid._radii = new Cartesian3(x, y, z);  ellipsoid._radiiSquared = new Cartesian3(x * x, y * y, z * z);  ellipsoid._radiiToTheFourth = new Cartesian3(    x * x * x * x,    y * y * y * y,    z * z * z * z  );  ellipsoid._oneOverRadii = new Cartesian3(    x === 0.0 ? 0.0 : 1.0 / x,    y === 0.0 ? 0.0 : 1.0 / y,    z === 0.0 ? 0.0 : 1.0 / z  );  ellipsoid._oneOverRadiiSquared = new Cartesian3(    x === 0.0 ? 0.0 : 1.0 / (x * x),    y === 0.0 ? 0.0 : 1.0 / (y * y),    z === 0.0 ? 0.0 : 1.0 / (z * z)  );  ellipsoid._minimumRadius = Math.min(x, y, z);  ellipsoid._maximumRadius = Math.max(x, y, z);  ellipsoid._centerToleranceSquared = CesiumMath.EPSILON1;  if (ellipsoid._radiiSquared.z !== 0) {    ellipsoid._squaredXOverSquaredZ =      ellipsoid._radiiSquared.x / ellipsoid._radiiSquared.z;  }}/** * A quadratic surface defined in Cartesian coordinates by the equation * <code>(x / a)^2 + (y / b)^2 + (z / c)^2 = 1</code>.  Primarily used * by Cesium to represent the shape of planetary bodies. * * Rather than constructing this object directly, one of the provided * constants is normally used. * @alias Ellipsoid * @constructor * * @param {Number} [x=0] The radius in the x direction. * @param {Number} [y=0] The radius in the y direction. * @param {Number} [z=0] The radius in the z direction. * * @exception {DeveloperError} All radii components must be greater than or equal to zero. * * @see Ellipsoid.fromCartesian3 * @see Ellipsoid.WGS84 * @see Ellipsoid.UNIT_SPHERE */function Ellipsoid(x, y, z) {  this._radii = undefined;  this._radiiSquared = undefined;  this._radiiToTheFourth = undefined;  this._oneOverRadii = undefined;  this._oneOverRadiiSquared = undefined;  this._minimumRadius = undefined;  this._maximumRadius = undefined;  this._centerToleranceSquared = undefined;  this._squaredXOverSquaredZ = undefined;  initialize(this, x, y, z);}Object.defineProperties(Ellipsoid.prototype, {  /**   * Gets the radii of the ellipsoid.   * @memberof Ellipsoid.prototype   * @type {Cartesian3}   * @readonly   */  radii: {    get: function () {      return this._radii;    },  },  /**   * Gets the squared radii of the ellipsoid.   * @memberof Ellipsoid.prototype   * @type {Cartesian3}   * @readonly   */  radiiSquared: {    get: function () {      return this._radiiSquared;    },  },  /**   * Gets the radii of the ellipsoid raise to the fourth power.   * @memberof Ellipsoid.prototype   * @type {Cartesian3}   * @readonly   */  radiiToTheFourth: {    get: function () {      return this._radiiToTheFourth;    },  },  /**   * Gets one over the radii of the ellipsoid.   * @memberof Ellipsoid.prototype   * @type {Cartesian3}   * @readonly   */  oneOverRadii: {    get: function () {      return this._oneOverRadii;    },  },  /**   * Gets one over the squared radii of the ellipsoid.   * @memberof Ellipsoid.prototype   * @type {Cartesian3}   * @readonly   */  oneOverRadiiSquared: {    get: function () {      return this._oneOverRadiiSquared;    },  },  /**   * Gets the minimum radius of the ellipsoid.   * @memberof Ellipsoid.prototype   * @type {Number}   * @readonly   */  minimumRadius: {    get: function () {      return this._minimumRadius;    },  },  /**   * Gets the maximum radius of the ellipsoid.   * @memberof Ellipsoid.prototype   * @type {Number}   * @readonly   */  maximumRadius: {    get: function () {      return this._maximumRadius;    },  },});/** * Duplicates an Ellipsoid instance. * * @param {Ellipsoid} ellipsoid The ellipsoid to duplicate. * @param {Ellipsoid} [result] The object onto which to store the result, or undefined if a new *                    instance should be created. * @returns {Ellipsoid} The cloned Ellipsoid. (Returns undefined if ellipsoid is undefined) */Ellipsoid.clone = function (ellipsoid, result) {  if (!defined(ellipsoid)) {    return undefined;  }  const radii = ellipsoid._radii;  if (!defined(result)) {    return new Ellipsoid(radii.x, radii.y, radii.z);  }  Cartesian3.clone(radii, result._radii);  Cartesian3.clone(ellipsoid._radiiSquared, result._radiiSquared);  Cartesian3.clone(ellipsoid._radiiToTheFourth, result._radiiToTheFourth);  Cartesian3.clone(ellipsoid._oneOverRadii, result._oneOverRadii);  Cartesian3.clone(ellipsoid._oneOverRadiiSquared, result._oneOverRadiiSquared);  result._minimumRadius = ellipsoid._minimumRadius;  result._maximumRadius = ellipsoid._maximumRadius;  result._centerToleranceSquared = ellipsoid._centerToleranceSquared;  return result;};/** * Computes an Ellipsoid from a Cartesian specifying the radii in x, y, and z directions. * * @param {Cartesian3} [cartesian=Cartesian3.ZERO] The ellipsoid's radius in the x, y, and z directions. * @param {Ellipsoid} [result] The object onto which to store the result, or undefined if a new *                    instance should be created. * @returns {Ellipsoid} A new Ellipsoid instance. * * @exception {DeveloperError} All radii components must be greater than or equal to zero. * * @see Ellipsoid.WGS84 * @see Ellipsoid.UNIT_SPHERE */Ellipsoid.fromCartesian3 = function (cartesian, result) {  if (!defined(result)) {    result = new Ellipsoid();  }  if (!defined(cartesian)) {    return result;  }  initialize(result, cartesian.x, cartesian.y, cartesian.z);  return result;};/** * An Ellipsoid instance initialized to the WGS84 standard. * * @type {Ellipsoid} * @constant */Ellipsoid.WGS84 = Object.freeze(  new Ellipsoid(6378137.0, 6378137.0, 6356752.3142451793));/** * An Ellipsoid instance initialized to radii of (1.0, 1.0, 1.0). * * @type {Ellipsoid} * @constant */Ellipsoid.UNIT_SPHERE = Object.freeze(new Ellipsoid(1.0, 1.0, 1.0));/** * An Ellipsoid instance initialized to a sphere with the lunar radius. * * @type {Ellipsoid} * @constant */Ellipsoid.MOON = Object.freeze(  new Ellipsoid(    CesiumMath.LUNAR_RADIUS,    CesiumMath.LUNAR_RADIUS,    CesiumMath.LUNAR_RADIUS  ));/** * Duplicates an Ellipsoid instance. * * @param {Ellipsoid} [result] The object onto which to store the result, or undefined if a new *                    instance should be created. * @returns {Ellipsoid} The cloned Ellipsoid. */Ellipsoid.prototype.clone = function (result) {  return Ellipsoid.clone(this, result);};/** * The number of elements used to pack the object into an array. * @type {Number} */Ellipsoid.packedLength = Cartesian3.packedLength;/** * Stores the provided instance into the provided array. * * @param {Ellipsoid} value The value to pack. * @param {Number[]} array The array to pack into. * @param {Number} [startingIndex=0] The index into the array at which to start packing the elements. * * @returns {Number[]} The array that was packed into */Ellipsoid.pack = function (value, array, startingIndex) {  //>>includeStart('debug', pragmas.debug);  Check.typeOf.object("value", value);  Check.defined("array", array);  //>>includeEnd('debug');  startingIndex = defaultValue(startingIndex, 0);  Cartesian3.pack(value._radii, array, startingIndex);  return array;};/** * Retrieves an instance from a packed array. * * @param {Number[]} array The packed array. * @param {Number} [startingIndex=0] The starting index of the element to be unpacked. * @param {Ellipsoid} [result] The object into which to store the result. * @returns {Ellipsoid} The modified result parameter or a new Ellipsoid instance if one was not provided. */Ellipsoid.unpack = function (array, startingIndex, result) {  //>>includeStart('debug', pragmas.debug);  Check.defined("array", array);  //>>includeEnd('debug');  startingIndex = defaultValue(startingIndex, 0);  const radii = Cartesian3.unpack(array, startingIndex);  return Ellipsoid.fromCartesian3(radii, result);};/** * Computes the unit vector directed from the center of this ellipsoid toward the provided Cartesian position. * @function * * @param {Cartesian3} cartesian The Cartesian for which to to determine the geocentric normal. * @param {Cartesian3} [result] The object onto which to store the result. * @returns {Cartesian3} The modified result parameter or a new Cartesian3 instance if none was provided. */Ellipsoid.prototype.geocentricSurfaceNormal = Cartesian3.normalize;/** * Computes the normal of the plane tangent to the surface of the ellipsoid at the provided position. * * @param {Cartographic} cartographic The cartographic position for which to to determine the geodetic normal. * @param {Cartesian3} [result] The object onto which to store the result. * @returns {Cartesian3} The modified result parameter or a new Cartesian3 instance if none was provided. */Ellipsoid.prototype.geodeticSurfaceNormalCartographic = function (  cartographic,  result) {  //>>includeStart('debug', pragmas.debug);  Check.typeOf.object("cartographic", cartographic);  //>>includeEnd('debug');  const longitude = cartographic.longitude;  const latitude = cartographic.latitude;  const cosLatitude = Math.cos(latitude);  const x = cosLatitude * Math.cos(longitude);  const y = cosLatitude * Math.sin(longitude);  const z = Math.sin(latitude);  if (!defined(result)) {    result = new Cartesian3();  }  result.x = x;  result.y = y;  result.z = z;  return Cartesian3.normalize(result, result);};/** * Computes the normal of the plane tangent to the surface of the ellipsoid at the provided position. * * @param {Cartesian3} cartesian The Cartesian position for which to to determine the surface normal. * @param {Cartesian3} [result] The object onto which to store the result. * @returns {Cartesian3} The modified result parameter or a new Cartesian3 instance if none was provided, or undefined if a normal cannot be found. */Ellipsoid.prototype.geodeticSurfaceNormal = function (cartesian, result) {  if (    Cartesian3.equalsEpsilon(cartesian, Cartesian3.ZERO, CesiumMath.EPSILON14)  ) {    return undefined;  }  if (!defined(result)) {    result = new Cartesian3();  }  result = Cartesian3.multiplyComponents(    cartesian,    this._oneOverRadiiSquared,    result  );  return Cartesian3.normalize(result, result);};const cartographicToCartesianNormal = new Cartesian3();const cartographicToCartesianK = new Cartesian3();/** * Converts the provided cartographic to Cartesian representation. * * @param {Cartographic} cartographic The cartographic position. * @param {Cartesian3} [result] The object onto which to store the result. * @returns {Cartesian3} The modified result parameter or a new Cartesian3 instance if none was provided. * * @example * //Create a Cartographic and determine it's Cartesian representation on a WGS84 ellipsoid. * const position = new Cesium.Cartographic(Cesium.Math.toRadians(21), Cesium.Math.toRadians(78), 5000); * const cartesianPosition = Cesium.Ellipsoid.WGS84.cartographicToCartesian(position); */Ellipsoid.prototype.cartographicToCartesian = function (cartographic, result) {  //`cartographic is required` is thrown from geodeticSurfaceNormalCartographic.  const n = cartographicToCartesianNormal;  const k = cartographicToCartesianK;  this.geodeticSurfaceNormalCartographic(cartographic, n);  Cartesian3.multiplyComponents(this._radiiSquared, n, k);  const gamma = Math.sqrt(Cartesian3.dot(n, k));  Cartesian3.divideByScalar(k, gamma, k);  Cartesian3.multiplyByScalar(n, cartographic.height, n);  if (!defined(result)) {    result = new Cartesian3();  }  return Cartesian3.add(k, n, result);};/** * Converts the provided array of cartographics to an array of Cartesians. * * @param {Cartographic[]} cartographics An array of cartographic positions. * @param {Cartesian3[]} [result] The object onto which to store the result. * @returns {Cartesian3[]} The modified result parameter or a new Array instance if none was provided. * * @example * //Convert an array of Cartographics and determine their Cartesian representation on a WGS84 ellipsoid. * const positions = [new Cesium.Cartographic(Cesium.Math.toRadians(21), Cesium.Math.toRadians(78), 0), *                  new Cesium.Cartographic(Cesium.Math.toRadians(21.321), Cesium.Math.toRadians(78.123), 100), *                  new Cesium.Cartographic(Cesium.Math.toRadians(21.645), Cesium.Math.toRadians(78.456), 250)]; * const cartesianPositions = Cesium.Ellipsoid.WGS84.cartographicArrayToCartesianArray(positions); */Ellipsoid.prototype.cartographicArrayToCartesianArray = function (  cartographics,  result) {  //>>includeStart('debug', pragmas.debug);  Check.defined("cartographics", cartographics);  //>>includeEnd('debug')  const length = cartographics.length;  if (!defined(result)) {    result = new Array(length);  } else {    result.length = length;  }  for (let i = 0; i < length; i++) {    result[i] = this.cartographicToCartesian(cartographics[i], result[i]);  }  return result;};const cartesianToCartographicN = new Cartesian3();const cartesianToCartographicP = new Cartesian3();const cartesianToCartographicH = new Cartesian3();/** * Converts the provided cartesian to cartographic representation. * The cartesian is undefined at the center of the ellipsoid. * * @param {Cartesian3} cartesian The Cartesian position to convert to cartographic representation. * @param {Cartographic} [result] The object onto which to store the result. * @returns {Cartographic} The modified result parameter, new Cartographic instance if none was provided, or undefined if the cartesian is at the center of the ellipsoid. * * @example * //Create a Cartesian and determine it's Cartographic representation on a WGS84 ellipsoid. * const position = new Cesium.Cartesian3(17832.12, 83234.52, 952313.73); * const cartographicPosition = Cesium.Ellipsoid.WGS84.cartesianToCartographic(position); */Ellipsoid.prototype.cartesianToCartographic = function (cartesian, result) {  //`cartesian is required.` is thrown from scaleToGeodeticSurface  const p = this.scaleToGeodeticSurface(cartesian, cartesianToCartographicP);  if (!defined(p)) {    return undefined;  }  const n = this.geodeticSurfaceNormal(p, cartesianToCartographicN);  const h = Cartesian3.subtract(cartesian, p, cartesianToCartographicH);  const longitude = Math.atan2(n.y, n.x);  const latitude = Math.asin(n.z);  const height =    CesiumMath.sign(Cartesian3.dot(h, cartesian)) * Cartesian3.magnitude(h);  if (!defined(result)) {    return new Cartographic(longitude, latitude, height);  }  result.longitude = longitude;  result.latitude = latitude;  result.height = height;  return result;};/** * Converts the provided array of cartesians to an array of cartographics. * * @param {Cartesian3[]} cartesians An array of Cartesian positions. * @param {Cartographic[]} [result] The object onto which to store the result. * @returns {Cartographic[]} The modified result parameter or a new Array instance if none was provided. * * @example * //Create an array of Cartesians and determine their Cartographic representation on a WGS84 ellipsoid. * const positions = [new Cesium.Cartesian3(17832.12, 83234.52, 952313.73), *                  new Cesium.Cartesian3(17832.13, 83234.53, 952313.73), *                  new Cesium.Cartesian3(17832.14, 83234.54, 952313.73)] * const cartographicPositions = Cesium.Ellipsoid.WGS84.cartesianArrayToCartographicArray(positions); */Ellipsoid.prototype.cartesianArrayToCartographicArray = function (  cartesians,  result) {  //>>includeStart('debug', pragmas.debug);  Check.defined("cartesians", cartesians);  //>>includeEnd('debug');  const length = cartesians.length;  if (!defined(result)) {    result = new Array(length);  } else {    result.length = length;  }  for (let i = 0; i < length; ++i) {    result[i] = this.cartesianToCartographic(cartesians[i], result[i]);  }  return result;};/** * Scales the provided Cartesian position along the geodetic surface normal * so that it is on the surface of this ellipsoid.  If the position is * at the center of the ellipsoid, this function returns undefined. * * @param {Cartesian3} cartesian The Cartesian position to scale. * @param {Cartesian3} [result] The object onto which to store the result. * @returns {Cartesian3} The modified result parameter, a new Cartesian3 instance if none was provided, or undefined if the position is at the center. */Ellipsoid.prototype.scaleToGeodeticSurface = function (cartesian, result) {  return scaleToGeodeticSurface(    cartesian,    this._oneOverRadii,    this._oneOverRadiiSquared,    this._centerToleranceSquared,    result  );};/** * Scales the provided Cartesian position along the geocentric surface normal * so that it is on the surface of this ellipsoid. * * @param {Cartesian3} cartesian The Cartesian position to scale. * @param {Cartesian3} [result] The object onto which to store the result. * @returns {Cartesian3} The modified result parameter or a new Cartesian3 instance if none was provided. */Ellipsoid.prototype.scaleToGeocentricSurface = function (cartesian, result) {  //>>includeStart('debug', pragmas.debug);  Check.typeOf.object("cartesian", cartesian);  //>>includeEnd('debug');  if (!defined(result)) {    result = new Cartesian3();  }  const positionX = cartesian.x;  const positionY = cartesian.y;  const positionZ = cartesian.z;  const oneOverRadiiSquared = this._oneOverRadiiSquared;  const beta =    1.0 /    Math.sqrt(      positionX * positionX * oneOverRadiiSquared.x +        positionY * positionY * oneOverRadiiSquared.y +        positionZ * positionZ * oneOverRadiiSquared.z    );  return Cartesian3.multiplyByScalar(cartesian, beta, result);};/** * Transforms a Cartesian X, Y, Z position to the ellipsoid-scaled space by multiplying * its components by the result of {@link Ellipsoid#oneOverRadii}. * * @param {Cartesian3} position The position to transform. * @param {Cartesian3} [result] The position to which to copy the result, or undefined to create and *        return a new instance. * @returns {Cartesian3} The position expressed in the scaled space.  The returned instance is the *          one passed as the result parameter if it is not undefined, or a new instance of it is. */Ellipsoid.prototype.transformPositionToScaledSpace = function (  position,  result) {  if (!defined(result)) {    result = new Cartesian3();  }  return Cartesian3.multiplyComponents(position, this._oneOverRadii, result);};/** * Transforms a Cartesian X, Y, Z position from the ellipsoid-scaled space by multiplying * its components by the result of {@link Ellipsoid#radii}. * * @param {Cartesian3} position The position to transform. * @param {Cartesian3} [result] The position to which to copy the result, or undefined to create and *        return a new instance. * @returns {Cartesian3} The position expressed in the unscaled space.  The returned instance is the *          one passed as the result parameter if it is not undefined, or a new instance of it is. */Ellipsoid.prototype.transformPositionFromScaledSpace = function (  position,  result) {  if (!defined(result)) {    result = new Cartesian3();  }  return Cartesian3.multiplyComponents(position, this._radii, result);};/** * Compares this Ellipsoid against the provided Ellipsoid componentwise and returns * <code>true</code> if they are equal, <code>false</code> otherwise. * * @param {Ellipsoid} [right] The other Ellipsoid. * @returns {Boolean} <code>true</code> if they are equal, <code>false</code> otherwise. */Ellipsoid.prototype.equals = function (right) {  return (    this === right ||    (defined(right) && Cartesian3.equals(this._radii, right._radii))  );};/** * Creates a string representing this Ellipsoid in the format '(radii.x, radii.y, radii.z)'. * * @returns {String} A string representing this ellipsoid in the format '(radii.x, radii.y, radii.z)'. */Ellipsoid.prototype.toString = function () {  return this._radii.toString();};/** * Computes a point which is the intersection of the surface normal with the z-axis. * * @param {Cartesian3} position the position. must be on the surface of the ellipsoid. * @param {Number} [buffer = 0.0] A buffer to subtract from the ellipsoid size when checking if the point is inside the ellipsoid. *                                In earth case, with common earth datums, there is no need for this buffer since the intersection point is always (relatively) very close to the center. *                                In WGS84 datum, intersection point is at max z = +-42841.31151331382 (0.673% of z-axis). *                                Intersection point could be outside the ellipsoid if the ratio of MajorAxis / AxisOfRotation is bigger than the square root of 2 * @param {Cartesian3} [result] The cartesian to which to copy the result, or undefined to create and *        return a new instance. * @returns {Cartesian3 | undefined} the intersection point if it's inside the ellipsoid, undefined otherwise * * @exception {DeveloperError} position is required. * @exception {DeveloperError} Ellipsoid must be an ellipsoid of revolution (radii.x == radii.y). * @exception {DeveloperError} Ellipsoid.radii.z must be greater than 0. */Ellipsoid.prototype.getSurfaceNormalIntersectionWithZAxis = function (  position,  buffer,  result) {  //>>includeStart('debug', pragmas.debug);  Check.typeOf.object("position", position);  if (    !CesiumMath.equalsEpsilon(      this._radii.x,      this._radii.y,      CesiumMath.EPSILON15    )  ) {    throw new DeveloperError(      "Ellipsoid must be an ellipsoid of revolution (radii.x == radii.y)"    );  }  Check.typeOf.number.greaterThan("Ellipsoid.radii.z", this._radii.z, 0);  //>>includeEnd('debug');  buffer = defaultValue(buffer, 0.0);  const squaredXOverSquaredZ = this._squaredXOverSquaredZ;  if (!defined(result)) {    result = new Cartesian3();  }  result.x = 0.0;  result.y = 0.0;  result.z = position.z * (1 - squaredXOverSquaredZ);  if (Math.abs(result.z) >= this._radii.z - buffer) {    return undefined;  }  return result;};const abscissas = [  0.14887433898163,  0.43339539412925,  0.67940956829902,  0.86506336668898,  0.97390652851717,  0.0,];const weights = [  0.29552422471475,  0.26926671930999,  0.21908636251598,  0.14945134915058,  0.066671344308684,  0.0,];/** * Compute the 10th order Gauss-Legendre Quadrature of the given definite integral. * * @param {Number} a The lower bound for the integration. * @param {Number} b The upper bound for the integration. * @param {Ellipsoid~RealValuedScalarFunction} func The function to integrate. * @returns {Number} The value of the integral of the given function over the given domain. * * @private */function gaussLegendreQuadrature(a, b, func) {  //>>includeStart('debug', pragmas.debug);  Check.typeOf.number("a", a);  Check.typeOf.number("b", b);  Check.typeOf.func("func", func);  //>>includeEnd('debug');  // The range is half of the normal range since the five weights add to one (ten weights add to two).  // The values of the abscissas are multiplied by two to account for this.  const xMean = 0.5 * (b + a);  const xRange = 0.5 * (b - a);  let sum = 0.0;  for (let i = 0; i < 5; i++) {    const dx = xRange * abscissas[i];    sum += weights[i] * (func(xMean + dx) + func(xMean - dx));  }  // Scale the sum to the range of x.  sum *= xRange;  return sum;}/** * A real valued scalar function. * @callback Ellipsoid~RealValuedScalarFunction * * @param {Number} x The value used to evaluate the function. * @returns {Number} The value of the function at x. * * @private *//** * Computes an approximation of the surface area of a rectangle on the surface of an ellipsoid using * Gauss-Legendre 10th order quadrature. * * @param {Rectangle} rectangle The rectangle used for computing the surface area. * @returns {Number} The approximate area of the rectangle on the surface of this ellipsoid. */Ellipsoid.prototype.surfaceArea = function (rectangle) {  //>>includeStart('debug', pragmas.debug);  Check.typeOf.object("rectangle", rectangle);  //>>includeEnd('debug');  const minLongitude = rectangle.west;  let maxLongitude = rectangle.east;  const minLatitude = rectangle.south;  const maxLatitude = rectangle.north;  while (maxLongitude < minLongitude) {    maxLongitude += CesiumMath.TWO_PI;  }  const radiiSquared = this._radiiSquared;  const a2 = radiiSquared.x;  const b2 = radiiSquared.y;  const c2 = radiiSquared.z;  const a2b2 = a2 * b2;  return gaussLegendreQuadrature(minLatitude, maxLatitude, function (lat) {    // phi represents the angle measured from the north pole    // sin(phi) = sin(pi / 2 - lat) = cos(lat), cos(phi) is similar    const sinPhi = Math.cos(lat);    const cosPhi = Math.sin(lat);    return (      Math.cos(lat) *      gaussLegendreQuadrature(minLongitude, maxLongitude, function (lon) {        const cosTheta = Math.cos(lon);        const sinTheta = Math.sin(lon);        return Math.sqrt(          a2b2 * cosPhi * cosPhi +            c2 *              (b2 * cosTheta * cosTheta + a2 * sinTheta * sinTheta) *              sinPhi *              sinPhi        );      })    );  });};export default Ellipsoid;
 |